Knowledge

Idempotent (ring theory)

Source πŸ“

1673:
is centrally primitive, we are done. If not, it is a sum of central orthogonal idempotents, which in turn are primitive or sums of more central idempotents, and so on. The problem that may occur is that this may continue without end, producing an infinite family of central orthogonal idempotents.
2768: 2652: 2812: 2739: 2705: 2679: 1683:" is a type of finiteness condition on the ring. It can be achieved in many ways, such as requiring the ring to be right 1183: 128:, the main objects of study are rings in which all elements are idempotent under both addition and multiplication. 1179: 1015: 1008: 164: 145: 2531: 2094: 1821: 1004: 2700:, Mathematics and its Applications, vol. 575, Dordrecht: Kluwer Academic Publishers, pp. xii+380, 1045: 71: 2726:, Graduate Texts in Mathematics, vol. 131 (2 ed.), New York: Springer-Verlag, pp. xx+385, 1506: 1304: 1230: 659: 643: 981:. Some authors use the term "idempotent ring" for this type of ring. In such a ring, multiplication is 2839: 1773: 1271: 1066: 593: 117: 956:
also do not have such idempotents, but for a different reason. The only idempotent contained in the
2799:, Algebras and Applications, vol. 1, Dordrecht: Kluwer Academic Publishers, pp. xii+371, 2478: 2249: 2042: 1843: 1765: 997: 188: 160: 121: 2329: 2304: 1977: 520: 47: 2786: 2808: 2764: 2735: 2701: 2675: 2648: 1186:
on left direct summands if and only if every set of pairwise orthogonal idempotents is finite.
897: 116:
For general rings, elements idempotent under multiplication are involved in decompositions of
110: 2800: 2774: 2727: 2486: 2482: 2127: 2117: 2074: 1172: 1149: 1077: 986: 982: 957: 760: 465: 168: 2822: 2749: 2715: 2689: 1776:
is a decomposition of an algebra as a sum of eigenspaces of commuting idempotent elements.
1411:
arises as left multiplication by a fixed ring element. With this modification of notation,
2818: 2778: 2745: 2711: 2685: 2644: 2510: 2282: 2266: 2262: 1684: 993: 945: 125: 2131: 1769: 2674:(2 ed.), Malabar, FL: Robert E. Krieger Publishing Co. Inc., pp. xviii+412, 305:
are not. This also demonstrates the decomposition properties described below: because
2833: 2151: 1059: 949: 781: 756: 398: 2538: 1408: 1055: 978: 912: 784:, and hence is a local ring, so right (and left) irreducible idempotents are local. 184: 17: 797:
that cannot be written as the sum of two nonzero orthogonal central idempotents.
663: 461: 106: 35: 31: 2804: 2756: 2731: 953: 727: 440: 67: 1011:
right (or every finitely generated left) ideal is generated by an idempotent.
2506: 2084: 2026: 1041: 666: 2255:
When the above partial order is restricted to the central idempotents of
1157: 97: 2664: 736:
is directly indecomposable, so local idempotents are also primitive.
2696:
Hazewinkel, Michiel; Gubareni, Nadiya; Kirichenko, V. V. (2004),
1658:
is directly indecomposable as a ring if and only if the identity
1425:
as right modules if and only if there exists a unique idempotent
1681:
does not contain infinite sets of central orthogonal idempotents
2763:(Third ed.), Reading, Mass.: Addison-Wesley, p. 443, 2660: 2252:
of this partial order are precisely the primitive idempotents.
