Knowledge (XXG)

Epitaxy

Source 📝

258:
crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.
1041: 1033: 889: 810:
equilibrium between dissolution and deposition, the deposition of the semiconductor crystal on the substrate is relatively fast and uniform. The most used substrate is indium phosphide (InP). Other substrates like glass or ceramic can be applied for special applications. To facilitate nucleation, and to avoid tension in the grown layer the thermal expansion coefficient of substrate and grown layer should be similar.
872:. The concentration of impurity in the gas phase determines its concentration in the deposited film. Doping can also be achieved by a site-competition technique, where the growth precursor ratios are tuned to enhance the incorporation of vacancies, specific dopant species or vacant-dopant clusters into the lattice. Additionally, the high temperatures at which epitaxy is performed may allow dopants to 576:. Manufacturing issues include control of the amount and uniformity of the deposition's resistivity and thickness, the cleanliness and purity of the surface and the chamber atmosphere, the prevention of the typically much more highly doped substrate wafer's diffusion of dopant to the new layers, imperfections of the growth process, and protecting the surfaces during manufacture and handling. 585: 838:
growth. The annealing step used to recrystallize or heal silicon layers amorphized during ion implantation is also considered to be a type of solid phase epitaxy. The impurity segregation and redistribution at the growing crystal-amorphous layer interface during this process is used to incorporate low-solubility dopants in metals and silicon.
646: 829:. The process has been used to create silicon for thin-film solar cells and far-infrared photodetectors. Temperature and centrifuge spin rate are used to control layer growth. Centrifugal LPE has the capability to create dopant concentration gradients while the solution is held at constant temperature. 552:
involves epitaxial growth between the grains of a multicrystalline epitaxial and seed layer. This can usually occur when the seed layer only has an out-of-plane texture but no in-plane texture. In such a case, the seed layer consists of grains with different in-plane textures. The epitaxial overlayer
314:
is a kind of epitaxy performed with materials that are different from each other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of a different material. This technology is often used to grow crystalline films of materials for which crystals cannot otherwise be obtained
285:
of the film aligning with the index of the substrate. In the simplest case, the epitaxial layer can be a continuation of the same semiconductor compound as the substrate; this is referred to as homoepitaxy. Otherwise, the epitaxial layer will be composed of a different compound; this is referred to
280:
One of the main commercial applications of epitaxial growth is in the semiconductor industry, where semiconductor films are grown epitaxially on semiconductor substrate wafers. For the case of epitaxial growth of a planar film atop a substrate wafer, the epitaxial film's lattice will have a specific
1211:
were small enough to fit into a truly close-packed structure of oxygen anions then the spacing between the nearest neighbour oxygen sites would be the same for both species. The radius of the oxygen ion, however, is only 1.36 Å and the Fe cations are big enough to cause some variations. The Fe radii
809:
Liquid-phase epitaxy (LPE) is a method to grow semiconductor crystal layers from the melt on solid substrates. This happens at temperatures well below the melting point of the deposited semiconductor. The semiconductor is dissolved in the melt of another material. At conditions that are close to the
257:
layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the
837:
Solid-phase epitaxy (SPE) is a transition between the amorphous and crystalline phases of a material. It is usually produced by depositing a film of amorphous material on a crystalline substrate, then heating it to crystallize the film. The single-crystal substrate serves as a template for crystal
528:
is larger than that, the film experiences a volumetric strain that builds with each layer until a critical thickness. With increased thickness, the elastic strain in the film is relieved by the formation of dislocations, which can become scattering centers that damage the quality of the structure.
922:
Sometimes many separate crystals form the overgrowth on a single substrate, and then if there is epitaxy all the overgrowth crystals will have a similar orientation. The reverse, however, is not necessarily true. If the overgrowth crystals have a similar orientation there is probably an epitaxic
614:
In the VW growth regime, the epitaxial film grows out of 3D nuclei on the growth surface. In this mode, the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, leading to island formation by local nucleation and the epitaxial layer is formed when the islands join.
591:. Cross-section views of the three primary modes of thin-film growth including (a) Volmer–Weber (VW: island formation), (b) Frank–van der Merwe (FM: layer-by-layer), and (c) Stranski–Krastanov (SK: layer-plus-island). Each mode is shown for several different amounts of surface coverage, Θ. 700:
where (g) and (s) represent gas and solid phases, respectively. This reaction is reversible, and the growth rate depends strongly upon the proportion of the two source gases. Growth rates above 2 micrometres per minute produce polycrystalline silicon, and negative growth rates
1128:
plane of hematite (perpendicular to the c axis). In epitaxy these directions tend to line up with each other, resulting in the axis of the rutile overgrowth being parallel to the c axis of hematite, and the c axis of rutile being parallel to one of the axes of hematite.
478:
of the film and the substrate. The film and substrate could have similar lattice spacings but also different thermal expansion coefficients. If a film is grown at a high temperature, it can experience large strains upon cooling to room temperature. In reality,
625:
Practical epitaxial growth, however, takes place in a high supersaturation regime, away from thermodynamic equilibrium. In that case, the epitaxial growth is governed by adatom kinetics rather than thermodynamics, and 2D step-flow growth becomes dominant.
297:
is a kind of epitaxy performed with only one material, in which a crystalline film is grown on a substrate or film of the same material. This technology is often used to grow a more pure film than the substrate and to fabricate layers with different
2052:; Samperi, S. A.; Beeman, Jeffrey W.; Haller, Eugene E. (8 February 2002). Strojnik, Marija; Andresen, Bjorn F. (eds.). "Liquid phase epitaxy centrifuge for growth of ultrapure gallium arsenide for far-infrared photoconductors". 545:
is a process in which the heteroepitaxial film is growing vertically and laterally simultaneously. In 2D crystal heterostructure, graphene nanoribbons embedded in hexagonal boron nitride give an example of pendeo-epitaxy.
