Knowledge (XXG)

Cartan subalgebra

Source 📝

2302: 4061:; over an algebraically closed field every semisimple Lie algebra is splittable. Any two splitting Cartan algebras are conjugate, and they fulfill a similar function to Cartan algebras in semisimple Lie algebras over algebraically closed fields, so split semisimple Lie algebras (indeed, split reductive Lie algebras) share many properties with semisimple Lie algebras over algebraically closed fields. 35: 1750: 4083:
is a special type of subgroup. Specifically, its Lie algebra (which captures the group’s algebraic structure) is itself a Cartan subalgebra. When we consider the identity component of a subgroup, it shares the same Lie algebra. However, there isn’t a universally agreed-upon definition for which
1591: 2775: 1586: 3064: 950:
if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over an algebraically closed field of characteristic zero, a Cartan subalgebra can also be defined as a maximal toral subalgebra.
1885: 4106:. This version is sometimes called the ‘large Cartan subgroup.’ Additionally, there exists a ‘small Cartan subgroup,’ defined as the centralizer of a maximal torus. It’s important to note that these Cartan subgroups may not always be abelian in genera 2871: 3411: 2657: 2483: 3531: 1453: 933: 3182: 3848: 2281:
matrix. One can directly see this abelian subalgebra is not a Cartan subalgebra, since it is contained in the nilpotent algebra of strictly upper triangular matrices (or, since it is normalized by diagonal
3300: 2219: 2668: 1745:{\displaystyle d(a_{1},\ldots ,a_{n})={\begin{pmatrix}a_{1}&0&\cdots &0\\0&\ddots &&0\\\vdots &&\ddots &\vdots \\0&\cdots &\cdots &a_{n}\end{pmatrix}}} 1800: 2562: 2519: 2936: 2044: 2992: 1933: 1795: 1448: 4055: 3448: 3305: 3124: 1082:
For a finite-dimensional complex semisimple Lie algebra, the existence of a Cartan subalgebra is much simpler to establish, assuming the existence of a compact real form. In that case,
3570: 3882: 2784: 1345: 791: 761: 3782: 731: 3808: 3751: 3093: 1225:
is semisimple and the field has characteristic zero, then a maximal toral subalgebra is self-normalizing, and so is equal to the associated Cartan subalgebra. If in addition
4011: 3968: 3921: 3702: 3678: 3618: 3222: 2984: 2960: 2586: 2420: 2393: 2365: 1299: 1275: 1247: 1223: 1199: 1167: 1135: 1104: 1062: 1030: 1002: 822: 685: 658: 2594: 872: 1998:
The dimension of a Cartan subalgebra is not in general the maximal dimension of an abelian subalgebra, even for complex simple Lie algebras. For example, the Lie algebra
1403: 1372: 3590: 3471: 798: 452: 4098:
Now, when we explore disconnected compact Lie groups, things get interesting. There are multiple definitions for a Cartan subgroup. One common approach, proposed by
3943: 2891: 2166: 2139: 500: 2090: 2067: 3723: 3639: 3476: 3243: 2279: 2259: 2239: 2110: 1993: 1973: 1953: 842: 2432: 505: 495: 490: 4194: 4080: 310: 3253: 2525:(As noted earlier, a Cartan subalgebra can in fact be characterized as a subalgebra that is maximal among those having the above two properties.) 574: 457: 886: 4356: 4317: 4283: 4232: 4155: 1250: 605: 1067:
In a finite-dimensional Lie algebra over an algebraically closed field of characteristic zero, all Cartan subalgebras are conjugate under
961:
also have subalgebras that play the same role as the Cartan subalgebras of semisimple Lie algebras (over a field of characteristic zero).
3132: 4258: 3813: 958: 2171: 2770:{\displaystyle {\mathfrak {g}}_{\lambda }=\{x\in {\mathfrak {g}}:{\text{ad}}(h)x=\lambda (h)x,{\text{ for }}h\in {\mathfrak {h}}\}} 1581:{\displaystyle {\mathfrak {h}}=\left\{d(a_{1},\ldots ,a_{n})\mid a_{i}\in \mathbb {C} {\text{ and }}\sum _{i=1}^{n}a_{i}=0\right\}} 467: 974: 3059:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}\oplus \left(\bigoplus _{\lambda \in \Phi }{\mathfrak {g}}_{\lambda }\right)} 4340: 4220: 3651: 2531: 2488: 462: 442: 4199: 2900: 2001: 1893: 1755: 1408: 407: 315: 4020: 4335: 4084:
subgroup with this property should be called the ‘Cartan subgroup,’ especially when dealing with disconnected groups.
3986: 3980: 3416: 1064:
is then the same thing as a maximal toral subalgebra and the existence of a maximal toral subalgebra is easy to see.
3248: 2368: 2317: 447: 3098: 1880:{\displaystyle {\mathfrak {h}}=\left\{{\begin{pmatrix}a&0\\0&-a\end{pmatrix}}:a\in \mathbb {C} \right\}} 3302:
there is a decomposition related to the decomposition of the Lie algebra from its Cartan subalgebra. If we set
598: 82: 2866:{\displaystyle \Phi =\{\lambda \in {\mathfrak {h}}^{*}\setminus \{0\}|{\mathfrak {g}}_{\lambda }\neq \{0\}\}} 4102:, defines it as the group of elements that normalize a fixed maximal torus while preserving the fundamental 3536: 3656:
But, it turns out these weights can be used to classify the irreducible representations of the Lie algebra
3854: 3189: 2341: 2292: 1316: 848: 766: 736: 402: 365: 333: 320: 3756: 1004:
over an algebraically closed field of characteristic zero, there is a simpler approach: by definition, a
954: 694: 4375: 1076: 1037: 940: 631: 434: 102: 4330: 3985:
Over non-algebraically closed fields, not all Cartan subalgebras are conjugate. An important class are
3787: 3730: 3072: 3406:{\displaystyle V_{\lambda }=\{v\in V:(\sigma (h))(v)=\lambda (h)v{\text{ for }}h\in {\mathfrak {h}}\}} 2652:{\displaystyle {\mathfrak {g}}=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}{\mathfrak {g}}_{\lambda }} 3992: 3949: 3890: 3683: 3659: 3599: 3203: 2965: 2941: 2567: 2401: 2374: 2346: 1280: 1256: 1228: 1204: 1180: 1148: 1116: 1085: 1043: 1033: 1011: 983: 881: 803: 666: 639: 62: 52: 2423: 970: 936: 591: 579: 420: 250: 855: 4275: 1138: 351: 341: 4150:. Takeuchi, Kiyoshi, 1967-, Tanisaki, Toshiyuki, 1955- (English ed.). Boston: BirkhĂ€user. 4064:
Over a non-algebraically closed field not every semisimple Lie algebra is splittable, however.