1182:
on right direct summands if and only if the ring satisfies the
1058:. Both of these types of rings are interesting even when they 1487:. Just as idempotents determine the direct decompositions of 2561: 199:. That is, each factor has two idempotents. So if there are 191:, so it is clear that the factors' only idempotents will be 476:
A partial list of important types of idempotents includes:
2526:
is not invertible are not difficult to find. The element
2041:
Lifting idempotents also has major consequences for the
2269:
structure, can be given. For two central idempotents
675:
is a primitive idempotent if it cannot be written as
2795:
Polcino Milies, CΓ©sar; Sehgal, Sudarshan K. (2002),
2198:the largest idempotent. For orthogonal idempotents 1665:Working inductively, one can attempt to decompose 1264:have an important connection to decomposition of 1669:into a sum of centrally primitive elements. If 2639:Anderson, Frank Wylie; Fuller, Kent R (1992), 2597: 2573: 1471:is a central idempotent, then the corner ring 1229:. The corner ring arises naturally since the 1207:is again a ring, with multiplicative identity 27:In mathematics, element that equals its square 2008:are orthogonal idempotents, corresponding to 1612:. So in particular, every central idempotent 8: 2154:on the idempotents of a ring as follows: if 1881:gives rise to two involutions of the module 1321:if and only if there is a unique idempotent 996:if and only if every right (or every left) 2562:Hazewinkel, Gubareni & Kirichenko 2004 1790:is an idempotent of the endomorphism ring 1582:that are pairwise orthogonal and have sum 1535:, then the identity elements of the rings 1363:is directly indecomposable if and only if 1040:is generated by an idempotent is called a 105:. For example, an idempotent element of a 2083:-module. Idempotents always lift modulo 2468: 1556:. Conversely, given central idempotents 1552:, pairwise orthogonal, and their sum is 1493:as a module, the central idempotents of 1390:(assumed unital), the endomorphism ring 429:. For example, this could be applied to 2554: 2498: 2029:to involutions in a one-to-one manner. 2025:is invertible, the idempotent elements 1736:a centrally primitive idempotent, then 1481:is a ring with multiplicative identity 2724:A first course in noncommutative rings 1073:. Such rings need not be commutative. 1044:. If the condition only holds for all 701:are nonzero orthogonal idempotents in 1761:, each of which is ring irreducible. 456:Idempotents in split-quaternion rings 7: 1742:is a direct sum of the corner rings 1630:as a direct sum of the corner rings 1065:A ring in which all idempotents are 977:elements are idempotent is called a 297:are idempotents of this ring, while 2698:Algebras, rings and modules. Vol. 1 2621: 2609: 2585: 2126:. Yet another characterization of 1899:represents an arbitrary element of 791:idempotent is a central idempotent 212:We can check this for the integers 1142:a local idempotent if and only if 968:Rings characterized by idempotents 25: 2530:is not invertible in any ring of 1624:gives rise to a decomposition of 1088:are the only central idempotents. 609:refers to either of the elements 187:. Now each of these factors is a 74:then, one can also conclude that 70:under the ring's multiplication. 