Knowledge

Cell migration

Source πŸ“

316:
According to this model, microdomain signaling dynamics organizes cytoskeleton and its interaction with substratum. As microdomains trigger and maintain active polymerization of actin filaments, their propagation and zigzagging motion on the membrane generate a highly interlinked network of curved or linear filaments oriented at a wide spectrum of angles to the cell boundary. It is also proposed that microdomain interaction marks the formation of new focal adhesion sites at the cell periphery. Myosin interaction with the actin network then generate membrane retraction/ruffling, retrograde flow, and contractile forces for forward motion. Finally, continuous application of stress on the old focal adhesion sites could result in the calcium-induced calpain activation, and consequently the detachment of focal adhesions which completes the cycle.
218:
are dynamic, they are able to remodel to allow retraction. When dynamics are suppressed, microtubules cannot remodel and, therefore, oppose the contractile forces. The morphology of cells with suppressed microtubule dynamics indicate that cells can extend the front edge (polarized in the direction of movement), but have difficulty retracting their trailing edge. On the other hand, high drug concentrations, or microtubule mutations that depolymerize the microtubules, can restore cell migration but there is a loss of directionality. It can be concluded that microtubules act both to restrain cell movement and to establish directionality.
328:β€”a front and a back. Without it, they would move in all directions at once, i.e. spread. How this polarity is formulated at a molecular level inside a cell is unknown. In a cell that is meandering in a random way, the front can easily give way to become passive as some other region, or regions, of the cell form(s) a new front. In chemotaxing cells, the stability of the front appears enhanced as the cell advances toward a higher concentration of the stimulating chemical. From biophysical perspective, polarity was explained in terms of a gradient in inner membrane 253: 179: 2639: 386:
of paramount importance. The mathematical models developed in these works determine some physical features and material properties of the cells locally through analysis of live cell image sequences and uses this information to make further inferences about the molecular structures, dynamics, and processes within the cells, such as the actin network, microdomains, chemotaxis, adhesion, and retrograde flow.
171: 230:. This suggests that extension of the leading edge occurs primarily by addition of membrane at the front of the cell. If so, the actin filaments that form there might stabilize the added membrane so that a structured extension, or lamella, is formed β€” rather than a bubble-like structure (or bleb) at its front. For a cell to move, it is necessary to bring a fresh supply of "feet" (proteins called 398: 294:, that cells migrating in an amoeboid fashion without adhesions exhibit plasma membrane flow towards the cell rear that may propel cells by exerting tangential forces on the surrounding fluid. Polarized trafficking of membrane-containing vesicles from the rear to the front of the cell helps maintain cell size. Rearward membrane flow was also observed in 182:(A) Dynamic microtubules are necessary for tail retraction and are distributed at the rear end in a migrating cell. Green, highly dynamic microtubules; yellow, moderately dynamic microtubules and red, stable microtubules. (B) Stable microtubules act as struts and prevent tail retraction and thereby inhibit cell migration. 372:
Although microtubules have been known to influence cell migration for many years, the mechanism by which they do so has remained controversial. On a planar surface, microtubules are not needed for the movement, but they are required to provide directionality to cell movement and efficient protrusion
315:
Based on some mathematical models, recent studies hypothesize a novel biological model for collective biomechanical and molecular mechanism of cell motion. It is proposed that microdomains weave the texture of cytoskeleton and their interactions mark the location for formation of new adhesion sites.
385:
in cell motility has been established. This approach is based on the idea that behavioral or shape changes of a cell bear information about the underlying mechanisms that generate these changes. Reading cell motion, namely, understanding the underlying biophysical and mechanochemical processes, is
285:
fluid dynamics, which apply at the cellular scale, rearward surface flow could provide a mechanism for microscopic objects to swim forward. After some decades, experimental support for this model of cell movement was provided when it was discovered (in 2010) that amoeboid cells and neutrophils are
217:
Other cytoskeletal components (like microtubules) have important functions in cell migration. It has been found that microtubules act as "struts" that counteract the contractile forces that are needed for trailing edge retraction during cell movement. When microtubules in the trailing edge of cell
208:
polymerisation at the cell's front edge. This observation has led to the hypothesis that formation of actin filaments "push" the leading edge forward and is the main motile force for advancing the cell's front edge. In addition, cytoskeletal elements are able to interact extensively and intimately
120:
videos are recorded of the migrating cells to speed up the movement. Such videos (Figure 1) reveal that the leading cell front is very active, with a characteristic behavior of successive contractions and expansions. It is generally accepted that the leading front is the main motor that pulls the
364:
are transported along these filaments to the cell's front. In chemotaxing cells, the increased persistence of migration toward the target may result from an increased stability of the arrangement of the filamentous structures inside the cell and determine its polarity. In turn, these filamentous
248:
which affect membrane recycling block cell migration at the restrictive (higher) temperature; they provide additional support for the importance of the endocytic cycle in cell migration. Furthermore, these amoebae move quite quickly β€” about one cell length in ~5 mins. If they are regarded as
298:
cells. These observations provide strong support for models of cell movement which depend on a rearward cell surface membrane flow (Model B, above). Interestingly, the migration of supracellular clusters has also been found to be supported by a similar mechanism of rearward surface flow.
359:
are important for establishing and maintaining a cell's polarity. Drugs that destroy actin filaments have multiple and complex effects, reflecting the wide role that these filaments play in many cell processes. It may be that, as part of the locomotory process, membrane
234:, which attach a cell to the surface on which it is crawling) to the front. It is likely that these feet are endocytosed toward the rear of the cell and brought to the cell's front by exocytosis, to be reused to form new attachments to the substrate. 365:
structures may be arranged inside the cell according to how molecules like PIP3 and PTEN are arranged on the inner cell membrane. And where these are located appears in turn to be determined by the chemoattractant signals as these impinge on specific
191:
There are two main theories for how the cell advances its front edge: the cytoskeletal model and membrane flow model. It is possible that both underlying processes contribute to cell extension.