1382: 1351: 4352: 4326: 4313: 4279: 4254: 4228: 4161: 4151: 4058: 3575: 3456: 1174: 530: 415: 268: 943:). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra. 876:
a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements
1005: 947: 688: 550: 230: 222: 214: 206: 198: 177: 167: 157: 147: 131: 112: 72: 4293: 4242: 3928: 2876: 2144: 1141:(a Lie subalgebra of the Lie algebra of endomorphisms of a finite-dimensional vector space 4309: 4289: 4267: 4238: 4224: 4073: 2115: 535: 288: 273: 44: 2478:{\displaystyle \operatorname {ad} :{\mathfrak {g}}\to {\mathfrak {gl}}({\mathfrak {g}})} 2072: 2049: 4087:
For compact connected Lie groups, a Cartan subgroup is essentially a maximal connected
3708: 3624: 3228: 2264: 2244: 2224: 2095: 1978: 1958: 1938: 827: 794: 555: 540: 373: 278: 2301: 4369: 4302: 4092: 4088: 1348: 1107: 263: 92: 4212: 4103: 1068: 560: 545: 346: 328: 258: 2564:
are simultaneously diagonalizable and that there is a direct sum decomposition of
3473:, there is a decomposition of the representation in terms of these weight spaces 4099: 2894: 1170: 1072: 661: 619: 386: 302: 26: 969:
Cartan subalgebras exist for finite-dimensional Lie algebras whenever the base
4095:.’ The Lie algebra associated with this subgroup is also a Cartan subalgebra. 2313: 634: 525: 391: 283: 4165: 22: 4145: 3526:{\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} 4253:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 4251:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
928:{\displaystyle \operatorname {ad} (x):{\mathfrak {g}}\to {\mathfrak {g}}} 973:
is infinite. One way to construct a Cartan subalgebra is by means of a
482: 1032:
that consists of semisimple elements (an element is semisimple if the
1145:) over an algebraically closed field, then any Cartan subalgebra of 977:. Over a finite field, the question of the existence is still open. 34: 3177:{\displaystyle \dim {\mathfrak {g}}=\dim {\mathfrak {h}}+\#\Phi } 2521:
consists of semisimple operators (i.e., diagonalizable matrices).
1075:. The common dimension of a Cartan subalgebra is then called the 851:
over an algebraically closed field of characteristic zero (e.g.,
3843:{\displaystyle \langle \alpha ,\lambda \rangle \in \mathbb {N} } 3295:{\displaystyle \sigma :{\mathfrak {g}}\to {\mathfrak {gl}}(V)} 2296: 2214:{\displaystyle {\begin{pmatrix}0&A\\0&0\end{pmatrix}}} 1106:
may be taken as the complexification of the Lie algebra of a
3945:
contains all information about the representation theory of
3646:
Classification of irreducible representations using weights
1301:
is Cartan if and only if it is a maximal toral subalgebra.
3989:: if a Lie algebra admits a splitting Cartan subalgebra 4072:
For a Cartan subgroup of a linear algebraic group, see
3196:
Decomposing representations with dual Cartan subalgebra
2321: 1310:
Any nilpotent Lie algebra is its own Cartan subalgebra.
4304:
Introduction to Lie Algebras and Representation Theory
4147:
D-modules, perverse sheaves, and representation theory
2180: 1824: 1641: 1376:
over a field, is the algebra of all diagonal matrices.
4023: 3995: 3952: 3931: 3893: 3857: 3816: 3790: 3759: 3733: 3711: 3686: 3662: 3627: 3602: 3578: 3539: 3479: 3459: 3419: 3308: 3256: 3231: 3206: 3135: 3101: 3075: 2995: 2968: 2944: 2903: 2879: 2787: 2671: 2597: 2570: 2534: 2491: 2435: 2404: 2377: 2349: 2267: 2247: 2227: 2174: 2147: 2118: 2098: 2075: 2052: 2004: 1981: 1961: 1941: 1896: 1803: 1758: 1594: 1456: 1411: 1385: 1354: 1319: 1283: 1259: 1231: 1207: 1183: 1151: 1119: 1088: 1046: 1014: 986: 889: 858: 830: 806: 769: 739: 697: 669: 642: 2557:{\displaystyle \operatorname {ad} ({\mathfrak {h}})} 2514:{\displaystyle \operatorname {ad} ({\mathfrak {h}})} 1797:
the Cartan subalgebra is the subalgebra of matrices
4349:
Cohomological Induction and Unitary Representations
2931:{\displaystyle {\mathfrak {g}}_{0}={\mathfrak {h}}} 2039:{\displaystyle {\mathfrak {sl}}_{2n}(\mathbb {C} )} 4301: 4223:, vol. 126 (2nd ed.), Berlin, New York: 4049: 4005: 3962: 3937: 3915: 3876: 3842: 3802: 3776: 3745: 3717: 3696: 3672: 3633: 3612: 3584: 3564: 3525: 3465: 3442: 3405: 3294: 3237: 3216: 3176: 3118: 3087: 3058: 2986:. The above decomposition can then be written as: 2978: 2954: 2930: 2885: 2865: 2769: 2651: 2580: 2556: 2513: 2477: 2414: 2387: 2359: 2273: 2253: 2233: 2213: 2160: 2141:but has a maximal abelian subalgebra of dimension 2133: 2104: 2084: 2061: 2038: 1987: 1967: 1947: 1928:{\displaystyle {\mathfrak {sl}}_{2}(\mathbb {R} )} 1927: 1879: 1790:{\displaystyle {\mathfrak {sl}}_{2}(\mathbb {C} )} 1789: 1744: 1580: 1443:{\displaystyle {\mathfrak {sl}}_{n}(\mathbb {C} )} 1442: 1397: 1366: 1339: 1293: 1277:as a linear Lie algebra, so that a subalgebra of 1269: 1241: 1217: 1193: 1161: 1129: 1098: 1056: 1024: 996: 927: 866: 836: 816: 799:representation theory of a semi-simple Lie algebra 785: 755: 725: 679: 652: 4050:{\displaystyle ({\mathfrak {g}},{\mathfrak {h}})} 3886:there exists a unique irreducible representation 1887:with Lie bracket given by the matrix commutator. 