Knowledge (XXG)

Cartier duality

Source đź“ť

194:, and complexes thereof. These more general geometric objects can be useful when one wants to work with categories that have good limit behavior. There are cases of intermediate abstraction, such as commutative algebraic groups over a field, where Cartier duality gives an antiequivalence with commutative affine 189:
The definition of Cartier dual extends usefully to much more general situations where the resulting functor on schemes is no longer represented as a group scheme. Common cases include fppf sheaves of commutative groups over
272: 336: 135: 234: 405: 371: 95: 278:
is a torus, then its Cartier dual is Ă©tale and torsion-free. For loop groups of tori, Cartier duality defines the tame symbol in local
452: 145:-group scheme, and Cartier duality forms an additive involutive antiequivalence from the category of finite flat commutative 36: 279: 291: 239: 499: 306: 173:
A finite commutative group scheme over a field corresponds to a finite dimensional commutative cocommutative
100: 287: 205: 141:-schemes to the canonical map of character groups. This functor is representable by a finite flat 433: 383: 32: 165:
is affine, then the duality functor is given by the duality of the Hopf algebras of functions.
349: 429: 283: 483: 464: 73: 479: 460: 153:
is a constant commutative group scheme, then its Cartier dual is the diagonalizable group
493: 62:, its Cartier dual is the group of characters, defined as the functor that takes any 195: 174: 52: 478:, Lecture Notes in Mathematics, vol. 15, Berlin-New York: Springer-Verlag, 178: 471: 459:, Librairie Universitaire, Louvain, Paris: GauthierVillars, pp. 87–111, 17: 438: 181:
of the Hopf algebra, exchanging the multiplication and comultiplication.
407:(the kernel of the endomorphism of the additive group induced by taking 70:
to the abelian group of group scheme homomorphisms from the base change
457:
1962 Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962)
236:, then its Cartier dual is the multiplicative formal group 386: 352: 309: 242: 208: 103: 76: 35:
for commutative group schemes. It was introduced by
286:introduced a sheaf-theoretic Fourier transform for 455:(1962), "Groupes algĂ©briques et groupes formels", 399: 365: 330: 266: 228: 129: 89: 432:(1996). "Transformation de Fourier gĂ©nĂ©ralisee". 294:that specializes to many of these equivalences. 267:{\displaystyle {\widehat {\mathbf {G} }}_{m}} 8: 177:. Cartier duality corresponds to taking the 331:{\displaystyle \mathbb {Z} /n\mathbb {Z} } 437: 391: 385: 357: 351: 324: 323: 315: 311: 310: 308: 258: 247: 245: 244: 241: 220: 210: 207: 115: 105: 102: 81: 75: 421: 40: 303:The Cartier dual of the cyclic group 185:More general cases of Cartier duality 7: 411:th powers) is its own Cartier dual. 130:{\displaystyle \mathbf {G'} _{m,T}} 51:Given any finite flat commutative 25: 229:{\displaystyle \mathbf {G'} _{a}} 248: 212: 107: 376:Over a field of characteristic 169:Definition using Hopf algebras 149:-group schemes to itself. If 1: 280:geometric class field theory 400:{\displaystyle \alpha _{p}} 47:Definition using characters 516: 476:Commutative group schemes 366:{\displaystyle \mu _{n}} 161:), and vice versa. If 401: 367: 332: 288:quasi-coherent modules 268: 230: 202:is the additive group 131: 91: 402: 368: 333: 269: 231: 132: 92: 90:{\displaystyle G_{T}} 384: 350: 307: 240: 206: 101: 74: 346:-th roots of unity 397: 363: 328: 264: 226: 127: 87: 37:Pierre Cartier 33:Pontryagin duality 31:is an analogue of 380:the group scheme 255: 16:(Redirected from 507: 500:Algebraic groups 486: 467: 444: 443: 441: 439:alg-geom/9603004 426: 406: 404: 403: 398: 396: 395: 372: 370: 369: 364: 362: 361: 337: 335: 334: 329: 327: 319: 314: 273: 271: 270: 265: 263: 262: 257: 256: 251: 246: 235: 233: 232: 227: 225: 224: 219: 218: 136: 134: 133: 128: 126: 125: 114: 113: 96: 94: 93: 88: 86: 85: 27:In mathematics, 21: 515: 514: 510: 509: 508: 506: 505: 504: 490: 489: 470: 453:Cartier, Pierre 451: 448: 447: 428: 427: 423: 418: 387: 382: 381: 353: 348: 347: 305: 304: 300: 243: 238: 237: 211: 209: 204: 203: 187: 171: 137:and any map of 106: 104: 99: 98: 77: 72: 71: 49: 29:Cartier duality 23: 22: 15: 12: 11: 5: 513: 511: 503: 502: 492: 491: 488: 487: 468: 446: 445: 430:Laumon, GĂ©rard 420: 419: 417: 414: 413: 412: 394: 390: 374: 360: 356: 326: 322: 318: 313: 299: 296: 261: 254: 250: 223: 217: 214: 186: 183: 170: 167: 124: 121: 118: 112: 109: 84: 80: 48: 45: 24: 14: 13: 10: 9: 6: 4: 3: 2: 512: 501: 498: 497: 495: 485: 481: 477: 473: 469: 466: 462: 458: 454: 450: 449: 440: 435: 431: 425: 422: 415: 410: 392: 388: 379: 375: 358: 354: 345: 341: 320: 316: 302: 301: 297: 295: 293: 289: 285: 284:GĂ©rard Laumon 281: 277: 259: 252: 221: 215: 201: 197: 196:formal groups 193: 184: 182: 180: 176: 168: 166: 164: 160: 156: 152: 148: 144: 140: 122: 119: 116: 110: 82: 78: 69: 65: 61: 57: 54: 46: 44: 42: 38: 34: 30: 19: 475: 456: 424: 408: 377: 343: 339: 275: 199: 191: 188: 175:Hopf algebra 172: 162: 158: 154: 150: 146: 142: 138: 67: 63: 59: 55: 53:group scheme 50: 28: 26: 18:Cartier dual 472:Oort, Frans 416:References 389:α 355:μ 338:of order 292:1-motives 274:, and if 253:^ 494:Category 474:(1966), 298:Examples 216:′ 198:, so if 111:′ 66:-scheme 484:0213365 465:0148665 342:is the 39: ( 482:  463:  434:arXiv 290:over 58:over 179:dual 41:1962 282:. 97:to 43:). 496:: 480:MR 461:MR 442:. 436:: 409:p 393:p 378:p 373:. 359:n 344:n 340:n 325:Z 321:n 317:/ 312:Z 276:G 260:m 249:G 222:a 213:G 200:G 192:S 163:S 159:G 157:( 155:D 151:G 147:S 143:S 139:S 123:T 120:, 117:m 108:G 83:T 79:G 68:T 64:S 60:S 56:G 20:)

Index

Cartier dual
Pontryagin duality
Pierre Cartier
1962
group scheme
Hopf algebra
dual
formal groups
geometric class field theory
GĂ©rard Laumon
quasi-coherent modules
1-motives
Laumon, GĂ©rard
arXiv
alg-geom/9603004
Cartier, Pierre
MR
0148665
Oort, Frans
MR
0213365
Category
Algebraic groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