621:
The SK mode is a combination of VW and FM modes. In this mechanism, the growth initiates in the FM mode, forming 2D layers, but after reaching a critical thickness, enters a VW-like 3D island growth regime.
1204:(a plane that symmetrically "cuts off" a corner of a cube). The hematite structure is based on close-packed oxygen anions stacked in an AB-AB sequence, which results in a crystal with hexagonal symmetry. 416: 2207:
Zhang, Xiankun; Gao, Li; Yu, Huihui; Liao, Qingliang; Kang, Zhuo; Zhang, Zheng; Zhang, Yue (20 July 2021). "Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides".
1024:
parameters, a = 8.16 Å, b = 12.87 Å, c = 7.11 Å, α = 93.45°, β = 116.4°, γ = 90.28° for albite and a = 8.5784 Å, b = 12.96 Å, c = 7.2112 Å, α = 90.3°, β = 116.05°, γ = 89° for microcline.
539:
is a process similar to heteroepitaxy except that thin-film growth is not limited to two-dimensional growth; the substrate is similar only in structure to the thin-film material.
506: 350:
Heteroepitaxy occurs when a film of different composition and/or crystalline films grown on a substrate. In this case, the amount of strain in the film is determined by the
526: 1988: 2164:
Larkin, David J.; Neudeck, Philip G.; Powell, J. Anthony; Matus, Lawrence G. (26 September 1994). "Site-competition epitaxy for superior silicon carbide electronics".
2250:
Holmes-Hewett, W. F. (16 August 2021). "Electronic structure of nitrogen-vacancy doped SmN: Intermediate valence and 4f transport in a ferromagnetic semiconductor".
472: 445: 2129:
Custer, J.S.; Polman, A.; Pinxteren, H. M. (15 March 1994). "Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon".
926:
Some authors consider that overgrowths of a second generation of the same mineral species should also be considered as epitaxy, and this is common terminology for
553:
then creates specific textures along each grain of the seed layer, due to lattice matching. This kind of epitaxial growth doesn't involve single-crystal films.
533:
systems thanks to the additional energy caused by de deformation. A very popular system with great potential for microelectronic applications is that of Si–Ge.
709:
byproduct is present. (Hydrogen chloride may be intentionally added to etch the wafer.) An additional etching reaction competes with the deposition reaction:
308:
is a process similar to homoepitaxy except that the thin-film growth is not limited to two-dimensional growth. Here the substrate is the thin-film material.
618:
In the FM growth mode, adsorbate-surface and adsorbate-adsorbate interactions are balanced, which promotes 2D layer-by-layer or step-flow epitaxial growth.
51: 2658: 233: 935: 1325: 162: 2603: 2467: 1566: 1458: 1357:
K, Prabahar (26 October 2020). "Grain to Grain Epitaxy-Like Nano Structures of (Ba,Ca)(ZrTi)O3/ CoFe2O4 for Magneto–Electric Based Devices".
1825:
A. Y. Cho, "Growth of III\–V semiconductors by molecular beam epitaxy and their properties," Thin Solid Films, vol. 100, pp. 291–317, 1983.
192: 2017:
Tenth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Lisbon, Portugal, 8–12 April 1991
2668: 1796: 328: 2416:
Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General Crystallography Volume 33, Part 4 (July 1977)
2106: 2025: 1964: 1924: 1835:
Cheng, K. Y. (November 1997). "Molecular beam epitaxy technology of III-V compound semiconductors for optoelectronic applications".
766:
The reaction chamber where this process takes place may be heated by lamps located outside the chamber. A common technique used in
1057: 797:, in which precursor gases are alternatively pulsed into a chamber, leading to atomic monolayer growth by surface saturation and 137: 868:
in the source gas, liberated by evaporation or wet etching of the surface, may also diffuse into the epitaxial layer and cause
359: 600: 1431: 1268: 606: 142: 2653: 2544:
Waldmann, T. (2012). "The role of surface defects in large organic molecule adsorption: substrate configuration effects".
1765:
Encyclopedia of Materials: Science and Technology, Sect. 1.9, Physical Properties of Thin Films and Artificial Multilayers
1088:
Some pairs of minerals that are not related structurally or compositionally may also exhibit epitaxy. A common example is
958: 226: 101: 1812: 1049: 182: 1649:
Chen, Lingxiu; Wang, Haomin; Tang, Shujie (2017). "Edge control of graphene domains grown on hexagonal boron nitride".
561: 1248:. Indeed, epitaxy is the only affordable method of high quality crystal growth for many semiconductor materials. In 790:, on the other hand, is an ultra-high vacuum process that uses gas phase precursors to generate the molecular beam. 702: 1245: 1109: 658: 654: 2663: 2501:
Waldmann, T. (2011). "Growth of an oligopyridine adlayer on Ag(100) – A scanning tunnelling microscopy study".
1220:(4 or 8). Nevertheless, the O spacings are similar for the two minerals hence hematite can readily grow on the 1010: 946: 219: 1395:
Hwang, Cherngye (30 September 1998). "Imaging of the grain-to-grain epitaxy in NiFe/FeMn thin-film couples".
1113: 670: 344: 299: 1300: 931: 849: 842: 771: 767: 569: 172: 482: 2366:
White, John S.; Richards, R. Peter (17 February 2010). "Let's Get It Right: Epitaxy—A Simple Concept?".