980:For a finite-dimensional semisimple Lie algebra 453:Representation theory of semisimple Lie algebras 3443:{\displaystyle \lambda \in {\mathfrak {h}}^{*}} 2528:These two properties say that the operators in 4347:Anthony William Knapp; David A. Vogan (1995). 2287:Cartan subalgebras of semisimple Lie algebras 599: 8: 3829: 3817: 3559: 3553: 3400: 3322: 2860: 2857: 2851: 2826: 2820: 2794: 2764: 2689: 3119:{\displaystyle {\mathfrak {g}}_{\lambda }} 1071:of the algebra, and in particular are all 606: 592: 491:Particle physics and representation theory 136: 33: 18: 4038: 4037: 4028: 4027: 4022: 3997: 3996: 3994: 3954: 3953: 3951: 3930: 3898: 3892: 3868: 3856: 3836: 3835: 3815: 3789: 3768: 3762: 3761: 3758: 3732: 3710: 3688: 3687: 3685: 3664: 3663: 3661: 3626: 3604: 3603: 3601: 3577: 3544: 3538: 3517: 3505: 3499: 3498: 3490: 3478: 3458: 3434: 3428: 3427: 3418: 3394: 3393: 3382: 3313: 3307: 3274: 3273: 3264: 3263: 3255: 3230: 3208: 3207: 3205: 3159: 3158: 3143: 3142: 3134: 3110: 3104: 3103: 3100: 3074: 3045: 3039: 3038: 3025: 3007: 3006: 2997: 2996: 2994: 2970: 2969: 2967: 2946: 2945: 2943: 2922: 2921: 2912: 2906: 2905: 2902: 2878: 2842: 2836: 2835: 2829: 2811: 2805: 2804: 2786: 2758: 2757: 2746: 2708: 2699: 2698: 2680: 2674: 2673: 2670: 2643: 2637: 2636: 2627: 2621: 2620: 2612: 2599: 2598: 2596: 2572: 2571: 2569: 2545: 2544: 2533: 2502: 2501: 2490: 2466: 2465: 2453: 2452: 2443: 2442: 2434: 2406: 2405: 2403: 2379: 2378: 2376: 2371:of characteristic 0, a Cartan subalgebra 2351: 2350: 2348: 2266: 2246: 2226: 2175: 2173: 2152: 2146: 2117: 2097: 2074: 2051: 2029: 2028: 2016: 2007: 2006: 2003: 1995:has two non-conjugate Cartan subalgebras. 1980: 1960: 1940: 1918: 1917: 1908: 1899: 1898: 1895: 1868: 1867: 1819: 1805: 1804: 1802: 1780: 1779: 1770: 1761: 1760: 1757: 1728: 1648: 1636: 1624: 1605: 1593: 1561: 1551: 1540: 1531: 1527: 1526: 1517: 1501: 1482: 1458: 1457: 1455: 1433: 1432: 1423: 1414: 1413: 1410: 1384: 1379:For the special Lie algebra of traceless 1353: 1331: 1322: 1321: 1318: 1285: 1284: 1282: 1261: 1260: 1258: 1233: 1232: 1230: 1209: 1208: 1206: 1185: 1184: 1182: 1153: 1152: 1150: 1121: 1120: 1118: 1090: 1089: 1087: 1048: 1047: 1045: 1016: 1015: 1013: 988: 987: 985: 919: 918: 909: 908: 888: 860: 859: 857: 829: 808: 807: 805: 797:in his doctoral thesis. It controls the 777: 776: 768: 747: 746: 738: 717: 716: 696: 671: 670: 668: 644: 643: 641: 4133: 3680:. For a finite dimensional irreducible 2817: 2293:Semisimple Lie algebra § Structure 2168:consisting of all matrices of the form 458:Representations of classical Lie groups 190: 139: 21: 4195:Lie algebras and their Representations 3753:with respect to a partial ordering on 3565:{\displaystyle V_{\lambda }\neq \{0\}} 16:Nilpotent subalgebra of a Lie algebra 7: 4178: 4139: 4137: 3877:{\displaystyle \alpha \in \Phi ^{+}} 1340:{\displaystyle {\mathfrak {gl}}_{n}} 786:{\displaystyle Y\in {\mathfrak {h}}} 756:{\displaystyle X\in {\mathfrak {h}}} 311:Lie group–Lie algebra correspondence 4039: 4029: 3998: 3955: 3777:{\displaystyle {\mathfrak {h}}^{*}} 3763: 3689: 3665: 3605: 3500: 3429: 3395: 3278: 3275: 3265: 3209: 3160: 3144: 3105: 3040: 3008: 2998: 2971: 2947: 2923: 2907: 2837: 2806: 2759: 2700: 2675: 2638: 2622: 2600: 2573: 2546: 2503: 2467: 2457: 2454: 2444: 2407: 2380: 2352: 2011: 2008: 1903: 1900: 1806: 1765: 1762: 1459: 1418: 1415: 1326: 1323: 1286: 1262: 1234: 1210: 1186: 1154: 1122: 1091: 1049: 1017: 989: 946:In general, a subalgebra is called 920: 910: 809: 778: 748: 726:{\displaystyle \in {\mathfrak {h}}} 718: 672: 645: 4123:) consisting of diagonal matrices. 3932: 3865: 3797: 3740: 3171: 3168: 3082: 3032: 2880: 2788: 14: 4200:Infinite-dimensional Lie algebras 3803:{\displaystyle \lambda \in \Phi } 3746:{\displaystyle \lambda \in \Phi } 3088:{\displaystyle \lambda \in \Phi } 3190:Semisimple Lie algebra#Structure 2300: 2112:has a Cartan subalgebra of rank 4006:{\displaystyle {\mathfrak {h}}} 3963:{\displaystyle {\mathfrak {g}}} 3916:{\displaystyle L^{+}(\lambda )} 3697:{\displaystyle {\mathfrak {g}}} 3673:{\displaystyle {\mathfrak {g}}} 3613:{\displaystyle {\mathfrak {g}}} 3224:over a field of characteristic 3217:{\displaystyle {\mathfrak {g}}} 2979:{\displaystyle {\mathfrak {h}}} 2955:{\displaystyle {\mathfrak {h}}} 2581:{\displaystyle {\mathfrak {g}}} 2429:For the adjoint representation 2415:{\displaystyle {\mathfrak {h}}} 2388:{\displaystyle {\mathfrak {h}}} 2360:{\displaystyle {\mathfrak {g}}} 1450:, it has the Cartan subalgebra 1294:{\displaystyle {\mathfrak {g}}} 1270:{\displaystyle {\mathfrak {g}}} 1242:{\displaystyle {\mathfrak {g}}} 1218:{\displaystyle {\mathfrak {g}}} 