2393:, and the join and meet satisfy 2368:The ordering now becomes simply 2220:is also idempotent, and we have 1972:This process can be reversed if 1854:is the identity endomorphism of 1499:determine the decompositions of 1456:. Thus every direct summand of 309:, there is a ring decomposition 2641:Rings and Categories of Modules 2105:Lifting is most important when 1592:is the direct sum of the rings 1515:is the direct sum of the rings 1462:is generated by an idempotent. 357:the multiplicative identity is 339:the multiplicative identity is 2797:An introduction to group rings 2190:. With respect to this order, 2134:whose idempotents lift modulo 2051:. All idempotents lift modulo 1893:as a left or right module. If 1875:and its associated involution 1060:lack a multiplicative identity 1000:is generated by an idempotent. 952:do not have such idempotents. 617:, which are always idempotent. 1: 1943:can also be viewed as a left 985:and every element is its own 167:, this ring factors into the 1371:are the only idempotents in 741:right irreducible idempotent 652:-module; that is, such that 2021:. Thus for a ring in which 1546:are central idempotents in 1165:ring if all idempotents of 1054:, then the ring is a right 905:Any non-trivial idempotent 368:Quotient of polynomial ring 124:properties of the ring. In 2856: 2788:Linear Associative Algebra 2598:Anderson & Fuller 1992 2574:Anderson & Fuller 1992 2166:are idempotents, we write 1219:is often referred to as a 1195:is idempotent in the ring 1184:descending chain condition 829:if there is an idempotent 513:is idempotent in the ring 66:. That is, the element is 2805:10.1007/978-94-010-0405-3 2785:Peirce, Benjamin (1870), 2732:10.1007/978-1-4419-8616-0 2672:von Neumann regular rings 1911:can be viewed as a right 1780:Relation with involutions 1180:ascending chain condition 472:Types of ring idempotents 281:From these computations, 165:Chinese remainder theorem 2670:Goodearl, K. R. (1991), 2485:, then the lattice is a 1804:, then the endomorphism 1662:is centrally primitive. 630:is a nonzero idempotent 171:of integers modulo  146:ring of integers modulo 1992:is an involution, then 1887:, depending on viewing 1652:. As a result, a ring 893:separability idempotent 234:has two prime factors ( 205:factors, there will be 2146:Lattice of idempotents 1863:An idempotent element 1687:. If a decomposition 1254:Role in decompositions 464:of idempotents in the 2471:, p. 99 that if 2265:structure, or even a 2057:if and only if every 1949:-module homomorphism 1917:-module homomorphism 1305:ring of endomorphisms 1231:ring of endomorphisms 1178:A ring satisfies the 1014:A ring for which the 1007:if and only if every 810:in the quotient ring 730:. This implies that 144:One may consider the 2643:, Berlin, New York: 2194:is the smallest and 2087:and rings for which 1774:Peirce decomposition 1766:associative algebras 1155:A ring is called an 1078:directly irreducible 622:primitive idempotent 2722:Lam, T. Y. (2001), 2509:were introduced by 2479:von Neumann regular 1844:module homomorphism 1258:The idempotents of 1005:von Neumann regular 944:). This shows that 789:centrally primitive 423:has the idempotent 120:, and connected to 18:Centrally