92:
cell migration typically is far more complex and can consist of combinations of different migration mechanisms. It generally involves drastic changes in cell shape which are driven by the
249:
cylindrical (which is roughly true whilst chemotaxing), this would require them to recycle the equivalent of one cell surface area each 5 mins, which is approximately what is measured.
80:), cells need to continuously produce forces in order to move. Cells achieve active movement by very different mechanisms. Many less complex prokaryotic organisms (and sperm cells) use 2221:
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, et al. (July 2024). "Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration".
73:. An understanding of the mechanism by which cells migrate may lead to the development of novel therapeutic strategies for controlling, for example, invasive tumour cells. 1319:"In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella" 2981: 332:
between front regions and rear edges of the cell. This polarity is reflected at a molecular level by a restriction of certain molecules to particular regions of the inner
899:
Abercrombie M, Heaysman JE, Pegrum SM (October 1970). "The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella".
49:
all require the orchestrated movement of cells in particular directions to specific locations. Cells often migrate in response to specific external signals, including
226:
The leading edge at the front of a migrating cell is also the site at which membrane from internal membrane pools is returned to the cell surface at the end of the
100:
motility. A paradigmatic example of crawling motion is the case of fish epidermal keratocytes, which have been extensively used in research and teaching.
337: 303: 2404:
Coskun H, Coskun H (March 2011). "Cell physician: reading cell motion: a mathematical diagnostic technique through analysis of single cell motion".
1974:
Coskun H, Coskun H (March 2011). "Cell physician: reading cell motion: a mathematical diagnostic technique through analysis of single cell motion".
436: 373:
of the leading edge. When present, microtubules retard cell movement when their dynamics are suppressed by drug treatment or by tubulin mutations.
2670: 2850: 2361:
Coskun H, Li Y, Mackey MA (January 2007). "Ameboid cell motility: a model and inverse problem, with an application to live cell imaging data".
2589: 736:"Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales" 2599: 2486: 934:
Willard SS, Devreotes PN (September 2006). "Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum".
2792: 256:
Rearward membrane flow (red arrows) and vesicle trafficking from back to front (blue arrows) drive adhesion-independent migration.
2689: 160: 869: 2560: 2511: 245: 3002: 2807: 2760: 2452: 677:"A novel 2.5D culture platform to investigate the role of stiffness gradients on adhesion-independent cell migration" 148:
The latter feature is most easily observed when aggregates of a surface molecule are cross-linked with a fluorescent
2516: 1464:
Thompson CR, Bretscher MS (September 2002). "Cell polarity and locomotion, as well as endocytosis, depend on NSF".
1417:"Circulating integrins: alpha 5 beta 1, alpha 6 beta 4 and Mac-1, but not alpha 3 beta 1, alpha 4 beta 1 or LFA-1" 265:
Adhesive crawling is not the only migration mode exhibited by eukaryotic cells. Importantly, several cell types β€”
167:
genome that simplifies the process of connecting a particular gene product with its effect on cellular behaviour.
2694: 2665: 2565: 1153:"Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs" 565:"An excitable Ras/PI3K/ERK signaling network controls migration and oncogenic transformation in epithelial cells" 421: 1116:
Doherty GJ, McMahon HT (2008). "Mediation, modulation, and consequences of membrane-cytoskeleton interactions".
2845: 238: 156: 2252:
Li R, Gundersen GG (November 2008). "Beyond polymer polarity: how the cytoskeleton builds a polarized cell".
1501:"Using single loxP sites to enhance homologous recombination: ts mutants in Sec1 of Dictyostelium discoideum" 826:"Live-cell imaging of migrating cells expressing fluorescently-tagged proteins in a three-dimensional matrix" 516:"Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity" 2926: 2711: 366: 58: 290:
towards a chemo-attractant source whilst suspended in an isodense medium. It was subsequently shown, using
3007: 2946: 2606: 2479: 1260:"Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells" 62: 34: 2755: 2660: 302: 117: 2966: 2931: 2769: 2716: 2623: 2370: 2130: 2083: 1925: 1868: 1768: 1719: 1512: 1271: 971:"Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling" 688: 625: 278: 2297:"2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen" 2976: 2951: 2941: 2531: 2117:
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. (December 2003).
660: 129:
The processes underlying mammalian cell migration are believed to be consistent with those of (non-
97: 252: 2956: 2817: 2812: 2432: 2277: 2154: 2056: 1999: 1397: 1098: 1049: 1914:"Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis" 306:
Schematic representation of the collective biomechanical and molecular mechanism of cell motion
178: 277:β€” have been found to be capable of adhesion-independent migration. Historically, the physicist 2921: 2840: 2827: 2787: 2638: 2628: 2472: 2455:
The Cell Migration Gateway is a comprehensive and regularly updated resource on cell migration
2421: 2386: 2326: 2295:
Meyer AS, Hughes-Alford SK, Kay JE, Castillo A, Wells A, Gertler FB, et al. (June 2012).
2269: 2234: 2203: 2146: 2099: 2048: 1991: 1951: 1894: 1837: 1796: 1692: 1661:
O'Neill PR, Castillo-Badillo JA, Meshik X, Kalyanaraman V, Melgarejo K, Gautam N (July 2018).
1638: 1589: 1540: 1481: 1446: 1389: 1348: 1299: 1240: 1184: 1133: 1090: 1041: 1000: 951: 916: 851: 806: 757: 716: 651: 594: 545: 496: 361: 134: 1129: 2802: 2750: 2733: 2655: 2647: 2413: 2378: 2316: 2308: 2261: 2226: 2193: 2185: 2174:"Actuation of single downstream nodes in growth factor network steers immune cell migration" 2138: 2091: 2038: 2030: 1983: 1941: 1933: 1884: 1876: 1827: 1786: 1776: 1735: 1727: 1682: 1674: 1628: 1620: 1579: 1571: 1530: 1520: 1473: 1436: 1428: 1379: 1338: 1330: 1289: 1279: 1230: 1220: 1174: 1164: 1125: 1080: 1031: 990: 982: 943: 908: 841: 833: 796: 788: 747: 706: 696: 641: 633: 584: 576: 535: 527: 486: 478: 446: 27:
Regulated self-propelled movement of cells from one site to another guided by molecular cues
2779: 2618: 2503: 2495: 2172:
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, et al. (July 2023).