1194:{\displaystyle {\mathfrak {g}}} 1162:{\displaystyle {\mathfrak {g}}} 1130:{\displaystyle {\mathfrak {g}}} 1099:{\displaystyle {\mathfrak {h}}} 1057:{\displaystyle {\mathfrak {g}}} 1025:{\displaystyle {\mathfrak {g}}} 997:{\displaystyle {\mathfrak {g}}} 824:over a field of characteristic 817:{\displaystyle {\mathfrak {g}}} 680:{\displaystyle {\mathfrak {g}}} 653:{\displaystyle {\mathfrak {h}}} 4044: 4024: 3910: 3904: 3376: 3370: 3361: 3355: 3352: 3349: 3343: 3337: 3289: 3283: 3270: 2830: 2737: 2731: 2719: 2713: 2551: 2541: 2508: 2498: 2472: 2462: 2449: 2395:has the following properties: 2033: 2025: 1922: 1914: 1784: 1776: 1630: 1598: 1507: 1475: 1437: 1429: 959:generalized Kac–Moody algebras 915: 902: 896: 710: 698: 506:Galilean group representations 501:PoincarĂ© group representations 1: 4221:Graduate Texts in Mathematics 3727:there exists a unique weight 3652:Theorem of the highest weight 2312: with: The action of the 496:Lorentz group representations 463:Theorem of the highest weight 4300:Humphreys, James E. (1972), 4110:Examples of Cartan Subgroups 3987:splitting Cartan subalgebras 867:{\displaystyle \mathbb {C} } 4336:Encyclopedia of Mathematics 4144:Hotta, R. (Ryoshi) (2008). 3981:Splitting Cartan subalgebra 3975:Splitting Cartan subalgebra 3925:This means the root system 2938:; i.e., the centralizer of 793:). They were introduced by 4392: 4071: 3978: 3649: 3249:Lie algebra representation 3126:has dimension one and so: 3069:As it turns out, for each 2369:algebraically closed field 2318:Harish-Chandra isomorphism 2316:on the algebra, as in the 2290: 1040:). A Cartan subalgebra of 448:Lie algebra representation 4091:—often referred to as a ‘ 3192:for further information. 1398:{\displaystyle n\times n} 1367:{\displaystyle n\times n} 3850:for every positive root 3585:{\displaystyle \lambda } 3466:{\displaystyle \lambda } 1249:is semisimple, then the 965:Existence and uniqueness 847:In a finite-dimensional 443:Lie group representation 4249:Hall, Brian C. (2015), 4217:Linear algebraic groups 4079:A Cartan subgroup of a 3452:weight space for weight 2340:For finite-dimensional 1313:A Cartan subalgebra of 626:, often abbreviated as 468:Borel–Weil–Bott theorem 4051: 4007: 3964: 3939: 3917: 3878: 3844: 3804: 3778: 3747: 3719: 3698: 3674: 3635: 3614: 3586: 3566: 3533:In addition, whenever 3527: 3467: 3444: 3407: 3296: 3239: 3218: 3178: 3120: 3089: 3060: 2980: 2956: 2932: 2887: 2867: 2771: 2653: 2582: 2558: 2515: 2479: 2416: 2389: 2361: 2342:semisimple Lie algebra 2275: 2255: 2235: 2215: 2162: 2135: 2106: 2086: 2063: 2040: 1989: 1969: 1949: 1929: 1881: 1791: 1746: 1582: 1556: 1444: 1399: 1368: 1341: 1295: 1271: 1251:adjoint representation 1243: 1219: 1195: 1163: 1131: 1110:of the compact group. 1100: 1058: 1026: 998: 929: 868: 849:semisimple Lie algebra 838: 818: 787: 757: 727: 681: 654: 366:Semisimple Lie algebra 321:Adjoint representation 4052: 4008: 3965: 3940: 3938:{\displaystyle \Phi } 3918: 3879: 3845: 3805: 3779: 3748: 3720: 3699: 3675: 3636: 3615: 3587: 3567: 3528: 3468: 3445: 3408: 3297: 3240: 3219: 3179: 3121: 3090: 3061: 2981: 2957: 2933: 2888: 2886:{\displaystyle \Phi } 2868: 2772: 2654: 2583: 2559: 2516: 2480: 2417: 2390: 2362: 2276: 2256: 2236: 2216: 2163: 2161:{\displaystyle n^{2}} 2136: 2107: 2087: 2064: 2041: 1990: 1970: 1950: 1930: 1882: 1792: 1747: 1583: 1536: 1445: 1400: 1369: 1347:, the Lie algebra of 1342: 1296: 1272: 1244: 1220: 1196: 1164: 1132: 1101: 1059: 1027: 999: 930: 869: 839: 819: 788: 758: 728: 682: 655: 435:Representation theory 4308:, Berlin, New York: 4021: 3993: 3950: 3929: 3891: 3855: 3814: 3788: 3784:. Moreover, given a 3757: 3731: 3709: 3684: 3660: 3625: 3600: 3576: 3537: 3477: 3457: 3417: 3306: 3254: 3229: 3204: 3200:Given a Lie algebra 3133: 3099: 3073: 2993: 2966: 2942: 2901: 2877: 2785: 2669: 2595: 2568: 2532: 2489: 2433: 2402: 2375: 2347: 2265: 2245: 2225: 2172: 2145: 2134:{\displaystyle 2n-1} 2116: 2096: 2073: 2050: 2002: 1979: 1959: 1939: 1894: 1801: 1756: 1592: 1454: 1409: 1383: 1352: 1317: 1281: 1257: 1229: 1205: 1181: 1149: 1117: 1086: 1044: 1034:adjoint endomorphism 1012: 984: 887: 882:adjoint endomorphism 856: 828: 804: 767: 737: 695: 667: 640: 4331:"Cartan subalgebra" 1008:is a subalgebra of 580:Table of Lie groups 421:Compact Lie algebra 4276:Dover Publications 4115:The subgroup in GL 4047: 4013:then it is called 4003: 3960: 3935: 3913: 3874: 3840: 3800: 3774: 3743: 3715: 3694: 3670: 3631: 3610: 3582: 3562: 3523: 3512: 3463: 3440: 3403: 3292: 3235: 3214: 3174: 3116: 3085: 3056: 3036: 2976: 2952: 2928: 2883: 2863: 2767: 2649: 2634: 2578: 2554: 2511: 2475: 2412: 2385: 2357: 2320:. You can help by 2271: 2251: 2231: 2211: 2205: 2158: 2131: 2102: 2092:matrices of trace 2085:{\displaystyle 2n} 2082: 2062:{\displaystyle 2n} 2059: 2036: 1985: 1975:matrices of trace 1965: 1945: 1925: 