primitive 2467:. It is shown in 2100:-adically complete 2063:direct summand of 1978:invertible element 1772:over a field, the 1097:can be written as 1009:finitely generated 934:being zero, where 607:trivial idempotent 562:central idempotent 276:5 ≑ 25 ≑ 1 (mod 6) 271:4 ≑ 16 ≑ 4 (mod 6) 266:3 ≑ 9 ≑ 3 (mod 6) 40:idempotent element 2770:978-0-201-55540-0 2654:978-0-387-97845-1 2537:, which includes 2150:One may define a 2130:is that they are 2128:semiperfect rings 1725:exists with each 1380:In the case when 1357:. Clearly then, 898:Separable algebra 743:is an idempotent 714:is an idempotent 307:3 + 4 ≑ 1 (mod 6) 261:2 ≑ 4 ≑ 4 (mod 6) 256:1 ≑ 1 ≑ 1 (mod 6) 251:0 ≑ 0 ≑ 0 (mod 6) 242:) it should have 111:idempotent matrix 96:for any positive 16:(Redirected from 2847: 2825: 2791: 2781: 2752: 2718: 2692: 2657: 2625: 2619: 2613: 2607: 2601: 2595: 2589: 2583: 2577: 2571: 2565: 2559: 2542: 2536: 2529: 2525: 2520: 2514: 2503: 2487:complete lattice 2476: 2466: 2461: 2448: 2434: 2422: 2418: 2404: 2392: 2388: 2377: 2364: 2323: 2298: 2280: 2274: 2260: 2247: 2233: 2219: 2209: 2203: 2197: 2193: 2189: 2175: 2165: 2159: 2141: 2125: 2118:Jacobson radical 2115: 2099: 2092: 2082: 2075:projective cover 2072: 2062: 2056: 2048: 2024: 2020: 2013: 2007: 1999: 1991: 1985: 1975: 1968: 1958: 1948: 1942: 1936: 1926: 1916: 1910: 1904: 1898: 1892: 1886: 1880: 1874: 1868: 1859: 1853: 1852: 1841: 1835: 1829: 1819: 1813: 1803: 1789: 1760: 1741: 1735: 1724: 1679: 1672: 1668: 1661: 1657: 1651: 1635: 1629: 1623: 1617: 1611: 1600: 1591: 1585: 1581: 1575: 1564: 1555: 1551: 1545: 1534: 1523: 1514: 1504: 1498: 1492: 1486: 1480: 1470: 1461: 1455: 1440: 1430: 1424: 1406: 1389: 1376: 1370: 1366: 1362: 1356: 1342: 1332: 1326: 1320: 1302: 1285: 1279: 1269: 1263: 1248: 1228: 1218: 1212: 1206: 1200: 1194: 1173:Jacobson radical 1171:lift modulo the 1170: 1150:semiperfect ring 1147: 1141: 1130: 1096: 1087: 1083: 1053: 1039: 1033: 1027: 987:additive inverse 973:A ring in which 963: 958:Jacobson radical 946:integral domains 943: 933: 927: 921: 910: 887: 873: 867: 858: 840: 834: 827: 819: 809: 796: 779: 754: 748: 735: 725: 719: 712:local idempotent 706: 700: 694: 688: 674: 669:. Equivalently, 657: 651: 641: 635: 629: 616: 612: 601: 591: 585: 579: 573: 559: 553: 544: 538: 532: 518: 512: 506: 491: 485: 480:Two idempotents 466:split-quaternion 451: 438: 428: 419: 413: 396: 394: 387: 377: 363: 356: 345: 338: 327: 308: 304: 300: 296: 292: 288: 284: 277: 272: 267: 262: 257: 252: 245: 241: 237: 233: 229: 215: 208: 204: 198: 194: 182: 176: 169:product of rings 158: 151: 109:is precisely an 104: 95: 65: 55: 21: 2855: 2854: 2850: 2849: 2848: 2846: 2845: 2844: 2830: 2829: 2828: 2815: 2794: 2784: 2771: 2755: 2742: 2721: 2708: 2695: 2682: 2669: 2655: 2645:Springer-Verlag 2638: 2634: 2629: 2628: 2620: 2616: 2608: 2604: 2596: 2592: 2584: 2580: 2572: 2568: 2560: 2556: 2551: 2546: 2545: 2534: 2527: 2523: 2522:Rings in which 2521: 2517: 2511:Benjamin Peirce 2505:Idempotent and 2504: 2500: 2495: 2472: 2457: 2444: 2430: 2424: 2414: 2400: 2394: 2384: 2379: 2378:if and only if 2369: 2336: 2311: 2289: 2276: 2270: 2267:Boolean algebra 2256: 2235: 2221: 2211: 2205: 2199: 2195: 2191: 2177: 2176:if and only if 2167: 2161: 2155: 2148: 2135: 2132:semilocal rings 2121: 