1315: 1295: 900:
In mineralogy, epitaxy is the overgrowth of one mineral on another in an orderly way, such that certain
787: 666: 934:
level on a semiconductor substrate of the same material. For naturally produced minerals, however, the
2622: 2553: 2510: 2375: 2321: 2259: 2173: 2138: 2061: 1879: 1723: 1668: 1605: 1513: 1330: 794: 530: 50: 1305: 1217: 316: 167: 511: 2399: 2345: 2283: 2232: 2077: 1950: 1711: 1692: 1658: 1595: 1503: 1374: 1310: 825:. Centrifugally formed film growth is a process used to form thin layers of materials by using a 187: 147: 17: 2599: 2569: 2526: 2463: 2391: 2337: 2275: 2224: 2189: 2102: 2021: 2015: 1960: 1954: 1920: 1914: 1895: 1852: 1792: 1684: 1631: 1562: 1539: 1492:"Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride" 1454: 1427: 1121: 916: 905: 901: 706: 177: 70: 2096: 1786: 2561: 2518: 2383: 2329: 2267: 2216: 2181: 2146: 2069: 1887: 1844: 1731: 1676: 1621: 1613: 1529: 1521: 1474: 1404: 1366: 1260: 822: 573: 475: 332: 111: 1040: 450: 423: 2626: 1249: 737: 635: 320: 253:
means "on top of”) refers to a type of crystal growth or material deposition in which new
202: 132: 91: 42: 2632: 2557: 2514: 2379: 2325: 2263: 2177: 2142: 2065: 1883: 1727: 1672: 1609: 1517: 1200:
stacked in an ABC-ABC sequence. In this packing the close-packed layers are parallel to
315:
and to fabricate integrated crystalline layers of different materials. Examples include
1626: 1583: 1534: 1491: 1335: 1280: 1264: 1241: 1032: 888: 733: 266: 197: 116: 96: 2647: 2403: 2349: 2287: 2236: 2081: 1891: 1791:(2nd ed.). Chichester, West Sussex, England: John Wiley & Sons. p. 23. 1378: 1285: 942: 927: 919:
are clear then the epitaxic relationship can be deduced just by a visual inspection.
798: 783: 649:
Figure 1: Basic processes inside the growth chambers of a) MOVPE, b) MBE, and c) CBE.
1696: 661:
methods that deliver the precursors to the substrate in gaseous state. For example,
2446:
Nesse, William (2000). Introduction to Mineralogy. Oxford University Press. Page 79
2098:
Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies
2049: 1229: 1225: 1221: 1201: 1125: 1117: 740:
source gases. For instance, the silane reaction occurs at 650 Â°C in this way:
282: 207: 106: 1735: 2591: 2483: 2457: 1448: 2271: 1045: 1014: 756: 281:
orientation relative to the substrate wafer's crystalline lattice, such as the
157: 2220: 941:
Another man-made application of epitaxy is the making of artificial snow using
915:
If the crystals of both minerals are well formed so that the directions of the
302:
levels. In academic literature, homoepitaxy is often abbreviated to "homoepi".
2426: 2387: 2333: 1257: 1073: 986: 826: 75: 2427:"FMF - Friends of Minerals Forum, discussion and message board :: Index" 2395: 2341: 2279: 2228: 2193: 1899: 1856: 813:
Centrifugal liquid-phase epitaxy is used commercially to make thin layers of
1870:
Tsang, W.T. (1989). "From chemical vapor epitaxy to chemical beam epitaxy".
1760: 1584:"Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches" 1320: 1253: 1162: 1065: 1021: 873: 857: 818: 775: 31: 2573: 2530: 1813:"Applied Materials Series 7600 Epitaxial Reactor System - the Chip History" 1688: 1635: 1543: 1370: 2048:
Katterloher, Reinhard O.; Jakob, Gerd; Konuma, Mitsuharu; Krabbe, Alfred;
755:
VPE is sometimes classified by the chemistry of the source gases, such as
1290: 1138: 1097: 1077: 938:(IMA) definition requires that the two minerals be of different species. 861: 674: 340: 324: 1916:
Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials
1617: 1036:
Rutile on hematite, from Novo Horizonte, Bahia, Northeast Region, Brazil
793:
Another widely used technique in microelectronics and nanotechnology is
584: 2565: 2522: 2456:
Klein, Cornelis; Hurlbut, Cornelius Searle; Dana, James Dwight (1993).
1953:; Parkin, S. S. P.; Dobson, P. J.; Neave, J. H.; Arrott, A. S. (2013). 1680: 1525: 1208: 1116:, but there are directions of similar spacing between the atoms in the 814: 786:; practically free space) to the substrate and start epitaxial growth. 653:
Homoepitaxial growth of semiconductor thin films are generally done by
595:
Heteroepitaxial growth is classified into three primary growth modes--
557: 336: 254: 65: 2073: 1478: 2185: 2150: 2014:
Luque, A.; Sala, G.; Palz, Willeke; Santos, G. dos; Helm, P. (2012).
1848: 1712:"Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I" 1408: 1194: 1089: 1061: 962: 904:
of the two minerals are aligned. This occurs when some planes in the
865: 853: 779: 729: 1663: 1600: 1508: 645: 1056:
Minerals that have the same composition but different structures (
1039: 1031: 909: 908:
of the overgrowth and the substrate have similar spacings between
893: 887: 852:
during deposition by adding impurities to the source gas, such as
760: 644: 930:
scientists who induce epitaxic growth of a film with a different
774:(MBE). In this method, a source material is heated to produce an 565: 1450:
Epitaxy of Semiconductors: Introduction to Physical Principles
1213: 1197: 2637: 1959:. Springer Science & Business Media. pp. 174–176. 2619: 1956:
Thin Film Growth Techniques for Low-Dimensional Structures
411:{\displaystyle \varepsilon ={\frac {a_{f}-a_{s}}{a_{f}}}} 1453:. Springer Science & Business Media. pp. 4–6. 876:
into the growing layer from other layers in the wafer (
2101:. Springer Science & Business Media. p. 45. 1473:
M. Schreck et al., Appl. Phys. Lett. 78, 192 (2001);
514: 485: 453: 426: 362: 949:
silver iodide and ice have similar cell dimensions.