1877: 1852: 1787: 1742: 1736: 1578: 1440: 1395: 1364: 1337: 1291: 1267: 1239: 1215: 1191: 1159: 1139:linear Lie algebra 1127: 1096: 1054: 1022: 994: 955:Kac–Moody algebras 925: 864: 834: 814: 783: 753: 723: 677: 650: 352:Affine Lie algebra 342:Simple Lie algebra 83:Special orthogonal 4358:978-0-691-03756-1 4319:978-0-387-90053-7 4285:978-0-486-63832-4 4234:978-0-387-97370-8 4157:978-0-8176-4363-8 4059:split Lie algebra 3718:{\displaystyle V} 3634:{\displaystyle V} 3486: 3385: 3238:{\displaystyle 0} 3021: 2749: 2711: 2608: 2338: 2337: 2274:{\displaystyle n} 2254:{\displaystyle n} 2234:{\displaystyle A} 2105:{\displaystyle 0} 1988:{\displaystyle 0} 1968:{\displaystyle 2} 1948:{\displaystyle 2} 1534: 1036:induced by it is 837:{\displaystyle 0} 624:Cartan subalgebra 616: 615: 416:Split Lie algebra 379:Cartan subalgebra 241: 240: 132:Simple Lie groups 4383: 4362: 4343: 4322: 4307: 4296: 4268:Jacobson, Nathan 4263: 4245: 4182: 4176: 4170: 4169: 4141: 4089:Abelian subgroup 4056: 4054: 4053: 4048: 4043: 4042: 4033: 4032: 4012: 4010: 4009: 4004: 4002: 4001: 3971: 3969: 3967: 3966: 3961: 3959: 3958: 3944: 3942: 3941: 3936: 3924: 3922: 3920: 3919: 3914: 3903: 3902: 3885: 3883: 3881: 3880: 3875: 3873: 3872: 3849: 3847: 3846: 3841: 3839: 3809: 3807: 3806: 3801: 3783: 3781: 3780: 3775: 3773: 3772: 3767: 3766: 3752: 3750: 3749: 3744: 3726: 3724: 3722: 3721: 3716: 3704:-representation 3703: 3701: 3700: 3695: 3693: 3692: 3679: 3677: 3676: 3671: 3669: 3668: 3642: 3640: 3638: 3637: 3632: 3620:-representation 3619: 3617: 3616: 3611: 3609: 3608: 3591: 3589: 3588: 3583: 3571: 3569: 3568: 3563: 3549: 3548: 3532: 3530: 3529: 3524: 3522: 3521: 3511: 3510: 3509: 3504: 3503: 3472: 3470: 3469: 3464: 3449: 3447: 3446: 3441: 3439: 3438: 3433: 3432: 3412: 3410: 3409: 3404: 3399: 3398: 3386: 3383: 3318: 3317: 3301: 3299: 3298: 3293: 3282: 3281: 3269: 3268: 3246: 3244: 3242: 3241: 3236: 3223: 3221: 3220: 3215: 3213: 3212: 3183: 3181: 3180: 3175: 3164: 3163: 3148: 3147: 3125: 3123: 3122: 3117: 3115: 3114: 3109: 3108: 3094: 3092: 3091: 3086: 3065: 3063: 3062: 3057: 3055: 3051: 3050: 3049: 3044: 3043: 3035: 3012: 3011: 3002: 3001: 2985: 2983: 2982: 2977: 2975: 2974: 2961: 2959: 2958: 2953: 2951: 2950: 2937: 2935: 2934: 2929: 2927: 2926: 2917: 2916: 2911: 2910: 2892: 2890: 2889: 2884: 2872: 2870: 2869: 2864: 2847: 2846: 2841: 2840: 2833: 2816: 2815: 2810: 2809: 2776: 2774: 2773: 2768: 2763: 2762: 2750: 2747: 2712: 2709: 2704: 2703: 2685: 2684: 2679: 2678: 2658: 2656: 2655: 2650: 2648: 2647: 2642: 2641: 2633: 2632: 2631: 2626: 2625: 2604: 2603: 2587: 2585: 2584: 2579: 2577: 2576: 2563: 2561: 2560: 2555: 2550: 2549: 2520: 2518: 2517: 2512: 2507: 2506: 2484: 2482: 2481: 2476: 2471: 2470: 2461: 2460: 2448: 2447: 2421: 2419: 2418: 2413: 2411: 2410: 2394: 2392: 2391: 2386: 2384: 2383: 2366: 2364: 2363: 2358: 2356: 2355: 2333: 2330: 2304: 2297: 2280: 2278: 2277: 2272: 2260: 2258: 2257: 2252: 2240: 2238: 2237: 2232: 2220: 2218: 2217: 2212: 2210: 2209: 2167: 2165: 2164: 2159: 2157: 2156: 2140: 2138: 2137: 2132: 2111: 2109: 2108: 2103: 2091: 2089: 2088: 2083: 2068: 2066: 2065: 2060: 2045: 2043: 2042: 2037: 2032: 2024: 2023: 2015: 2014: 1994: 1992: 1991: 1986: 1974: 1972: 1971: 1966: 1954: 1952: 1951: 1946: 1934: 1932: 1931: 1926: 1921: 1913: 1912: 1907: 1906: 1890:The Lie algebra 1886: 1884: 1883: 1878: 1876: 1872: 1871: 1857: 1856: 1810: 1809: 1796: 1794: 1793: 1788: 1783: 1775: 1774: 1769: 1768: 1752:For example, in 1751: 1749: 1748: 1743: 1741: 1740: 1733: 1732: 1695: 1682: 1653: 1652: 1629: 1628: 1610: 1609: 1587: 1585: 1584: 1579: 1577: 1573: 1566: 1565: 1555: 1550: 1535: 1532: 1530: 1522: 1521: 1506: 1505: 1487: 1486: 1463: 1462: 1449: 1447: 1446: 1441: 1436: 1428: 1427: 1422: 1421: 1404: 1402: 1401: 1396: 1373: 1371: 1370: 1365: 1346: 1344: 1343: 1338: 1336: 1335: 1330: 1329: 1300: 1298: 1297: 1292: 1290: 1289: 1276: 1274: 1273: 1268: 1266: 1265: 1248: 1246: 1245: 1240: 1238: 1237: 1224: 1222: 1221: 1216: 1214: 1213: 1200: 1198: 1197: 1192: 1190: 1189: 1175:toral subalgebra 1168: 1166: 1165: 1160: 1158: 1157: 1136: 1134: 1133: 1128: 1126: 1125: 1105: 1103: 1102: 1097: 1095: 1094: 1079:of the algebra. 