2106: 2095: 2088: 2078: 2064: 2058: 2052: 2044: 2039: 2022: 2015: 2009: 2001: 1993: 1987: 1981: 1973: 1960: 1950: 1944: 1938: 1928: 1918: 1912: 1906: 1900: 1894: 1888: 1882: 1876: 1870: 1864: 1855: 1848: 1847: 1837: 1831: 1825: 1815: 1805: 1797: 1791: 1785: 1782: 1770:Jordan algebras 1759: 1751: 1743: 1737: 1734: 1726: 1720: 1708: 1698: 1688: 1675: 1674:The condition " 1670: 1666: 1659: 1653: 1637: 1631: 1625: 1619: 1613: 1610: 1602: 1599: 1593: 1587: 1583: 1577: 1574: 1566: 1563: 1557: 1553: 1547: 1544: 1536: 1533: 1525: 1522: 1516: 1510: 1500: 1494: 1488: 1482: 1472: 1466: 1457: 1442: 1432: 1426: 1412: 1397: 1391: 1381: 1372: 1368: 1364: 1358: 1344: 1334: 1328: 1322: 1308: 1296: 1287: 1281: 1275: 1265: 1259: 1256: 1239: 1233: 1224: 1214: 1208: 1202: 1196: 1190: 1166: 1143: 1140: 1132: 1126: 1114: 1104: 1098: 1092: 1085: 1081: 1080:if and only if 1049: 1035: 1029: 1018: 970: 961: 935: 929: 923: 916: 906: 879: 876:full idempotent 869: 863: 842: 836: 830: 823: 811: 801: 792: 770: 764: 750: 744: 731: 721: 715: 702: 696: 690: 676: 670: 653: 647: 637: 631: 625: 614: 610: 597: 587: 581: 575: 565: 555: 549: 545:are orthogonal. 540: 534: 524: 514: 508: 497: 487: 481: 474: 458: 443: 430: 424: 409: 404: 390: 389: 379: 378:and an element 373: 370: 358: 347: 340: 329: 310: 306: 302: 298: 294: 290: 286: 282: 275: 270: 265: 260: 255: 250: 243: 239: 235: 231: 217: 213: 206: 200: 196: 192: 178: 172: 154: 147: 142: 134: 126:Boolean algebra 100: 75: 57: 51: 28: 23: 22: 15: 12: 11: 5: 2853: 2851: 2843: 2842: 2832: 2831: 2827: 2826: 2813: 2792: 2782: 2769: 2753: 2740: 2719: 2706: 2693: 2680: 2667: 2658: 2653: 2635: 2633: 2630: 2627: 2626: 2614: 2602: 2590: 2578: 2566: 2553: 2552: 2550: 2547: 2544: 2543: 2532:characteristic 2515: 2497: 2496: 2494: 2491: 2483:self-injective 2366: 2365: 2326: 2325: 2301: 2300: 2147: 2144: 2038: 2031: 1793: 1781: 1778: 1755: 1747: 1730: 1716: 1706: 1696: 1606: 1597: 1570: 1561: 1540: 1529: 1520: 1393: 1292: 1255: 1252: 1251: 1250: 1235: 1187: 1176: 1153: 1136: 1122: 1112: 1102: 1089: 1074: 1063: 1012: 1001: 990: 969: 966: 950:division rings 903: 902: 889: 862:An idempotent 860: 800:An idempotent 798: 785: 766: 737: 708: 644:indecomposable 618: 603: 586:, that is, if 548:An idempotent 546: 523:), then so is 473: 470: 457: 454: 421: 420: 369: 366: 279: 278: 273: 268: 263: 258: 253: 141: 135: 133: 130: 50:is an element 34:, a branch of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2852: 2841: 2838: 2837: 2835: 2824: 2820: 2816: 2814:1-4020-0238-6 2810: 2806: 2802: 2798: 2793: 2790: 2789: 2783: 2780: 2776: 2772: 2766: 2762: 2758: 2754: 2751: 2747: 2743: 2741:0-387-95183-0 2737: 2733: 2729: 2725: 2720: 2717: 2713: 2709: 2707:1-4020-2690-0 2703: 2699: 2694: 2691: 2687: 2683: 2681:0-89464-632-X 2677: 2673: 2668: 2666: 2662: 2659: 2656: 2650: 2646: 2642: 2637: 2636: 2631: 2624:, p. 323 2623: 2618: 2615: 2611: 2606: 2603: 2599: 2594: 2591: 2587: 2582: 2579: 2575: 2570: 2567: 2563: 2558: 2555: 2548: 2540: 2539:Boolean rings 2533: 2519: 2516: 2512: 2508: 2502: 2499: 2492: 2490: 2488: 2484: 2480: 2475: 2470: 2469:Goodearl 1991 2464: 2460: 2455: 2451: 2447: 2442: 2438: 2433: 2428: 2421: 2417: 2412: 2408: 2403: 2398: 2391: 2387: 2382: 2376: 2372: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2334: 