778:
beam of particles, which travel through a very high
2598:(2nd ed.). Upper Saddle River: Prentice Hall. 1193:. The magnetite structure is based on close-packed 529:Heteroepitaxy is commonly used to create so-called 124: 83: 57: 41: 30:"Epitaxis" redirects here. Not to be confused with 1490:Tang, Shujie; Wang, Haomin; Wang, Huishan (2015). 520: 500: 466: 439: 410: 1060:) may also have epitaxic relations. Examples are 1788:An Introduction To Semiconductor Microtechnology 1754: 1752: 1048:after magnetite, with terraced epitaxial faces. 27:Crystal growth process relative to the substrate 2215:(8). American Chemical Society (ACS): 655–668. 892:Rutile epitaxial on hematite nearly 6 cm long. 2258:(7). American Physical Society (APS): 075124. 1989:"Speedy production of silicon for solar cells" 2629:: a central forum for the epitaxy-communities 1945: 1943: 1582:Chen, Lingxiu; He, Li; Wang, Huishan (2017). 1212:vary from 0.49 Å to 0.92 Å, depending on the 961:) may have epitaxic relations. An example is 568:(CMOS), but it is particularly important for 227: 8: 2596:Introduction to Microelectronic Fabrication 1919:. John Wiley & Sons. pp. 134–135. 234: 220: 38: 1662: 1625: 1599: 1533: 1507: 513: 484: 458: 452: 431: 425: 400: 389: 376: 369: 361: 1120:plane of rutile (perpendicular to the a 583: 566:complementary metal–oxide–semiconductors 1422:Christensen, Morten Jagd (April 1997). 1390: 1388: 1346: 957:Minerals that have the same structure ( 936:International Mineralogical Association 677:at approximately 1200 to 1250 Â°C: 508:is necessary for obtaining epitaxy. If 1561:. Elsevier Science. pp. 513–588. 1352: 1350: 1326:Vertical-cavity surface-emitting laser 1252:, epitaxy is used to create and study 277:(τάξις), meaning "an ordered manner". 2442: 2440: 2361: 2359: 2307: 2305: 2303: 2301: 2299: 2297: 2054:Infrared Spaceborne Remote Sensing IX 1987:Christensen, Arnfinn (29 July 2015). 1913:Capper, Peter; Mauk, Michael (2007). 1424:Epitaxy, Thin films and Superlattices 923:relationship, but it is not certain. 7: 2431:www.mineral-forum.com/message-board/ 2640:: a specialized software in epitaxy 2546:Physical Chemistry Chemical Physics 2503:Physical Chemistry Chemical Physics 560:-based manufacturing processes for 501:{\displaystyle \varepsilon <9\%} 193:Shaping processes in crystal growth 2374:(2). Informa UK Limited: 173–176. 2320:(4). Informa UK Limited: 317–320. 1224:faces of magnetite, with hematite 495: 329:aluminium gallium indium phosphide 25: 2312:Rakovan, John (2006). "Epitaxy". 2172:(13). AIP Publishing: 1659–1661. 1785:Morgan, D. V.; Board, K. (1991). 2659:Semiconductor device fabrication 1716:Zeitschrift fĂźr Kristallographie 665:is most commonly deposited from 49: 18:Centifugually formed film growth 1447:Udo W. Pohl (11 January 2013). 163:Fractional crystallization 2209:Accounts of Materials Research 1269:scanning tunnelling microscopy 1: 1878:(1–4). Elsevier BV: 121–131. 1736:10.1524/zkri.1958.110.1-6.372 1557:F. Francis, Lorraine (2016). 1892:10.1016/0022-0248(89)90364-3 1426:. Risø National Laboratory. 945:, which is possible because 562:bipolar junction transistors 521:{\displaystyle \varepsilon } 273:(ἐπί), meaning "above", and 183:Laser-heated pedestal growth 2590:Jaeger, Richard C. (2002). 2272:10.1103/physrevb.104.075124 1759:Brune, H. (14 April 2009). 173:Hydrothermal synthesis 138:Bridgman–Stockbarger method 2685: 2221:10.1021/accountsmr.1c00097 2131:Journal of Applied Physics 1397:Journal of Applied Physics 1009:. Both these minerals are 848:An epitaxial layer can be 633: 29: 2669:Methods of crystal growth 2388:10.1080/00357521003591165 2334:10.3200/rmin.81.4.317-320 2020:. Springer. p. 694. 1872:Journal of Crystal Growth 1246:semiconductor fabrication 728:Silicon VPE may also use 659:physical vapor deposition 215: 143:Van Arkel–de Boer process 129: 88: 62: 48: 1256:and multilayer films of 705:) may occur if too much 168:Fractional freezing 2166:Applied Physics Letters 1837:Proceedings of the IEEE 671:germanium tetrachloride 570:compound semiconductors 345:hexagonal boron nitride 148:Czochralski method 1371:10.1021/acsanm.0c02265 1301:Selective area epitaxy 1228:parallel to magnetite 1053: 1037: 897: 772:molecular beam epitaxy 768:compound semiconductor 650: 592: 550:Grain-to-grain epitaxy 522: 502: 468: 441: 412: 125:Methods and technology 1710:Bauer, Ernst (1958). 