1063: 1061: 1060: 1055: 1053: 1052: 1031: 1029: 1028: 1023: 1021: 1020: 1006:toral subalgebra 1003: 1001: 1000: 995: 993: 992: 934: 932: 931: 926: 924: 923: 914: 913: 875: 873: 871: 870: 865: 863: 843: 841: 840: 835: 823: 821: 820: 815: 813: 812: 792: 790: 789: 784: 782: 781: 762: 760: 759: 754: 752: 751: 732: 730: 729: 724: 722: 721: 689:self-normalising 686: 684: 683: 678: 676: 675: 659: 657: 656: 651: 649: 648: 608: 601: 594: 551:Claude Chevalley 408:Complexification 251:Other Lie groups 137: 45:Classical groups 37: 19: 4391: 4390: 4386: 4385: 4384: 4382: 4381: 4380: 4366: 4365: 4359: 4346: 4325: 4320: 4310:Springer-Verlag 4299: 4286: 4266: 4261: 4248: 4235: 4225:Springer-Verlag 4211: 4208: 4191: 4186: 4185: 4177: 4173: 4158: 4143: 4142: 4135: 4130: 4118: 4112: 4077: 4074:Cartan subgroup 4070: 4068:Cartan subgroup 4019: 4018: 3991: 3990: 3983: 3977: 3948: 3947: 3946: 3927: 3926: 3894: 3889: 3888: 3887: 3864: 3853: 3852: 3851: 3812: 3811: 3786: 3785: 3760: 3755: 3754: 3729: 3728: 3707: 3706: 3705: 3682: 3681: 3658: 3657: 3654: 3648: 3623: 3622: 3621: 3598: 3597: 3574: 3573: 3540: 3535: 3534: 3513: 3497: 3475: 3474: 3455: 3454: 3426: 3415: 3414: 3384: for  3309: 3304: 3303: 3252: 3251: 3227: 3226: 3225: 3202: 3201: 3198: 3131: 3130: 3102: 3097: 3096: 3071: 3070: 3037: 3020: 3016: 2991: 2990: 2964: 2963: 2962:coincides with 2940: 2939: 2904: 2899: 2898: 2897:and, moreover, 2875: 2874: 2834: 2803: 2783: 2782: 2748: for  2672: 2667: 2666: 2635: 2619: 2593: 2592: 2566: 2565: 2530: 2529: 2487: 2486: 2431: 2430: 2400: 2399: 2373: 2372: 2345: 2344: 2334: 2328: 2325: 2310:needs expansion 2295: 2289: 2263: 2262: 2243: 2242: 2223: 2222: 2204: 2203: 2198: 2192: 2191: 2186: 2176: 2170: 2169: 2148: 2143: 2142: 2114: 2113: 2094: 2093: 2071: 2070: 2048: 2047: 2005: 2000: 1999: 1977: 1976: 1957: 1956: 1937: 1936: 1897: 1892: 1891: 1851: 1850: 1842: 1836: 1835: 1830: 1820: 1818: 1814: 1799: 1798: 1759: 1754: 1753: 1735: 1734: 1724: 1722: 1717: 1712: 1706: 1705: 1700: 1694: 1688: 1687: 1681: 1676: 1670: 1669: 1664: 1659: 1654: 1644: 1637: 1620: 1601: 1590: 1589: 1557: 1533: and  1513: 1497: 1478: 1471: 1467: 1452: 1451: 1412: 1407: 1406: 1381: 1380: 1350: 1349: 1320: 1315: 1314: 1307: 1279: 1278: 1255: 1254: 1227: 1226: 1203: 1202: 1179: 1178: 1147: 1146: 1115: 1114: 1084: 1083: 1042: 1041: 1010: 1009: 982: 981: 975:regular element 967: 885: 884: 854: 853: 852: 826: 825: 802: 801: 765: 764: 735: 734: 693: 692: 665: 664: 638: 637: 612: 567: 566: 565: 536:Wilhelm Killing 520: 512: 511: 510: 485: 474: 473: 472: 437: 427: 426: 425: 412: 396: 374:Dynkin diagrams 368: 358: 357: 356: 338: 316:Exponential map 305: 295: 294: 293: 274:Conformal group 253: 243: 242: 234: 226: 218: 210: 202: 183: 173: 163: 153: 134: 124: 123: 122: 103:Special unitary 47: 17: 12: 11: 5: 4389: 4387: 4379: 4378: 4368: 4367: 4364: 4363: 4357: 4344: 4323: 4318: 4297: 4284: 4264: 4260:978-3319134666 4259: 4246: 4233: 4207: 4204: 4203: 4202: 4197: 4190: 4187: 4184: 4183: 4171: 4156: 4132: 4131: 4129: 4126: 4125: 4124: 4116: 4111: 4108: 4069: 4066: 4046: 4041: 4036: 4031: 4026: 4000: 3979:Main article: 3976: 3973: 3957: 3934: 3912: 3909: 3906: 3901: 3897: 3871: 3867: 3863: 3860: 3838: 3834: 3831: 3828: 3825: 3822: 3819: 3799: 3796: 3793: 3771: 3765: 3742: 3739: 3736: 3714: 3691: 3667: 3650:Main article: 3647: 3644: 3630: 3607: 3581: 3561: 3558: 3555: 3552: 3547: 3543: 3520: 3516: 3508: 3502: 3496: 3493: 3489: 3485: 3482: 3462: 3437: 3431: 3425: 3422: 3402: 3397: 3392: 3389: 3381: 3378: 3375: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3348: 3345: 3342: 3339: 3336: 3333: 3330: 3327: 3324: 3321: 3316: 3312: 3291: 3288: 3285: 3280: 3277: 3272: 3267: 3262: 3259: 3234: 3211: 3197: 3194: 3186: 3185: 3173: 3170: 3167: 3162: 3157: 3154: 3151: 3146: 3141: 3138: 3113: 3107: 3084: 3081: 3078: 3067: 3066: 3054: 3048: 3042: 3034: 3031: 3028: 3024: 3019: 3015: 3010: 3005: 3000: 2973: 2949: 2925: 2920: 2915: 2909: 2882: 2862: 2859: 2856: 2853: 2850: 2845: 2839: 2832: 2828: 2825: 2822: 2819: 2814: 2808: 2802: 2799: 2796: 2793: 2790: 2779: 2778: 2766: 2761: 2756: 2753: 2745: 2742: 2739: 2736: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2707: 2702: 2697: 2694: 2691: 2688: 2683: 2677: 2660: 2659: 2646: 2640: 2630: 2624: 2618: 2615: 2611: 2607: 2602: 2575: 2553: 2548: 2543: 2540: 2537: 2523: 2522: 2510: 2505: 2500: 2497: 2494: 2474: 2469: 2464: 2459: 2456: 2451: 2446: 2441: 2438: 2427: 2409: 2382: 2354: 2336: 2335: 2307: 2305: 2288: 2285: 2284: 2283: 2270: 2250: 2230: 2208: 2202: 2199: 2197: 2194: 2193: 2190: 2187: 2185: 2182: 2181: 2179: 2155: 2151: 2130: 2127: 2124: 2121: 2101: 2081: 2078: 2058: 2055: 2035: 2031: 2027: 2022: 2019: 2013: 2010: 1996: 1984: 1964: 1944: 1924: 1920: 1916: 1911: 1905: 1902: 1888: 1875: 1870: 1866: 1863: 1860: 1855: 1849: 1846: 1843: 1841: 1838: 1837: 1834: 1831: 1829: 1826: 1825: 1823: 1817: 1813: 1808: 1786: 1782: 1778: 1773: 1767: 1764: 1739: 1731: 1727: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1707: 1704: 1701: 1699: 1696: 1693: 1690: 1689: 1686: 1683: 1680: 1677: 1675: 1672: 1671: 1668: 1665: 1663: 1660: 1658: 1655: 1651: 1647: 1643: 1642: 1640: 1635: 1632: 1627: 1623: 1619: 1616: 1613: 1608: 1604: 1600: 1597: 1576: 1572: 1569: 1564: 1560: 1554: 1549: 1546: 1543: 1539: 1529: 1525: 1520: 1516: 1512: 1509: 1504: 1500: 1496: 1493: 1490: 1485: 1481: 1477: 1474: 1470: 1466: 1461: 1439: 1435: 1431: 1426: 1420: 1417: 1394: 1391: 1388: 1377: 1363: 1360: 1357: 1334: 1328: 1325: 1311: 1306: 1303: 1288: 