2019:"Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration" 612:
Huber F, Schnauß J, RΓΆnicke S, Rauch P, MΓΌller K, FΓΌtterer C, et al. (January 2013).
531: 431: 382: 282: 227: 77: 2374: 2198: 2173: 2134: 2087: 2043: 2018: 1929: 1872: 1772: 1723: 1516: 1275: 692: 629: 96:. Two very distinct migration scenarios are crawling motion (most commonly studied) and 2961: 2895: 2872: 2706: 2684: 2677: 2570: 2321: 2296: 1946: 1913: 1889: 1856: 1791: 1756: 1687: 1662: 1584: 1560:"The exocytic gene secA is required for Dictyostelium cell motility and osmoregulation" 1559: 1535: 1500: 1432: 1343: 1318: 1235: 1208: 1179: 1152: 995: 970: 846: 825: 801: 776: 711: 676: 646: 613: 589: 564: 540: 515: 491: 466: 403: 329: 1441: 1416: 1384: 1367: 1294: 1259: 1085: 1068: 1036: 1019: 467:"Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics" 174:
Two different models for how cells move. A) Cytoskeletal model. B) Membrane Flow Model
2996: 2835: 2577: 2548: 2526: 2060: 1633: 1608: 912: 563:
Zhan H, Bhattacharya S, Cai H, Iglesias PA, Huang CH, Devreotes PN (September 2020).
411: 333: 325: 159:
is useful to researchers because they consistently exhibit chemotaxis in response to
46: 42: 38: 2281: 2158: 2003: 1401: 2916: 2890: 2880: 2857: 2738: 1102: 291: 170: 130: 109: 93: 54: 1855:
Tanaka M, Kikuchi T, Uno H, Okita K, Kitanishi-Yumura T, Yumura S (October 2017).
1053: 2433:"Mathematicians use cell 'profiling' to detect abnormalities -- including cancer" 2189: 2095: 1832: 1815: 1678: 1525: 701: 637: 580: 2936: 2885: 2726: 2582: 2017:
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN (October 2022).
441: 356: 349: 2382: 2230: 2034: 1880: 1761:
Proceedings of the National Academy of Sciences of the United States of America
1264:
Proceedings of the National Academy of Sciences of the United States of America
947: 877: 397: 2743: 2721: 2417: 2347:
Mathematical Models for Ameboid Cell Motility and Model Based Inverse Problems
2118: 1987: 416: 393: 287: 274: 270: 113: 89: 70: 50: 17: 792: 2971: 2611: 2142: 1937: 1781: 1477: 1225: 1169: 426: 231: 2425: 2390: 2330: 2273: 2238: 2207: 2150: 2103: 2052: 1995: 1955: 1898: 1841: 1800: 1696: 1663:"Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode" 1642: 1624: 1593: 1544: 1485: 1334: 1317:
Hopkins CR, Gibson A, Shipman M, Strickland DK, Trowbridge IS (June 1994).
1244: 1188: 1137: 1094: 955: 855: 810: 761: 720: 655: 598: 549: 500: 2312: 1450: 1393: 1352: 1303: 1284: 1045: 1004: 986: 920: 614:"Emergent complexity of the cytoskeleton: from single filaments to tissue" 144:
laminar removal of dorsally-accumulated debris toward trailing edge (back)
2900: 2862: 2594: 2536: 2461:
A tour of images and videos by the J. V. Small lab in Salzburg and Vienna
1368:"Getting membrane flow and the cytoskeleton to cooperate in moving cells" 1069:"Cellular motility driven by assembly and disassembly of actin filaments" 149: 81: 163:; they move more quickly than cultured mammalian cells; and they have a 152:
or when small beads become artificially bound to the front of the cell.
2521: 1740: 1575: 164: 752: 735: 482: 2555: 2074:
Parent CA, Devreotes PN (April 1999). "A cell's sense of direction".
155:
Other eukaryotic cells are observed to migrate similarly. The amoeba
2265: 1731: 2797: 341: 301: 251: 205: 177: 169: 85: 66: 57:. Errors during this process have serious consequences, including 1207:
Ganguly A, Yang H, Sharma R, Patel KD, Cabral F (December 2012).
837: 2543: 2458: 345: 2468: 1209:"The role of microtubules and their dynamics in cell migration" 311:
Collective biomechanical and molecular mechanism of cell motion
2345: 2464: 1857:"Turnover and flow of the cell membrane for cell migration" 33:
is a central process in the development and maintenance of
734:
Prieto D, Aparicio G, Sotelo-Silveira JR (November 2017).
1558:
Zanchi R, Howard G, Bretscher MS, Kay RR (October 2010).
112:
attached to a surface or in 3D is commonly studied using
2350:(Ph.D. thesis). University of Iowa – via ProQuest. 2119:"Cell migration: integrating signals from front to back" 1912:
Shellard A, SzabΓ³ A, Trepat X, Mayor R (October 2018).