1588:Nature Communications 1496:Nature Communications 1316:Thermal laser epitaxy 1296:Quantum cascade laser 1133:Hematite on magnetite 1043: 1035: 917:crystallographic axes 891: 788:Chemical beam epitaxy 667:silicon tetrachloride 648: 587: 523: 503: 469: 467:{\displaystyle a_{s}} 442: 440:{\displaystyle a_{f}} 413: 335:(GaAs) or diamond or 2654:Thin film deposition 2633:Deposition processes 2625:9 March 2013 at the 2488:abulafia.mt.ic.ac.uk 2459:Manual of mineralogy 2368:Rocks & Minerals 2314:Rocks & Minerals 2095:Pauleau, Y. (2012). 1559:Materials Processing 1359:ACS Appl. Nano Mater 1331:Wake Shield Facility 1058:polymorphic minerals 1028:Polymorphic minerals 795:atomic layer epitaxy 512: 483: 451: 424: 360: 2558:2012PCCP...1410726W 2515:2011PCCP...1320724W 2380:2010RoMin..85..173W 2326:2006RoMin..81..317R 2264:2021PhRvB.104g5124H 2178:1994ApPhL..65.1659L 2143:1994JAP....75.2809C 2066:2002SPIE.4486..200K 1884:1989JCrGr..95..121T 1728:1958ZK....110..372B 1673:2017arXiv170601655C 1618:10.1038/ncomms14703 1610:2017NatCo...814703C 1518:2015NatCo...6.6499T 1403:(6115): 6115–6117. 1365:(11): 11098–11106. 1306:Silicon on sapphire 1240:Epitaxy is used in 1218:coordination number 1216:(2+ or 3+) and the 1137:Another example is 1020:, and with similar 959:isomorphic minerals 953:Isomorphic minerals 602:Frank–van der Merwe 556:Epitaxy is used in 317:silicon on sapphire 117:Single crystal 97:Crystal growth 2566:10.1039/C2CP40800G 2523:10.1039/C1CP22546D 1681:10.1039/C7NR02578E 1526:10.1038/ncomms7499 1311:Single event upset 1265:single crystalline 1084:Rutile on hematite 1054: 1038: 902:crystal directions 898: 763:(MOVPE or MOCVD). 651: 608:Stranski–Krastanov 593: 564:(BJTs) and modern 518: 498: 464: 437: 408: 286:as heteroepitaxy. 188:Micro-pulling-down 2605:978-0-201-44494-0 2592:"Film Deposition" 2469:978-0-471-57452-1 2252:Physical Review B 2074:10.1117/12.455132 1993:sciencenordic.com 1843:(11): 1694–1714. 1568:978-0-12-385132-1 1479:10.1063/1.1337648 1460:978-3-642-32970-8 1261:organic molecules 707:hydrogen chloride 476:lattice constants 406: 244: 243: 178:Kyropoulos method 107:Seed crystal 102:Recrystallization 71:Crystal structure 16:(Redirected from 2676: 2609: 2578: 2577: 2552:(30): 10726–31. 2541: 2535: 2534: 2498: 2492: 2491: 2480: 2474: 2473: 2453: 2447: 2444: 2435: 2434: 2423: 2417: 2414: 2408: 2407: 2363: 2354: 2353: 2309: 2292: 2291: 2247: 2241: 2240: 2204: 2198: 2197: 2186:10.1063/1.112947 2161: 2155: 2154: 2151:10.1063/1.356173 2126: 2120: 2119: 2117: 2115: 2092: 2086: 2085: 2050:Haegel, Nancy M. 2045: 2039: 2038: 2036: 2034: 2011: 2005: 2004: 2002: 2000: 1984: 1978: 1977: 1975: 1973: 1951:Farrow, R. F. C. 1947: 1938: 1937: 1935: 1933: 1910: 1904: 1903: 1867: 1861: 1860: 1849:10.1109/5.649646 1832: 1826: 1823: 1817: 1816: 1809: 1803: 1802: 1782: 1776: 1775: 1773: 1771: 1756: 1747: 1746: 1744: 1742: 1722:(1–6): 372–394. 1707: 1701: 1700: 1666: 1646: 1640: 1639: 1629: 1603: 1579: 1573: 1572: 1554: 1548: 1547: 1537: 1511: 1487: 1481: 1471: 1465: 1464: 1444: 1438: 1437: 1419: 1413: 1412: 1409:10.1063/1.342110 1392: 1383: 1382: 1354: 1192: 1191: 1190: 1182: 1181: 1173: 1172: 1160: 1159: 1158: 1150: 1149: 1112:and hematite is 1019: 1008: 1007: 1006: 998: 997: 984: 983: 982: 974: 973: 823:gallium arsenide 761:metalorganic VPE 574:gallium arsenide 527: 525: 524: 519: 507: 505: 504: 499: 473: 471: 470: 465: 463: 462: 446: 444: 443: 438: 436: 435: 417: 415: 414: 409: 407: 405: 404: 395: 394: 393: 381: 380: 370: 352:lattice mismatch 333:gallium arsenide 236: 229: 222: 112:Protocrystalline 53: 39: 21: 2684: 2683: 2679: 2678: 2677: 2675: 2674: 2673: 2664:Crystallography 2644: 2643: 2627:Wayback Machine 2616: 2606: 2589: 2586: 2581: 2543: 2542: 2538: 2509:(46): 20724–8. 