1264: 1236: 1212: 1188: 1156: 1124: 1093: 1051: 1038:diagonalizable 1019: 991: 966: 963: 941:diagonalizable 922: 917: 912: 907: 904: 901: 898: 895: 892: 880:such that the 862: 833: 811: 780: 775: 772: 750: 745: 742: 720: 715: 712: 709: 706: 703: 700: 674: 647: 614: 613: 611: 610: 603: 596: 588: 585: 584: 583: 582: 577: 569: 568: 564: 563: 558: 556:Harish-Chandra 553: 548: 543: 538: 533: 531:Henri PoincarĂ© 528: 522: 521: 518: 517: 514: 513: 509: 508: 503: 498: 493: 487: 486: 481:Lie groups in 480: 479: 476: 475: 471: 470: 465: 460: 455: 450: 445: 439: 438: 433: 432: 429: 428: 424: 423: 418: 413: 411: 410: 405: 399: 397: 395: 394: 389: 383: 381: 376: 370: 369: 364: 363: 360: 359: 355: 354: 349: 344: 339: 337: 336: 331: 325: 323: 318: 313: 307: 306: 301: 300: 297: 296: 292: 291: 286: 281: 279:Diffeomorphism 276: 271: 266: 261: 255: 254: 249: 248: 245: 244: 239: 238: 237: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 193: 192: 188: 187: 186: 185: 179: 175: 169: 165: 159: 155: 149: 142: 141: 135: 130: 129: 126: 125: 121: 120: 110: 100: 90: 80: 70: 63:Special linear 60: 53:General linear 49: 48: 43: 42: 39: 38: 30: 29: 15: 13: 10: 9: 6: 4: 3: 2: 4388: 4377: 4374: 4373: 4371: 4360: 4354: 4350: 4345: 4342: 4338: 4337: 4332: 4328: 4324: 4321: 4315: 4311: 4306: 4305: 4298: 4295: 4291: 4287: 4281: 4277: 4273: 4269: 4265: 4262: 4256: 4252: 4247: 4244: 4240: 4236: 4230: 4226: 4222: 4218: 4214: 4213:Borel, Armand 4210: 4209: 4205: 4201: 4198: 4196: 4193: 4192: 4188: 4180: 4175: 4172: 4167: 4163: 4159: 4153: 4149: 4148: 4140: 4138: 4134: 4127: 4122: 4114: 4113: 4109: 4107: 4105: 4101: 4096: 4094: 4093:maximal torus 4090: 4085: 4082: 4075: 4067: 4065: 4062: 4060: 4034: 4017:and the pair 4016: 3988: 3982: 3974: 3972: 3907: 3899: 3895: 3869: 3861: 3858: 3832: 3826: 3823: 3820: 3794: 3791: 3769: 3737: 3734: 3712: 3653: 3645: 3643: 3628: 3595: 3579: 3556: 3550: 3545: 3541: 3518: 3514: 3506: 3494: 3491: 3487: 3483: 3480: 3460: 3453: 3450:, called the 3435: 3423: 3420: 3390: 3387: 3379: 3373: 3367: 3364: 3358: 3346: 3340: 3334: 3331: 3328: 3325: 3319: 3314: 3310: 3286: 3260: 3257: 3250: 3232: 3195: 3193: 3191: 3165: 3155: 3152: 3149: 3139: 3136: 3129: 3128: 3127: 3111: 3079: 3076: 3052: 3046: 3029: 3026: 3022: 3017: 3013: 3003: 2989: 2988: 2987: 2918: 2913: 2896: 2854: 2848: 2843: 2823: 2812: 2800: 2797: 2791: 2754: 2751: 2743: 2740: 2734: 2728: 2725: 2722: 2716: 2705: 2695: 2692: 2686: 2681: 2665: 2664: 2663: 2644: 2628: 2616: 2613: 2609: 2605: 2591: 2590: 2589: 2538: 2535: 2526: 2495: 2492: 2439: 2436: 2428: 2425: 2398: 2397: 2396: 2370: 2343: 2332: 2329:February 2014 2323: 2319: 2315: 2311: 2308:This section 2306: 2303: 2299: 2298: 2294: 2286: 2268: 2248: 2228: 2206: 2200: 2195: 2188: 2183: 2177: 2153: 2149: 2128: 2125: 2122: 2119: 2099: 2079: 2076: 2056: 2053: 2020: 2017: 1997: 1982: 1962: 1942: 1909: 1889: 1873: 1864: 1861: 1858: 1853: 1847: 1844: 1839: 1832: 1827: 1821: 1815: 1811: 1771: 1737: 1729: 1725: 1719: 1714: 1709: 1702: 1697: 1691: 1684: 1678: 1673: 1666: 1661: 1656: 1649: 1645: 1638: 1633: 1625: 1621: 1617: 1614: 1611: 1606: 1602: 1595: 1574: 1570: 1567: 1562: 1558: 1552: 1547: 1544: 1541: 1537: 1523: 1518: 1514: 1510: 1502: 1498: 1494: 1491: 1488: 1483: 1479: 1472: 1468: 1464: 1424: 1392: 1389: 1386: 1378: 1375: 1361: 1358: 1355: 1332: 1312: 1309: 1308: 1304: 1302: 1252: 1176: 1173:of a maximal 1172: 1144: 1140: 1111: 1109: 1108:maximal torus 1080: 1078: 1074: 1070: 1069:automorphisms 1065: 1039: 1035: 1007: 978: 976: 972: 964: 962: 960: 956: 952: 949: 944: 942: 938: 905: 899: 893: 890: 883: 879: 850: 845: 831: 800: 796: 773: 770: 743: 740: 713: 707: 704: 701: 690: 663: 636: 633: 629: 625: 621: 609: 604: 602: 597: 595: 590: 589: 587: 586: 581: 578: 576: 573: 572: 571: 570: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 523: 516: 515: 507: 504: 502: 499: 497: 494: 492: 489: 488: 484: 478: 477: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 440: 436: 431: 430: 422: 419: 417: 414: 409: 406: 404: 401: 400: 398: 393: 390: 388: 385: 384: 382: 380: 377: 375: 372: 371: 367: 362: 361: 353: 350: 348: 345: 343: 340: 335: 332: 330: 327: 326: 324: 322: 319: 317: 314: 312: 309: 308: 304: 299: 298: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 256: 252: 247: 246: 235: 229: 227: 221: 219: 213: 211: 205: 203: 197: 196: 195: 194: 189: 184: 182: 176: 174: 172: 166: 164: 162: 156: 154: 152: 146: 145: 144: 143: 138: 133: 128: 127: 118: 114: 111: 108: 104: 101: 98: 94: 91: 88: 84: 81: 78: 74: 71: 68: 64: 61: 58: 54: 51: 50: 46: 41: 40: 36: 32: 31: 28: 24: 20: 4376:Lie algebras 4348: 4334: 4303: 4274:, New York: 4272:Lie algebras 4271: 4250: 4216: 4174: 4146: 4120: 4104:Weyl chamber 4097: 4086: 4078: 4063: 4057:is called a 4014: 3984: 3655: 3593: 3451: 3199: 3187: 3068: 2780: 2661: 2527: 2524: 2485:, the image 2339: 2326: 2322:adding to it 2309: 1142: 1112: 1081: 1066: 979: 968: 953: 945: 877: 846: 627: 623: 617: 561:Armand Borel 546:Hermann Weyl 378: 347:Loop algebra 329:Killing form 303:Lie algebras 180: 170: 160: 150: 116: 106: 96: 86: 76: 66: 56: 27:Lie algebras 4327:Popov, V.L. 4100:David Vogan 4015:splittable, 2895:root system 1171:centralizer 795:Élie Cartan 662:Lie algebra 620:mathematics 541:Élie Cartan 387:Root system 191:Exceptional 4206:References 4128:References 3810:such that 2314:Weyl group 2291:See also: 2282:matrices). 