670: 668: 1816:""Rho"ing a Cellular Boat with Rearward Membrane Flow" 1609:"Circulation of the plasma membrane in Dictyostelium" 2909: 2871: 2826: 2778: 2646: 2502: 465:Mak M, Spill F, Kamm RD, Zaman MH (February 2016). 2982:Task allocation and partitioning of social insects 1710:Purcell EM (1977). "Life at Low Reynolds Number". 116:. As cell movement is very slow, a few ΞΌm/minute, 281:theorized (in 1977) that under conditions of low 1757:"Dictyostelium amoebae and neutrophils can swim" 1607:Aguado-Velasco C, Bretscher MS (December 1999). 377:Inverse problems in the context of cell motility 141:cytoplasmic displacement at leading edge (front) 1020:"Actin-based cell motility and cell locomotion" 1656: 1654: 1652: 204:Experimentation has shown that there is rapid 2480: 1969: 1967: 1965: 1202: 1200: 1198: 8: 1151:Yang H, Ganguly A, Cabral F (October 2010). 740:Biochemistry and Molecular Biology Education 355:It is believed that filamentous actins and 344:are found at the front of the cell, whereas 876:. Cell Migration Consortium. Archived from 76:Due to the highly viscous environment (low 2487: 2473: 2465: 1499:Bretscher MS, Clotworthy M (August 2007). 2320: 2197: 2042: 1945: 1888: 1831: 1790: 1780: 1739: 1686: 1632: 1583: 1534: 1524: 1440: 1383: 1342: 1293: 1283: 1234: 1224: 1178: 1168: 1084: 1035: 1018:Mitchison TJ, Cramer LP (February 1996). 994: 845: 800: 751: 710: 700: 645: 588: 539: 514:Swaney K, Huang CH, Devreotes PN (2010). 490: 1130:10.1146/annurev.biophys.37.032807.125912 675:Pebworth MP, Cismas SA, Asuri P (2014). 437:Mouse models of breast cancer metastasis 1067:Pollard TD, Borisy GG (February 2003). 457: 261:Mechanistic basis of amoeboid migration 2254:Nature Reviews. Molecular Cell Biology 2590:Patterns of self-organization in ants 532:10.1146/annurev.biophys.093008.131228 7: 1755:Barry NP, Bretscher MS (June 2010). 775:Dormann D, Weijer CJ (August 2006). 471:Journal of Biomechanical Engineering 2459:The Cytoskeleton and Cell Migration 1213:The Journal of Biological Chemistry 1157:The Journal of Biological Chemistry 137:. Observations in common include: 2600:symmetry breaking of escaping ants 1433:10.1002/j.1460-2075.1992.tb05068.x 824:Shih W, Yamada S (December 2011). 25: 1814:Bell GR, Collins SR (July 2018). 830:Journal of Visualized Experiments 2637: 2406:Bulletin of Mathematical Biology 1976:Bulletin of Mathematical Biology 936:European Journal of Cell Biology 396: 187:Molecular processes of migration 209:with a cell's plasma membrane. 2363:Journal of Theoretical Biology 1415:Bretscher MS (February 1992). 1366:Bretscher MS (November 1996). 273:, metastatic cancer cells and 1: 1613:Molecular Biology of the Cell 1385:10.1016/S0092-8674(00)81380-X 1258:Bretscher MS (January 1983). 1086:10.1016/S0092-8674(03)00120-X 1037:10.1016/S0092-8674(00)81281-7 369:on the cell's outer surface. 246:temperature sensitive mutants 2561:Mixed-species foraging flock 2512:Agent-based model in biology 2190:10.1016/j.devcel.2023.04.019 2096:10.1126/science.284.5415.765 1833:10.1016/j.devcel.2018.06.008 1679:10.1016/j.devcel.2018.05.029 1526:10.1371/journal.pone.0000724 913:10.1016/0014-4827(70)90570-7 702:10.1371/journal.pone.0110453 638:10.1080/00018732.2013.771509 581:10.1016/j.devcel.2020.08.001 340:and activated Ras, Rac, and 2808:Particle swarm optimization 2301:The Journal of Cell Biology 1712:American Journal of Physics 1323:The Journal of Cell Biology 1118:Annual Review of Biophysics 975:The Journal of Cell Biology 777:"Imaging of cell migration" 520:Annual Review of Biophysics 381:An area of research called 352:are found toward the rear. 320:Polarity in migrating cells 3024: 2517:Collective animal behavior 2383:10.1016/j.jtbi.2006.07.025 2231:10.1038/s41556-024-01453-4 2035:10.1038/s41556-022-00997-7 1881:10.1038/s41598-017-13438-5 948:10.1016/j.ejcb.2006.06.003 901:Experimental Cell Research 37:. Tissue formation during 2635: 2418:10.1007/s11538-010-9580-x 1988:10.1007/s11538-010-9580-x 870:"What is Cell Migration?" 422:Collective cell migration 336:. Thus, the phospholipid 2846:Self-propelled particles 793:10.1038/sj.emboj.7601227 296:Dictyostelium discoideum 157:Dictyostelium discoideum 2927:Collective intelligence 2793:Ant colony optimization 2143:10.1126/science.1092053 1938:10.1126/science.aau3301 1782:10.1073/pnas.1006327107 1564:Journal of Cell Science 1478:10.1242/dev.129.18.4185 1226:10.1074/jbc.M112.423905 1170:10.1074/jbc.M110.160820 969:Wang YL (August 1985). 