2333: 2331: 2322: 2318: 2314: 2310: 2309: 2308: 2306: 2297: 2293: 2288: 2287: 2286: 2284: 2279: 2273: 2268: 2264: 2259: 2253: 2251: 2246: 2242: 2238: 2232: 2228: 2224: 2218: 2214: 2208: 2202: 2188: 2184: 2180: 2174: 2170: 2164: 2158: 2153: 2152:partial order 2145: 2143: 2139: 2133: 2129: 2124: 2119: 2113: 2109: 2103: 2101: 2098: 2091: 2086: 2081: 2076: 2071: 2067: 2061: 2055: 2050: 2047: 2036: 2032: 2030: 2028: 2019: 2012: 2005: 1997: 1990: 1984: 1979: 1970: 1967: 1963: 1957: 1953: 1947: 1941: 1935: 1931: 1925: 1921: 1915: 1909: 1903: 1897: 1891: 1885: 1879: 1873: 1867: 1861: 1858: 1851: 1845: 1840: 1834: 1828: 1823: 1818: 1812: 1808: 1801: 1796: 1788: 1779: 1777: 1775: 1771: 1767: 1762: 1758: 1754: 1750: 1746: 1740: 1733: 1729: 1723: 1719: 1715: 1711: 1705: 1701: 1695: 1691: 1686: 1682: 1678: 1663: 1656: 1649: 1645: 1641: 1634: 1628: 1622: 1616: 1609: 1605: 1596: 1590: 1580: 1573: 1569: 1560: 1550: 1543: 1539: 1532: 1528: 1519: 1513: 1509:of rings. If 1508: 1503: 1497: 1491: 1485: 1479: 1475: 1469: 1463: 1460: 1454: 1450: 1446: 1439: 1435: 1429: 1423: 1419: 1415: 1410: 1407:, where each 1405: 1401: 1396: 1388: 1384: 1378: 1375: 1361: 1355: 1351: 1347: 1341: 1337: 1331: 1325: 1319: 1315: 1311: 1306: 1300: 1295: 1290: 1284: 1278: 1273: 1268: 1262: 1253: 1247: 1243: 1238: 1232: 1227: 1222: 1217: 1211: 1205: 1199: 1193: 1188: 1185: 1181: 1177: 1174: 1169: 1164: 1160: 1159: 1154: 1151: 1146: 1139: 1135: 1129: 1125: 1121: 1117: 1111: 1107: 1101: 1095: 1090: 1079: 1075: 1072: 1069:is called an 1068: 1064: 1061: 1057: 1052: 1047: 1043: 1038: 1032: 1028:every subset 1025: 1021: 1017: 1013: 1010: 1006: 1002: 999: 995: 991: 988: 984: 980: 976: 972: 971: 967: 965: 960:of a ring is 959: 955: 951: 947: 942: 938: 932: 926: 922:with neither 919: 914: 909: 900: 899: 894: 890: 886: 882: 877: 872: 866: 861: 857: 853: 849: 845: 839: 833: 828: 826: 818: 814: 808: 804: 799: 795: 790: 786: 783: 782:division ring 778: 774: 769: 762: 761:Schur's lemma 758: 757:simple module 753: 747: 742: 738: 734: 729: 724: 718: 713: 709: 705: 699: 693: 687: 683: 679: 673: 668: 665: 661: 656: 650: 645: 640: 634: 628: 623: 619: 608: 604: 600: 595: 590: 584: 578: 572: 568: 563: 558: 552: 547: 543: 537: 531: 527: 522: 517: 511: 504: 500: 495: 490: 484: 479: 478: 477: 471: 469: 467: 463: 455: 453: 450: 446: 442: 437: 433: 427: 417: 412: 407: 403: 402: 401: 400: 399:quotient ring 393: 386: 382: 376: 372:Given a ring 367: 365: 362: 355: 351: 344: 337: 333: 326: 322: 318: 314: 274: 269: 264: 259: 254: 249: 248: 247: 246:idempotents. 228: 224: 220: 210: 209:idempotents. 203: 190: 186: 181: 175: 170: 166: 162: 157: 152: 150: 140: 137:Quotients of 136: 131: 129: 127: 123: 119: 114: 112: 108: 103: 99: 94: 90: 86: 82: 78: 73: 69: 64: 60: 54: 49: 45: 41: 37: 33: 19: 2796: 2787: 2760: 2723: 2697: 2671: 2640: 2617: 2605: 2593: 2581: 2569: 2557: 2518: 2501: 2473: 2462: 2458: 2453: 2449: 2445: 2440: 2436: 2431: 2426: 2419: 2415: 2410: 2406: 2401: 2396: 2389: 2385: 2380: 2374: 2370: 2367: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2332:is given by 2327: 2320: 2316: 2312: 2307:is given by 2302: 2295: 2291: 2285:is given by 2277: 2271: 2257: 2254: 2244: 2240: 2236: 2230: 2226: 2222: 2216: 2212: 2206: 2200: 2186: 2182: 2178: 2172: 