2500: 2499: 2495: 2484:"Shannon Radii" 2482: 2481: 2477: 2470: 2455: 2454: 2450: 2445: 2438: 2425: 2424: 2420: 2415: 2411: 2365: 2364: 2357: 2311: 2310: 2295: 2249: 2248: 2244: 2206: 2205: 2201: 2163: 2162: 2158: 2128: 2127: 2123: 2113: 2111: 2109: 2094: 2093: 2089: 2047: 2046: 2042: 2032: 2030: 2028: 2013: 2012: 2008: 1998: 1996: 1995:. ScienceNordic 1986: 1985: 1981: 1971: 1969: 1967: 1949: 1948: 1941: 1931: 1929: 1927: 1912: 1911: 1907: 1869: 1868: 1864: 1834: 1833: 1829: 1824: 1820: 1811: 1810: 1806: 1799: 1784: 1783: 1779: 1769: 1767: 1758: 1757: 1750: 1740: 1738: 1709: 1708: 1704: 1648: 1647: 1643: 1594:(2017): 14703. 1581: 1580: 1576: 1569: 1556: 1555: 1551: 1489: 1488: 1484: 1472: 1468: 1461: 1446: 1445: 1441: 1434: 1421: 1420: 1416: 1394: 1393: 1386: 1356: 1355: 1348: 1344: 1277: 1250:surface science 1238: 1189: 1186: 1185: 1184: 1180: 1177: 1176: 1175: 1171: 1169: 1168: 1167: 1165: 1157: 1154: 1153: 1152: 1148: 1145: 1144: 1143: 1141: 1135: 1107: 1103: 1095: 1086: 1071: 1030: 1017: 1005: 1002: 1001: 1000: 996: 993: 992: 991: 989: 981: 978: 977: 976: 972: 969: 968: 967: 965: 955: 886: 846: 835: 807: 751: 747: 738:trichlorosilane 724: 720: 716: 696: 692: 688: 684: 643: 638: 636:Epitaxial wafer 632: 582: 510: 509: 481: 480: 454: 449: 448: 427: 422: 421: 396: 385: 372: 371: 358: 357: 321:gallium nitride 292: 265:comes from the 240: 203:Verneuil method 92:Crystallization 43:Crystallization 35: 28: 23: 22: 15: 12: 11: 5: 2682: 2680: 2672: 2671: 2666: 2661: 2656: 2646: 2645: 2642: 2641: 2635: 2630: 2615: 2614:External links 2612: 2611: 2610: 2604: 2585: 2582: 2580: 2579: 2536: 2493: 2475: 2468: 2448: 2436: 2418: 2409: 2355: 2293: 2242: 2199: 2156: 2121: 2107: 2087: 2040: 2026: 2006: 1979: 1965: 1939: 1925: 1905: 1862: 1827: 1818: 1804: 1798:978-0471924784 1797: 1777: 1761:"Growth Modes" 1748: 1702: 1641: 1574: 1567: 1549: 1502:(6499): 6499. 1482: 1466: 1459: 1439: 1432: 1414: 1384: 1345: 1343: 1340: 1339: 1338: 1336:Zhores Alferov 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1281:Heterojunction 1276: 1273: 1242:nanotechnology 1237: 1234: 1187: 1178: 1170: 1155: 1146: 1134: 1131: 1105: 1101: 1093: 1085: 1082: 1069: 1029: 1026: 1003: 994: 979: 970: 954: 951: 885: 882: 845: 840: 834: 831: 806: 803: 753: 752: 749: 745: 734:dichlorosilane 726: 725: 722: 718: 714: 698: 697: 694: 690: 686: 682: 642: 639: 631: 628: 581: 578: 543:Pendeo-epitaxy 537:Heterotopotaxy 517: 497: 494: 491: 488: 461: 457: 434: 430: 403: 399: 392: 388: 384: 379: 375: 368: 365: 291: 288: 242: 241: 239: 238: 231: 224: 216: 213: 212: 211: 210: 205: 200: 198:Skull crucible 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 140: 135: 127: 126: 122: 121: 120: 119: 114: 109: 104: 99: 94: 86: 85: 81: 80: 79: 78: 73: 68: 60: 59: 55: 54: 46: 45: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2681: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2651: 2649: 2639: 2638:CrystalXE.com 2636: 2634: 2631: 2628: 2624: 2621: 2618: 2617: 2613: 2607: 2601: 2597: 2593: 2588: 2587: 2583: 2575: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2540: 2537: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2497: 2494: 2489: 2485: 2479: 2476: 2471: 2465: 2461: 2460: 2452: 2449: 2443: 2441: 2437: 2432: 2428: 2422: 2419: 2413: 2410: 2405: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2362: 2360: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2308: 2306: 2304: 2302: 2300: 2298: 2294: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2246: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2203: 2200: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2160: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2122: 2110: 2108:9789401003537 2104: 2100: 2099: 2091: 2088: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2044: 2041: 2029: 2027:9789401136228 2023: 2019: 2018: 2010: 2007: 1994: 1990: 1983: 1980: 1968: 1966:9781468491456 1962: 1958: 1957: 1952: 1946: 1944: 1940: 1928: 1926:9780470319499 1922: 1918: 1917: 1909: 1906: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1822: 