324:Migrating cells have a 222:Membrane flow model (B) 59:intellectual disability 35:multicellular organisms 2947:Microbial intelligence 2607:Shoaling and schooling 2453:Cell Migration Gateway 1625:10.1091/mbc.10.12.4419 1335:10.1083/jcb.125.6.1265 874:Cell Migration Gateway 307: 257: 195:Cytoskeletal model (A) 183: 175: 104:Cell migration studies 88:to propel themselves. 2313:10.1083/jcb.201201003 1285:10.1073/pnas.80.2.454 987:10.1083/jcb.101.2.597 305: 255: 181: 173: 118:time-lapse microscopy 39:embryonic development 2967:Spatial organization 2932:Decentralised system 2770:Sea turtle migration 2624:Swarming (honey bee) 2184:(13): 1170–1188.e7. 1570:(Pt 19): 3226–3234. 244:, three conditional 2942:Group size measures 2504:Biological swarming 2375:2007JThBi.244..169C 2223:Nature Cell Biology 2135:2003Sci...302.1704R 2129:(5651): 1704–1709. 2088:1999Sci...284..765P 2023:Nature Cell Biology 1930:2018Sci...362..339S 1873:2017NatSR...712970T 1773:2010PNAS..10711376B 1767:(25): 11376–11380. 1724:1977AmJPh..45....3P 1517:2007PLoSO...2..724B 1276:1983PNAS...80..454B 1219:(52): 43359–43369. 1163:(42): 32242–32250. 693:2014PLoSO...9k0453P 630:2013AdPhy..62....1H 618:Advances in Physics 3003:Cellular processes 2957:Predator satiation 2818:Swarm (simulation) 2813:Swarm intelligence 2788:Agent-based models 2619:Swarming behaviour 2430:; Lay summary in: 2178:Developmental Cell 1861:Scientific Reports 1820:Developmental Cell 1667:Developmental Cell 1576:10.1242/jcs.072876 880:on 22 October 2014 569:Developmental Cell 308: 258: 184: 176: 55:mechanical signals 2990: 2989: 2977:Military swarming 2922:Animal navigation 2841:Collective motion 2828:Collective motion 2695:reverse migration 2629:Swarming motility 2344:Coskun H (2006). 2082:(5415): 765–770. 2029:(10): 1499–1515. 1924:(6412): 339–343. 1619:(12): 4419–4427. 1472:(18): 4185–4192. 942:(9–10): 897–904. 787:(15): 3480–3493. 753:10.1002/bmb.21071 483:10.1115/1.4032188 108:The migration of 16:(Redirected from 3015: 2803:Crowd simulation 2780:Swarm algorithms 2751:Insect migration 2656:Animal migration 2648:Animal migration 2641: 2566:Mobbing behavior 2489: 2482: 2475: 2466: 2441: 2440: 2429: 2401: 2395: 2394: 2358: 2352: 2351: 2341: 2335: 2334: 2324: 2292: 2286: 2285: 2249: 2243: 2242: 2218: 2212: 2211: 2201: 2169: 2163: 2162: 2114: 2108: 2107: 2071: 2065: 2064: 2046: 2014: 2008: 2007: 1971: 1960: 1959: 1949: 1909: 1903: 1902: 1892: 1852: 1846: 1845: 1835: 1811: 1805: 1804: 1794: 1784: 1752: 1746: 1745: 1743: 1707: 1701: 1700: 1690: 1658: 1647: 1646: 1636: 1604: 1598: 1597: 1587: 1555: 1549: 1548: 1538: 1528: 1496: 1490: 1489: 1461: 1455: 1454: 1444: 1421:The EMBO Journal 1412: 1406: 1405: 1387: 1363: 1357: 1356: 1346: 1329:(6): 1265–1274. 1314: 1308: 1307: 1297: 1287: 1255: 1249: 1248: 1238: 1228: 1204: 1193: 1192: 1182: 1172: 1148: 1142: 1141: 1113: 1107: 1106: 1088: 1064: 1058: 1057: 1039: 1015: 1009: 1008: 998: 966: 960: 959: 931: 925: 924: 896: 890: 889: 887: 885: 866: 860: 859: 849: 821: 815: 814: 804: 781:The EMBO Journal 772: 766: 765: 755: 731: 725: 724: 714: 704: 672: 663: 659: 649: 609: 603: 602: 592: 560: 554: 553: 543: 511: 505: 504: 494: 462: 447:Protein dynamics 406: 401: 400: 383:inverse problems 63:vascular disease 51:chemical signals 47:immune responses 21: 3023: 3022: 3018: 3017: 3016: 3014: 3013: 3012: 2993: 2992: 2991: 2986: 2905: 2867: 2822: 2774: 2642: 2633: 2498: 2493: 2449: 2444: 2431: 2403: 2402: 2398: 2360: 2359: 2355: 2343: 2342: 2338: 2294: 2293: 2289: 2266:10.1038/nrm2522 2260:(11): 860–873. 2251: 2250: 2246: 2220: 2219: 2215: 2171: 2170: 2166: 2116: 2115: 2111: 2073: 2072: 2068: 2016: 2015: 2011: 1973: 1972: 1963: 1911: 1910: 1906: 1854: 1853: 1849: 1813: 1812: 1808: 1754: 1753: 1749: 1732:10.1119/1.10903 1709: 1708: 1704: 1660: 1659: 1650: 1606: 1605: 1601: 1557: 1556: 1552: 1498: 1497: 1493: 1463: 1462: 1458: 1414: 1413: 1409: 1365: 1364: 1360: 1316: 1315: 1311: 1257: 1256: 1252: 1206: 1205: 1196: 1150: 1149: 1145: 1115: 1114: 1110: 1066: 1065: 1061: 1017: 1016: 1012: 968: 967: 963: 933: 932: 928: 898: 897: 893: 883: 881: 868: 867: 863: 823: 822: 818: 774: 773: 769: 733: 732: 728: 687:(10): e110453. 