2168: 2162: 2156: 2149: 2137: 2122: 2111: 2107: 2104: 2096: 2089: 2079: 2069: 2065: 2059: 2053: 2045: 2043:category of 2040: 2034: 2033:Category of 2017: 2010: 2003: 1995: 1988: 1982: 1971: 1965: 1961: 1955: 1951: 1945: 1939: 1933: 1929: 1923: 1919: 1913: 1907: 1901: 1895: 1889: 1883: 1877: 1871: 1865: 1862: 1856: 1849: 1838: 1832: 1826: 1816: 1810: 1806: 1799: 1794: 1786: 1783: 1763: 1756: 1752: 1748: 1744: 1738: 1731: 1727: 1721: 1717: 1713: 1709: 1703: 1699: 1693: 1689: 1680: 1676: 1664: 1654: 1647: 1643: 1639: 1632: 1626: 1620: 1614: 1607: 1603: 1594: 1588: 1578: 1571: 1567: 1558: 1548: 1541: 1537: 1530: 1526: 1517: 1511: 1501: 1495: 1489: 1483: 1477: 1473: 1467: 1464: 1458: 1452: 1448: 1444: 1437: 1433: 1427: 1421: 1417: 1413: 1409:endomorphism 1403: 1399: 1394: 1386: 1382: 1379: 1373: 1359: 1353: 1349: 1345: 1339: 1335: 1329: 1323: 1317: 1313: 1309: 1298: 1293: 1288: 1286:-module and 1282: 1276: 1266: 1260: 1257: 1245: 1241: 1236: 1225: 1220: 1215: 1213:. The ring 1209: 1203: 1197: 1191: 1167: 1162: 1156: 1144: 1137: 1133: 1127: 1123: 1119: 1115: 1109: 1105: 1099: 1093: 1071:abelian ring 1070: 1056:Rickart ring 1050: 1036: 1030: 1023: 1019: 979:Boolean ring 974: 940: 936: 930: 924: 917: 913:zero divisor 907: 904: 896: 892: 884: 880: 875: 874:is called a 870: 864: 855: 851: 847: 843: 837: 831: 824: 822:lift modulo 821: 816: 812: 806: 802: 793: 788: 776: 772: 767: 751: 745: 740: 732: 722: 716: 711: 703: 697: 691: 685: 681: 677: 671: 654: 648: 638: 632: 626: 621: 606: 598: 588: 582: 576: 570: 566: 561: 560:is called a 556: 550: 541: 535: 533:; moreover, 529: 525: 515: 509: 502: 498: 493: 488: 482: 475: 459: 448: 444: 435: 431: 425: 422: 415: 410: 405: 391: 384: 380: 374: 371: 360: 353: 349: 342: 335: 331: 324: 320: 316: 312: 280: 226: 222: 218: 211: 201: 179: 173: 155: 148: 143: 138: 115: 101: 92: 88: 84: 80: 76: 62: 58: 52: 43: 39: 29: 2840:Ring theory 2757:Lang, Serge 2564:, p. 2 1830:. That is, 1221:corner ring 1048:subsets of 1016:annihilator 983:commutative 954:Local rings 820:is said to 646:as a right 492:are called 462:hyperboloid 460:There is a 122:homological 107:matrix ring 72:Inductively 36:mathematics 32:ring theory 2779:0848.13001 2661:idempotent 2632:References 2576:, p. 69–72 2481:and right 2283:complement 2085:nil ideals 2027:correspond 1846:such that 1822:involution 1685:Noetherian 1507:direct sum 1431:such that 1333:such that 1131:with each 1076:A ring is 1003:A ring is 994:semisimple 992:A ring is 841:such that 749:for which 728:local ring 720:such that 667:submodules 660:direct sum 636:such that 624:of a ring 592:is in the 494:orthogonal 441:polynomial 388:such that 214:mod 6 161:squarefree 68:idempotent 56:such that 44:idempotent 42:or simply 2549:Citations 2507:nilpotent 1046:singleton 1042:Baer ring 915:(because 658:is not a 439:, or any 230:. Since 163:. By the 2834:Category 2759:(1993), 2622:Lam 2001 2612:, p. 336 2610:Lam 2001 2600:, p. 302 2588:, p. 326 2586:Lam 2001 2513:in 1870. 