1073:isomorphic 937:semisimple 635:subalgebra 526:Sophus Lie 519:Scientists 392:Weyl group 113:Symplectic 73:Orthogonal 23:Lie groups 4341:EMS Press 4329:(2001) , 4181:Chapter 7 4179:Hall 2015 4166:316693861 4081:Lie group 3933:Φ 3908:λ 3866:Φ 3862:∈ 3859:α 3833:∈ 3830:⟩ 3827:λ 3821:α 3818:⟨ 3798:Φ 3795:∈ 3792:λ 3770:∗ 3741:Φ 3738:∈ 3735:λ 3580:λ 3551:≠ 3546:λ 3519:λ 3507:∗ 3495:∈ 3492:λ 3488:⨁ 3461:λ 3436:∗ 3424:∈ 3421:λ 3391:∈ 3368:λ 3341:σ 3329:∈ 3315:λ 3271:→ 3258:σ 3188:See also 3172:Φ 3169:# 3156:⁡ 3140:⁡ 3112:λ 3083:Φ 3080:∈ 3077:λ 3047:λ 3033:Φ 3030:∈ 3027:λ 3023:⨁ 3014:⊕ 2881:Φ 2849:≠ 2844:λ 2818:∖ 2813:∗ 2801:∈ 2798:λ 2789:Φ 2755:∈ 2729:λ 2696:∈ 2682:λ 2645:λ 2629:∗ 2617:∈ 2614:λ 2610:⨁ 2539:⁡ 2496:⁡ 2450:→ 2126:− 1865:∈ 1845:− 1720:⋯ 1715:⋯ 1703:⋮ 1698:⋱ 1692:⋮ 1679:⋱ 1662:⋯ 1615:… 1538:∑ 1524:∈ 1511:∣ 1492:… 1405:matrices 1390:× 1359:× 1253:presents 916:→ 894:⁡ 774:∈ 744:∈ 714:∈ 632:nilpotent 403:Real form 289:Euclidean 140:Classical 4370:Category 4270:(1979), 4215:(1991), 3572:we call 2367:over an 1374:matrices 1305:Examples 733:for all 687:that is 575:Glossary 269:PoincarĂ© 4294:0559927 4243:1102012 3596:of the 2873:. Then 2662:where 2424:abelian 1169:is the 939:(i.e., 763:, then 630:, is a 483:physics 264:Lorentz 93:Unitary 4355:  4316:  4292:  4282:  4257:  4241:  4231:  4164:  4154:  3594:weight 3247:and a 1588:where 259:Circle 4189:Notes 3413:with 2893:is a 2221:with 1201:. If 1137:is a 971:field 948:toral 660:of a 622:, a 334:Index 4353:ISBN 4314:ISBN 4280:ISBN 4255:ISBN 4229:ISBN 4162:OCLC 4152:ISBN 2781:Let 2241:any 1077:rank 957:and 691:(if 284:Loop 25:and 3153:dim 3137:dim 2588:as 2422:is 2324:. 2261:by 2069:by 2046:of 1955:by 1935:of 1177:of 1113:If 935:is 628:CSA 618:In 115:Sp( 105:SU( 85:SO( 65:SL( 55:GL( 4372:: 4351:. 4339:, 4333:, 4312:, 4290:MR 4288:, 4278:, 4239:MR 4237:, 4227:, 4219:, 4160:. 4136:^ 3592:a 3095:, 2710:ad 2536:ad 2493:ad 2437:ad 891:ad 874:), 844:. 95:U( 75:O( 4361:. 4168:. 4121:R 4119:( 4117:2 4076:. 4045:) 4040:h 4035:, 4030:g 4025:( 3999:h 3970:. 3956:g 3923:. 3911:) 3905:( 3900:+ 3896:L 3884:, 3870:+ 3837:N 3824:, 3764:h 3725:, 3713:V 3690:g 3666:g 3641:. 3629:V 3606:g 3560:} 3557:0 3554:{ 3542:V 3515:V 3501:h 3484:= 3481:V 3430:h 3401:} 3396:h 3388:h 3380:v 3377:) 3374:h 3371:( 3365:= 3362:) 3359:v 3356:( 3353:) 3350:) 3347:h 3344:( 3338:( 3335:: 3332:V 3326:v 3323:{ 3320:= 3311:V 3290:) 3287:V 3284:( 3279:l 3276:g 3266:g 3261:: 3245:, 3233:0 3210:g 3184:. 3166:+ 3161:h 3150:= 3145:g 3106:g 3053:) 3041:g 3018:( 3009:h 3004:= 2999:g 2972:h 2948:h 2924:h 2919:= 2914:0 2908:g 2861:} 2858:} 2855:0 2852:{ 2838:g 2831:| 2827:} 2824:0 2821:{ 2807:h 2795:{ 2792:= 2777:. 2765:} 2760:h 2752:h 2744:, 2741:x 2738:) 2735:h 2732:( 2726:= 2723:x 2720:) 2717:h 2714:( 2706:: 2701:g 2693:x 2690:{ 2687:= 2676:g 2639:g 2623:h 2606:= 2601:g 2574:g 2552:) 2547:h 2542:( 2509:) 2504:h 2499:( 2473:) 2468:g 2463:( 2458:l 2455:g 2445:g 2440:: 2426:, 2408:h 2381:h 2353:g 2331:) 2327:( 2269:n 2249:n 2229:A 2207:) 2201:0 2196:0 2189:A 2184:0 2178:( 2154:2 2150:n 2129:1 2123:n 2120:2 2100:0 2080:n 2077:2 2057:n 2054:2 2034:) 2030:C 2026:( 2021:n 2018:2 2012:l 2009:s 1983:0 1963:2 1943:2 1923:) 1919:R 1915:( 1910:2 1904:l 1901:s 1874:} 1869:C 1862:a 1859:: 1854:) 1848:a 1840:0 1833:0 1828:a 1822:( 1816:{ 1812:= 1807:h 1785:) 1781:C 1777:( 1772:2 1766:l 1763:s 1738:) 1730:n 1726:a 1710:0 1685:0 1674:0 1667:0 1657:0 1650:1 1646:a 1639:( 1634:= 1631:) 1626:n 1622:a 1618:, 1612:, 1607:1 1603:a 1599:( 1596:d 1575:} 1571:0 1568:= 1563:i 1559:a 1553:n 1548:1 1545:= 1542:i 1528:C 1519:i 1515:a 1508:) 1503:n 1499:a 1495:, 1489:, 1484:1 1480:a 1476:( 1473:d 1469:{ 1465:= 1460:h 1438:) 1434:C 1430:( 1425:n 1419:l 1416:s 1393:n 1387:n 1362:n 1356:n 1333:n 1327:l 1324:g 1287:g 1263:g 1235:g 1211:g 1187:g 1155:g 1143:V 1123:g 1092:h 1050:g 1018:g 990:g 921:g 911:g 906:: 903:) 900:x 897:( 878:x 861:C 832:0 810:g 779:h 771:Y 749:h 741:X 719:h 711:] 708:Y 705:, 702:X 699:[ 673:g 646:h 607:e 600:t 593:v 233:8 231:E 225:7 223:E 217:6 215:E 209:4 207:F 201:2 199:G 181:n 178:D 171:n 168:C 161:n 158:B 151:n 148:A 119:) 117:n 109:) 107:n 99:) 97:n 89:) 87:n 79:) 77:n 69:) 67:n 59:) 57:n

Index

Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean
Lie algebras

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