1819: 1814: 1808: 1805: 1800: 1794: 1790: 1789: 1781: 1778: 1766: 1762: 1755: 1753: 1749: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1703: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1665: 1660: 1656: 1652: 1645: 1642: 1637: 1633: 1628: 1623: 1619: 1615: 1611: 1607: 1602: 1597: 1593: 1589: 1585: 1578: 1575: 1570: 1564: 1560: 1553: 1550: 1545: 1541: 1536: 1531: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1493: 1486: 1483: 1480: 1476: 1470: 1467: 1462: 1456: 1452: 1451: 1443: 1440: 1435: 1429: 1425: 1418: 1415: 1410: 1406: 1402: 1398: 1391: 1389: 1385: 1380: 1376: 1372: 1368: 1364: 1360: 1353: 1351: 1347: 1341: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1286:Island growth 1284: 1282: 1279: 1278: 1274: 1272: 1270: 1267:surfaces via 1266: 1262: 1259: 1255: 1251: 1247: 1243: 1235: 1233: 1231: 1227: 1223: 1219: 1215: 1210: 1205: 1203: 1199: 1196: 1164: 1140: 1132: 1130: 1127: 1123: 1119: 1115: 1111: 1099: 1091: 1083: 1081: 1079: 1075: 1067: 1063: 1059: 1051: 1047: 1042: 1034: 1027: 1025: 1023: 1016: 1012: 988: 964: 960: 952: 950: 948: 944: 943:silver iodide 939: 937: 933: 929: 928:semiconductor 924: 920: 918: 913: 911: 907: 903: 895: 890: 883: 881: 879: 878:out-diffusion 875: 871: 867: 863: 859: 855: 851: 844: 841: 839: 832: 830: 828: 824: 820: 816: 811: 804: 802: 800: 799:chemisorption 796: 791: 789: 785: 781: 777: 773: 769: 764: 762: 758: 743: 742: 741: 739: 735: 731: 712: 711: 710: 708: 704: 680: 679: 678: 676: 672: 668: 664: 660: 656: 647: 640: 637: 629: 627: 623: 619: 616: 612: 610: 609: 604: 603: 598: 590: 586: 579: 577: 575: 571: 567: 563: 559: 554: 551: 547: 544: 540: 538: 534: 532: 515: 492: 489: 486: 477: 459: 455: 432: 428: 418: 401: 397: 390: 386: 382: 377: 373: 366: 363: 355: 353: 348: 346: 342: 338: 334: 331:(AlGaInP) on 330: 326: 322: 318: 313: 312:Heteroepitaxy 309: 307: 303: 301: 296: 289: 287: 284: 278: 276: 272: 268: 264: 259: 256: 252: 248: 237: 232: 230: 225: 223: 218: 217: 214: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 134: 131: 130: 128: 123: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 89: 87: 82: 77: 74: 72: 69: 67: 64: 63: 61: 56: 52: 47: 44: 40: 37: 33: 19: 2595: 2584:Bibliography 2549: 2545: 2539: 2506: 2502: 2496: 2487: 2478: 2458: 2451: 2430: 2421: 2412: 2371: 2367: 2317: 2313: 2255: 2251: 2245: 2212: 2208: 2202: 2169: 2165: 2159: 2134: 2130: 2124: 2112:. Retrieved 2097: 2090: 2057: 2053: 2043: 2031:. Retrieved 2016: 2009: 1997:. Retrieved 1992: 1982: 1970:. Retrieved 1955: 1930:. Retrieved 1915: 1908: 1875: 1871: 1865: 1840: 1836: 1830: 1821: 1807: 1787: 1780: 1768:. Retrieved 1764: 1739:. Retrieved 1719: 1715: 1705: 1654: 1650: 1644: 1591: 1587: 1577: 1558: 1552: 1499: 1495: 1485: 1469: 1449: 1442: 1423: 1417: 1400: 1396: 1362: 1358: 1239: 1236:Applications 1206: 1136: 1108:. Rutile is 1087: 1080:, both ZnS. 1055: 956: 940: 925: 921: 914: 899: 877: 869: 847: 836: 812: 808: 805:Liquid-phase 792: 765: 754: 727: 699: 662: 652: 624: 620: 617: 613: 607: 601: 597:Volmer–Weber 596: 594: 588: 555: 549: 548: 542: 541: 536: 535: 419: 356: 351: 349: 311: 310: 306:Homotopotaxy 305: 304: 294: 293: 283:Miller index 279: 274: 270: 262: 260: 250: 246: 245: 208:Zone melting 152: 58:Fundamentals 36: 2620:epitaxy.net 2137:(6): 2809. 2060:: 200–209. 1657:(32): 1–6. 1052:, Argentina 1046:pseudomorph 1015:space group 833:Solid-phase 759:(HVPE) and 757:hydride VPE 641:Vapor-phase 295:Homoepitaxy 255:crystalline 158:Flux method 2648:Categories 1664:1706.01655 1601:1703.03145 1509:1503.02806 1433:8755022987 1342:References 1124:) and the 1110:tetragonal 1074:sphalerite 1068:, both FeS 987:microcline 870:autodoping 827:centrifuge 776:evaporated 770:growth is 634:See also: 76:Nucleation 2462:. Wiley. 