674: 673: 666: 611: 610: 606: 562: 561: 557: 513: 512: 508: 464: 463: 459: 455: 432:Endocytic cycle 402: 395: 392: 379: 322: 313: 283:Reynolds number 263: 237:In the case of 228:endocytic cycle 224: 215: 202: 197: 189: 127: 125:Common features 106: 78:Reynolds number 67:tumor formation 28: 23: 22: 15: 12: 11: 5: 3021: 3019: 3011: 3010: 3005: 2995: 2994: 2988: 2987: 2985: 2984: 2979: 2974: 2969: 2964: 2962:Quorum sensing 2959: 2954: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2913: 2911: 2910:Related topics 2907: 2906: 2904: 2903: 2898: 2896:Swarm robotics 2893: 2888: 2883: 2877: 2875: 2873:Swarm robotics 2869: 2868: 2866: 2865: 2860: 2855: 2854: 2853: 2843: 2838: 2832: 2830: 2824: 2823: 2821: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2784: 2782: 2776: 2775: 2773: 2772: 2767: 2766: 2765: 2764: 2763: 2748: 2747: 2746: 2741: 2731: 2730: 2729: 2724: 2719: 2714: 2707:Fish migration 2704: 2702:Cell migration 2699: 2698: 2697: 2692: 2685:Bird migration 2682: 2681: 2680: 2678:coded wire tag 2675: 2674: 2673: 2663: 2652: 2650: 2644: 2643: 2636: 2634: 2632: 2631: 2626: 2621: 2616: 2615: 2614: 2604: 2603: 2602: 2597: 2587: 2586: 2585: 2575: 2574: 2573: 2571:feeding frenzy 2563: 2558: 2553: 2552: 2551: 2541: 2540: 2539: 2534: 2524: 2519: 2514: 2508: 2506: 2500: 2499: 2494: 2492: 2491: 2484: 2477: 2469: 2463: 2462: 2456: 2448: 2447:External links 2445: 2443: 2442: 2396: 2369:(2): 169–179. 2353: 2336: 2307:(6): 721–729. 2287: 2244: 2213: 2164: 2109: 2066: 2009: 1982:(3): 658–682. 1961: 1904: 1847: 1806: 1747: 1702: 1673:(1): 9–22.e4. 1648: 1599: 1550: 1491: 1456: 1427:(2): 405–410. 1407: 1378:(4): 601–606. 1358: 1309: 1270:(2): 454–458. 1250: 1194: 1143: 1108: 1079:(4): 453–465. 1059: 1030:(3): 371–379. 1010: 981:(2): 597–602. 961: 926: 907:(2): 389–398. 891: 861: 816: 767: 746:(6): 475–482. 726: 664: 604: 575:(5): 608–623. 555: 506: 456: 454: 451: 450: 449: 444: 439: 434: 429: 424: 419: 414: 408: 407: 404:Biology portal 391: 388: 378: 375: 330:surface charge 321: 318: 312: 309: 262: 259: 223: 220: 214: 211: 201: 198: 196: 193: 188: 185: 146: 145: 142: 126: 123: 121:cell forward. 110:cultured cells 105: 102: 31:Cell migration 26: 24: 18:Cell Migration 14: 13: 10: 9: 6: 4: 3: 2: 3020: 3009: 3008:Cell movement 3006: 3004: 3001: 3000: 2998: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2914: 2912: 2908: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2878: 2876: 2874: 2870: 2864: 2861: 2859: 2856: 2852: 2849: 2848: 2847: 2844: 2842: 2839: 2837: 2836:Active matter 2834: 2833: 2831: 2829: 2825: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2785: 2783: 2781: 2777: 2771: 2768: 2762: 2759: 2758: 2757: 2754: 2753: 2752: 2749: 2745: 2742: 2740: 2737: 2736: 2735: 2732: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2712:diel vertical 2710: 2709: 2708: 2705: 2703: 2700: 2696: 2693: 2691: 2688: 2687: 2686: 2683: 2679: 2676: 2672: 2669: 2668: 2667: 2664: 2662: 2659: 2658: 2657: 2654: 2653: 2651: 2649: 2645: 2640: 2630: 2627: 2625: 2622: 2620: 2617: 2613: 2610: 2609: 2608: 2605: 2601: 2598: 2596: 2593: 2592: 2591: 2588: 2584: 2581: 2580: 2579: 2576: 2572: 2569: 2568: 2567: 2564: 2562: 2559: 2557: 2554: 2550: 2549:herd behavior 2547: 2546: 2545: 2542: 2538: 2535: 2533: 2530: 2529: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2509: 2507: 2505: 2501: 2497: 2490: 2485: 2483: 2478: 2476: 2471: 2470: 2467: 2460: 2457: 2454: 2451: 2450: 2446: 2438: 2434: 2427: 2423: 2419: 2415: 2412:(3): 658–82. 2411: 2407: 2400: 2397: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2357: 2354: 2349: 2348: 2340: 2337: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2291: 2288: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2245: 2240: 2236: 2232: 2228: 2224: 2217: 2214: 2209: 2205: 2200: 2195: 2191: 2187: 2183: 2179: 2175: 2168: 2165: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2110: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2070: 2067: 2062: 2058: 2054: 2050: 2045: 2040: 2036: 2032: 2028: 2024: 2020: 2013: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1970: 1968: 1966: 1962: 1957: 1953: 1948: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1908: 1905: 1900: 1896: 1891: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1851: 1848: 1843: 1839: 1834: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1798: 1793: 1788: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1751: 1748: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1703: 1698: 1694: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1655: 1653: 1649: 1644: 1640: 1635: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1586: 1581: 1577: 1573: 1569: 1565: 1561: 1554: 1551: 1546: 1542: 1537: 1532: 1527: 1522: 1518: 1514: 1510: 1506: 1502: 1495: 1492: 1487: 1483: 1479: 1475: 1471: 1467: 1460: 1457: 1452: 1448: 1443: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1408: 1403: 1399: 1395: 1391: 1386: 1381: 1377: 1373: 1369: 1362: 1359: 1354: 1350: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1310: 1305: 1301: 1296: 1291: 1286: 1281: 1277: 1273: 1269: 1265: 1261: 1254: 1251: 1246: 1242: 1237: 1232: 1227: 1222: 1218: 1214: 1210: 1203: 1201: 1199: 1195: 1190: 1186: 1181: 1176: 1171: 1166: 1162: 1158: 1154: 1147: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1096: 1092: 1087: 1082: 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1047: 1043: 1038: 1033: 1029: 1025: 1021: 1014: 1011: 1006: 1002: 997: 992: 988: 984: 980: 976: 972: 965: 962: 957: 953: 949: 945: 941: 937: 930: 927: 922: 918: 914: 910: 906: 902: 895: 892: 879: 875: 871: 865: 862: 857: 853: 848: 843: 839: 835: 831: 827: 820: 817: 812: 808: 803: 798: 794: 790: 786: 782: 778: 771: 768: 763: 759: 754: 749: 745: 741: 737: 730: 727: 722: 718: 713: 708: 703: 698: 694: 690: 686: 682: 678: 671: 669: 665: 662: 657: 653: 648: 643: 639: 635: 631: 627: 623: 619: 615: 608: 605: 600: 596: 591: 586: 582: 578: 574: 570: 566: 559: 556: 551: 547: 542: 537: 533: 529: 525: 521: 517: 510: 507: 502: 498: 493: 488: 484: 480: 477:(2): 021004. 476: 472: 468: 461: 458: 452: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 412:Cap formation 410: 409: 405: 399: 394: 389: 387: 384: 376: 374: 370: 368: 363: 358: 353: 351: 347: 343: 339: 335: 331: 327: 319: 317: 310: 304: 300: 297: 293: 289: 286:both able to 284: 280: 279:E. M. Purcell 276: 272: 268: 267:Dictyostelium 260: 254: 250: 247: 243: 241: 240:Dictyostelium 235: 233: 229: 221: 219: 213:Trailing edge 212: 210: 207: 199: 194: 192: 186: 180: 172: 168: 166: 162: 158: 153: 151: 143: 140: 139: 138: 136: 132: 131:spermatozooic 124: 122: 119: 115: 111: 103: 101: 99: 95: 91: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 44: 43:wound healing 40: 36: 32: 19: 2917:Allee effect 2891:Nanorobotics 2881:Ant robotics 2858:Vicsek model 2701: 2437:ScienceDaily 2436: 2409: 2405: 2399: 2366: 2362: 2356: 2346: 2339: 2304: 2300: 2290: 2257: 2253: 2247: 2222: 2216: 2181: 2177: 2167: 2126: 2122: 2112: 2079: 2075: 2069: 2026: 2022: 2012: 1979: 1975: 1921: 1917: 1907: 1867:(1): 12970. 1864: 1860: 1850: 1823: 1819: 1809: 1764: 1760: 1750: 1715: 1711: 1705: 1670: 1666: 1616: 1612: 1602: 1567: 1563: 1553: 1508: 1504: 1494: 1469: 1465: 1459: 1424: 1420: 1410: 1375: 1371: 1361: 1326: 1322: 1312: 1267: 1263: 1253: 1216: 1212: 1160: 1156: 1146: 1121: 1117: 1111: 1076: 1072: 1062: 1027: 1023: 1013: 978: 974: 964: 939: 935: 929: 904: 900: 894: 882:. Retrieved 878:the original 873: 864: 838:10.3791/3589 829: 819: 784: 780: 770: 743: 739: 729: 684: 680: 624:(1): 1–112. 621: 617: 607: 572: 568: 558: 523: 519: 509: 474: 470: 460: 380: 371: 357:microtubules 354: 334:cell surface 323: 314: 295: 292:optogenetics 266: 264: 239: 236: 225: 216: 203: 200:Leading edge 190: 154: 147: 128: 107: 94:cytoskeleton 75: 30: 29: 2937:Eusociality 2886:Microbotics 2756:butterflies 2727:sardine run 2661:altitudinal 2583:pack hunter 1741:2433/226838 1718:(3): 3–11. 1511:(8): e724. 1466:Development 526:: 265–289. 442:Neurophilic 275:macrophages 271:neutrophils 2997:Categories 2851:clustering 2744:philopatry 2722:salmon run 2717:Lessepsian 1826:(1): 1–3. 453:References 417:Chemotaxis 346:Rho GTPase 161:cyclic AMP 135:locomotion 114:microscopy 90:Eukaryotic 71:metastasis 2972:Stigmergy 2952:Mutualism 2612:bait ball 2061:248990694 1124:: 65–95. 427:Durotaxis 367:receptors 269:amoebae, 232:integrins 2901:Symbrion 2863:BIO-LGCA 2666:tracking 2595:ant mill 2537:sort sol 2532:flocking 2496:Swarming 2426:20878250 2391:16997326 2331:22665521 2282:19500145 2274:18946475 2239:38951708 2225:: 1–15. 2208:37220748 2199:10524337 2159:16029926 2151:14657486 2104:10221901 2053:36202973 2044:10029748 2004:37036941 1996:20878250 1956:30337409 1899:29021607 1842:29974859 1801:20534502 1697:29937389 1643:10588667 1594:20807800 1545:17684569 1505:PLOS ONE 1486:12183371 1402:14776455 1245:23135278 1189:20696757 1138:18573073 1095:12600310 956:16962888 884:24 March 856:22215133 811:16900100 762:28627731 721:25310593 681:PLOS ONE 656:24748680 599:32877650 550:20192768 501:26639083 390:See also 362:vesicles 326:polarity 288:chemotax 150:antibody 98:blebbing 82:flagella 2761:monarch 2690:flyways 2671:history 2522:Droving 2371:Bibcode 2322:3373410 2131:Bibcode 2123:Science 2084:Bibcode 2076:Science 1947:6218007 1926:Bibcode 1918:Science 1890:5636814 1869:Bibcode 1792:2895083 1769:Bibcode 1720:Bibcode 1688:6048972 1585:2939799 1536:1933600 1513:Bibcode 1451:1531629 1394:8929529 1353:7515888 