2404:128758902 2396:0035-7529 2350:219714821 2342:0035-7529 2288:238671328 2280:2469-9950 2237:237642245 2229:2643-6728 2194:0003-6951 2114:3 October 2082:137003113 2033:3 October 1999:3 October 1972:3 October 1932:3 October 1900:0022-0248 1857:0018-9219 1651:Nanoscale 1379:228995039 1321:Thin film 1254:monolayer 1163:magnetite 1066:marcasite 1044:Hematite 1022:unit cell 1011:triclinic 947:hexagonal 858:phosphine 819:germanium 748:→ Si + 2H 605:(FM) and 580:Mechanism 516:ε 496:% 487:ε 383:− 364:ε 323:(GaN) on 261:The term 32:Epistaxis 2623:Archived 2574:22751288 2531:21952443 1697:11602229 1689:28580985 1636:28276532 1544:25757864 1291:Nano-RAM 1275:See also 1258:adsorbed 1139:hematite 1114:trigonal 1098:hematite 1078:wurtzite 1050:La Rioja 906:lattices 896:, Brazil 884:Minerals 862:diborane 675:hydrogen 655:chemical 589:Figure 1 572:such as 474:are the 341:graphene 325:sapphire 249:(prefix 84:Concepts 2554:Bibcode 2511:Bibcode 2376:Bibcode 2322:Bibcode 2260:Bibcode 2174:Bibcode 2139:Bibcode 2062:Bibcode 1880:Bibcode 1724:Bibcode 1669:Bibcode 1627:5347129 1606:Bibcode 1535:4382696 1514:Bibcode 1244:and in 1209:cations 1207:If the 1013:, with 874:diffuse 866:Dopants 815:silicon 721:↔ 2SiCl 703:etching 663:silicon 630:Methods 558:silicon 531:bandgap 347:(hBN). 337:iridium 263:epitaxy 247:Epitaxy 153:Epitaxy 66:Crystal 2602:  2572:  2529:  2466:  2402:  2394:  2348:  2340:  2286:  2278:  2235:  2227:  2192:  2105:  2080:  2024:  1963:  1923:  1898:  1855:  1795:  1695:  1687:  1634:  1624:  1565:  1542:  1532:  1457:  1430:  1377:  1214:charge 1198:anions 1195:oxygen 1090:rutile 1072:, and 1062:pyrite 966:NaAlSi 963:albite 932:doping 854:arsine 843:Doping 821:, and 780:vacuum 736:, and 730:silane 693:+ 4HCl 673:) and 611:(SK). 599:(VW), 420:Where 339:, and 300:doping 269:roots 133:Boules 2400:S2CID 2346:S2CID 2284:S2CID 2233:S2CID 2078:S2CID 1770:3 May 1741:3 May 1693:S2CID 1659:arXiv 1596:arXiv 1504:arXiv 1375:S2CID 1230:(111) 1226:(001) 1222:(111) 1202:(111) 1126:(001) 1118:(100) 990:KAlSi 910:atoms 894:Bahia 860:, or 850:doped 447:and 290:Types 275:taxis 267:Greek 2600:ISBN 2570:PMID 2527:PMID 2464:ISBN 2392:ISSN 2338:ISSN 2276:ISSN 2225:ISSN 2190:ISSN 2116:2017 2103:ISBN 2058:4486 2035:2017 2022:ISBN 2001:2017 1974:2017 1961:ISBN 1934:2017 1921:ISBN 1896:ISSN 1853:ISSN 1793:ISBN 1772:2022 1743:2022 1685:PMID 1632:PMID 1563:ISBN 1540:PMID 1455:ISBN 1428:ISBN 1122:axis 1076:and 1064:and 782:(10 723:2(g) 717:+ Si 715:4(g) 713:SiCl 689:↔ Si 687:2(g) 685:+ 2H 683:4(g) 681:SiCl 669:(or 490:< 251:epi- 2562:doi 2519:doi 2384:doi 2330:doi 2268:doi 2256:104 2217:doi 2182:doi 2147:doi 2070:doi 1888:doi 1845:doi 1732:doi 1720:110 1677:doi 1622:PMC 1614:doi 1530:PMC 1522:doi 1475:doi 1405:doi 1367:doi 1263:on 1161:on 1096:on 1092:TiO 985:on 880:). 744:SiH 719:(s) 695:(g) 691:(s) 657:or 354:Ԑ: 343:on 271:epi 2650:: 2594:. 2568:. 2560:. 2550:14 2548:. 2525:. 2517:. 2507:13 2505:. 2486:. 2439:^ 2429:. 2398:. 2390:. 2382:. 2372:85 2370:. 2358:^ 2344:. 2336:. 2328:. 2318:81 2316:. 2296:^ 2282:. 2274:. 2266:. 2254:. 2231:. 2223:. 2211:. 2188:. 2180:. 2170:65 2168:. 2145:. 2135:75 2133:. 2076:. 2068:. 2056:. 1991:. 1942:^ 1894:. 1886:. 1876:95 1874:. 1851:. 1841:85 1839:. 1763:. 1751:^ 1730:. 1718:. 1714:. 1691:. 1683:. 1675:. 1667:. 1653:. 1630:. 1620:. 1612:. 1604:. 1590:. 1586:. 1538:. 1528:. 1520:. 1512:. 1498:. 1494:. 1401:64 1399:. 1387:^ 1373:. 1361:. 1349:^ 1271:. 1232:. 1174:Fe 1166:Fe 1142:Fe 1100:Fe 912:. 864:. 856:, 817:, 801:. 784:Pa 732:, 327:, 319:, 2608:. 2576:. 2564:: 2556:: 2533:. 2521:: 2513:: 2490:. 2472:. 2433:. 2406:. 2386:: 2378:: 2352:. 2332:: 2324:: 2290:. 2270:: 2262:: 2239:. 2219:: 2213:2 2196:. 2184:: 2176:: 2153:. 2149:: 2141:: 2118:. 2084:. 2072:: 2064:: 2037:. 2003:. 1976:. 1936:. 1902:. 1890:: 1882:: 1859:. 1847:: 1815:. 1801:. 1774:. 1745:. 1734:: 1726:: 1699:. 1679:: 1671:: 1661:: 1655:9 1638:. 1616:: 1608:: 1598:: 1592:8 1571:. 1546:. 1524:: 1516:: 1506:: 1500:6 1477:: 1463:. 1436:. 1411:. 1407:: 1381:. 1369:: 1363:3 1188:4 1183:O 1179:2 1156:3 1151:O 1147:2 1106:3 1104:O 1102:2 1094:2 1070:2 1018:1 1004:8 999:O 995:3 980:8 975:O 971:3 750:2 746:4 701:( 493:9 460:s 456:a 433:f 429:a 402:f 398:a 391:s 387:a 378:f 374:a 367:= 235:e 228:t 221:v 34:. 20:)

Index

Centifugually formed film growth
Epistaxis
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