1344:2290921 1304:6300844 1272:Bibcode 1236:3527923 1180:2952225 1103:6887118 1046:8608590 1005:4040521 996:2113673 921:5531377 847:3369670 802:1538568 712:4195729 689:Bibcode 647:3985726 626:Bibcode 590:7505206 541:4364543 492:4844084 242:amoebae 165:haploid 2734:Homing 2556:Locust 2424:  2389:  2329:  2319:  2280:  2272:  2237:  2206:  2196:  2157:  2149:  2102:  2059:  2051:  2041:  2002:  1994:  1954:  1944:  1897:  1887:  1840:  1799:  1789:  1695:  1685:  1641:  1631:  1592:  1582:  1543:  1533:  1484:  1449:  1442:556468 1439:  1400:  1392:  1351:  1341:  1302:  1295:393396 1292:  1243:  1233:  1187:  1177:  1136:  1101:  1093:  1054:982415 1052:  1044:  1003:  993:  954:  919:  854:  844:  832:(58). 809:  799:  760:  719:  709:  661:online 654:  644:  597:  587:  548:  538:  499:  489:  2798:Boids 2739:natal 2527:Flock 2278:S2CID 2155:S2CID 2057:S2CID 2000:S2CID 1634:25767 1398:S2CID 1099:S2CID 1050:S2CID 342:CDC42 206:actin 86:cilia 2578:Pack 2544:Herd 2422:PMID 2387:PMID 2327:PMID 2270:PMID 2235:PMID 2204:PMID 2147:PMID 2100:PMID 2049:PMID 1992:PMID 1952:PMID 1895:PMID 1838:PMID 1797:PMID 1693:PMID 1639:PMID 1590:PMID 1541:PMID 1482:PMID 1447:PMID 1390:PMID 1372:Cell 1349:PMID 1300:PMID 1241:PMID 1185:PMID 1134:PMID 1091:PMID 1073:Cell 1042:PMID 1024:Cell 1001:PMID 952:PMID 917:PMID 886:2013 852:PMID 807:PMID 758:PMID 717:PMID 652:PMID 595:PMID 546:PMID 497:PMID 350:PTEN 348:and 338:PIP3 69:and 53:and 45:and 2414:doi 2379:doi 2367:244 2317:PMC 2309:doi 2305:197 2262:doi 2227:doi 2194:PMC 2186:doi 2139:doi 2127:302 2092:doi 2080:284 2039:PMC 2031:doi 1984:doi 1942:PMC 1934:doi 1922:362 1885:PMC 1877:doi 1828:doi 1787:PMC 1777:doi 1765:107 1736:hdl 1728:doi 1683:PMC 1675:doi 1629:PMC 1621:doi 1580:PMC 1572:doi 1568:123 1531:PMC 1521:doi 1474:doi 1470:129 1437:PMC 1429:doi 1380:doi 1339:PMC 1331:doi 1327:125 1290:PMC 1280:doi 1231:PMC 1221:doi 1217:287 1175:PMC 1165:doi 1161:285 1126:doi 1081:doi 1077:112 1032:doi 991:PMC 983:doi 979:101 944:doi 909:doi 842:PMC 834:doi 797:PMC 789:doi 748:doi 707:PMC 697:doi 642:PMC 634:doi 585:PMC 577:doi 536:PMC 528:doi 487:PMC 479:doi 475:138 84:or 2999:: 2435:. 2420:. 2410:73 2408:. 2385:. 2377:. 2365:. 2325:. 2315:. 2303:. 2299:. 2276:. 2268:. 2256:. 2233:. 2202:. 2192:. 2182:58 2180:. 2176:. 2153:. 2145:. 2137:. 2125:. 2121:. 2098:. 2090:. 2078:. 2055:. 2047:. 2037:. 2027:24 2025:. 2021:. 1998:. 1990:. 1980:73 1978:. 1964:^ 1950:. 1940:. 1932:. 1920:. 1916:. 1893:. 1883:. 1875:. 1863:. 1859:. 1836:. 1824:46 1822:. 1818:. 1795:. 1785:. 1775:. 1763:. 1759:. 1734:. 1726:. 1716:45 1714:. 1691:. 1681:. 1671:46 1669:. 1665:. 1651:^ 1637:. 1627:. 1617:10 1615:. 1611:. 1588:. 1578:. 1566:. 1562:. 1539:. 1529:. 1519:. 1507:. 1503:. 1480:. 1468:. 1445:. 1435:. 1425:11 1423:. 1419:. 1396:. 1388:. 1376:87 1374:. 1370:. 1347:. 1337:. 1325:. 1321:. 1298:. 1288:. 1278:. 1268:80 1266:. 1262:. 1239:. 1229:. 1215:. 1211:. 1197:^ 1183:. 1173:. 1159:. 1155:. 1132:. 1122:37 1120:. 1097:. 1089:. 1075:. 1071:. 1048:. 1040:. 1028:84 1026:. 1022:. 999:. 989:. 977:. 973:. 950:. 940:85 938:. 915:. 905:62 903:. 872:. 850:. 840:. 828:. 805:. 795:. 785:25 783:. 779:. 756:. 744:45 742:. 738:. 715:. 705:. 695:. 683:. 679:. 667:^ 650:. 640:. 632:. 622:62 620:. 616:. 593:. 583:. 573:54 571:. 567:. 544:. 534:. 524:39 522:. 518:. 495:. 485:. 473:. 469:. 133:) 65:, 61:, 41:, 2488:e 2481:t 2474:v 2439:. 2428:. 2416:: 2393:. 2381:: 2373:: 2333:. 2311:: 2284:. 2264:: 2258:9 2241:. 2229:: 2210:. 2188:: 2161:. 2141:: 2133:: 2106:. 2094:: 2086:: 2063:. 2033:: 2006:. 1986:: 1958:. 1936:: 1928:: 1901:. 1879:: 1871:: 1865:7 1844:. 1830:: 1803:. 1779:: 1771:: 1744:. 1738:: 1730:: 1722:: 1699:. 1677:: 1645:. 1623:: 1596:. 1574:: 1547:. 1523:: 1515:: 1509:2 1488:. 1476:: 1453:. 1431:: 1404:. 1382:: 1355:. 1333:: 1306:. 1282:: 1274:: 1247:. 1223:: 1191:. 1167:: 1140:. 1128:: 1105:. 1083:: 1056:. 1034:: 1007:. 985:: 958:. 946:: 923:. 911:: 888:. 858:. 836:: 813:. 791:: 764:. 750:: 723:. 699:: 691:: 685:9 658:. 636:: 628:: 601:. 579:: 552:. 530:: 503:. 481:: 20:)

Index

Cell Migration
multicellular organisms
embryonic development
wound healing
immune responses
chemical signals
mechanical signals
intellectual disability
vascular disease
tumor formation
metastasis
Reynolds number
flagella
cilia
Eukaryotic
cytoskeleton
blebbing
cultured cells
microscopy
time-lapse microscopy
spermatozooic
locomotion
antibody
Dictyostelium discoideum
cyclic AMP
haploid


actin
endocytic cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