2328:and the 2049:-modules 2037:-modules 1959:, where 1927:so that 1820:-module 1712:βŠ• ... βŠ• 1163:Lift/rad 1158:SBI ring 1118:βŠ• ... βŠ• 689:, where 574:for all 177:, where 153:, where 132:Examples 91:= ... = 2823:1896125 2761:Algebra 2750:1838439 2716:2106764 2690:1150975 2263:lattice 2248:. The 1809:= 1 βˆ’ 2 1601:, ..., 1586:, then 1565:, ..., 1524:, ..., 1348:= (1 βˆ’ 1307:, then 1303:is its 1272:modules 1201:, then 1091:A ring 1067:central 664:nonzero 662:of two 346:and in 118:modules 98:integer 2821:  2811:  2777:  2767:  2748:  2738:  2714:  2704:  2688:  2678:  2665:FOLDOC 2651:  2294:= 1 βˆ’ 2281:, the 2116:, the 2077:as an 2073:has a 2002:2(1 + 1994:2(1 βˆ’ 1976:is an 1836:is an 1814:is an 1280:is an 1274:. If 939:= 1 βˆ’ 895:; see 759:. By 594:centre 528:= 1 βˆ’ 519:(with 468:ring. 397:, the 328:. In 293:, and 2493:Notes 2344:= Β¬(Β¬ 2250:atoms 1986:: if 1937:, or 1646:(1 βˆ’ 1638:(1 βˆ’ 1505:as a 1443:(1 βˆ’ 1291:= End 1148:is a 1022:.Ann( 998:ideal 911:is a 780:is a 755:is a 726:is a 521:unity 507:. If 359:4 + 6 341:3 + 6 189:field 185:prime 46:of a 38:, an 2809:ISBN 2765:ISBN 2736:ISBN 2702:ISBN 2676:ISBN 2649:ISBN 2423:and 2352:) = 2330:join 2305:meet 2303:the 2275:and 2261:, a 2234:and 2204:and 2160:and 2110:= J( 2016:1 βˆ’ 2014:and 2000:and 1764:For 1636:and 1441:and 1402:) = 1367:and 1343:and 1244:) β‰… 1084:and 948:and 928:nor 775:) = 695:and 613:and 539:and 486:and 301:and 238:and 195:and 48:ring 2801:doi 2775:Zbl 2728:doi 2663:at 2477:is 2452:= ( 2348:∧ Β¬ 2120:of 2093:is 1980:of 1962:rff 1930:ffr 1869:of 1824:of 1792:End 1784:If 1768:or 1633:aRa 1618:in 1576:in 1474:aRa 1465:If 1392:End 1327:in 1246:aRa 1234:End 1223:of 1216:aRa 1204:aRa 1189:If 1161:or 1034:of 975:all 920:= 0 881:RaR 878:if 868:of 835:in 777:aRa 765:End 723:aRa 642:is 596:of 580:in 564:if 554:in 505:= 0 496:if 408:/ ( 395:β‰  0 352:/ 6 334:/ 6 323:/ 6 319:βŠ• 4 315:/ 6 225:/ 6 183:is 159:is 30:In 2836:: 2819:MR 2817:, 2807:, 2773:, 2746:MR 2744:, 2734:, 2712:MR 2710:, 2686:MR 2684:, 2647:, 2489:. 2456:)( 2454:eR 2443:∩ 2441:eR 2439:= 2429:∧ 2413:+ 2411:eR 2409:= 2399:∨ 2383:βŠ† 2381:eR 2373:≀ 2362:ef 2360:βˆ’ 2356:+ 2340:∨ 2321:ef 2319:= 2315:∧ 2243:+ 2239:≀ 2229:+ 2225:≀ 2215:+ 2210:, 2185:= 2183:ba 2181:= 2179:ab 2171:≀ 2142:. 2136:J( 2102:. 1969:. 1964:= 1956:rf 1954:↦ 1932:= 1924:fr 1922:↦ 1905:, 1860:. 1753:Rc 1702:βŠ• 1692:= 1604:Ra 1595:Ra 1478:Ra 1476:= 1451:= 1436:= 1434:eR 1420:= 1416:βŠ• 1385:= 1377:. 1340:eM 1338:= 1316:= 1312:βŠ• 1242:aR 1108:βŠ• 964:. 918:ab 891:A 883:= 854:+ 850:= 846:+ 815:/ 805:+ 787:A 773:aR 763:, 752:aR 739:A 733:aR 710:A 684:+ 680:= 655:aR 639:aR 620:A 605:A 571:xa 569:= 567:ax 503:ba 501:= 499:ab 452:. 447:∈ 434:∈ 414:βˆ’ 383:∈ 364:. 289:, 285:, 221:= 216:, 113:. 87:= 83:= 79:= 61:= 2803:: 2730:: 2541:. 2535:2 2528:2 2524:2 2474:R 2465:) 2463:R 2459:f 2450:R 2446:f 2437:R 2435:) 2432:f 2427:e 2425:( 2420:R 2416:f 2407:R 2405:) 2402:f 2397:e 2395:( 2390:R 2386:f 2375:f 2371:e 2358:f 2354:e 2350:f 2346:e 2342:f 2338:e 2324:. 2317:f 2313:e 2299:, 2296:e 2292:e 2290:Β¬ 2278:f 2272:e 2258:R 2245:b 2241:a 2237:b 2231:b 2227:a 2223:a 2217:b 2213:a 2207:b 2201:a 2196:1 2192:0 2187:a 2173:b 2169:a 2163:b 2157:a 2140:) 2138:R 2123:R 2114:) 2112:R 2108:I 2097:I 2090:R 2080:R 2070:I 2068:/ 2066:R 2060:R 2054:I 2046:R 2035:R 2023:2 2018:a 2011:a 2006:) 2004:b 1998:) 1996:b 1989:b 1983:R 1974:2 1966:r 1952:r 1946:R 1940:f 1934:r 1920:r 1914:R 1908:f 1902:R 1896:r 1890:R 1884:R 1878:f 1872:R 1866:a 1857:M 1850:f 1842:- 1839:R 1833:f 1827:M 1817:R 1811:a 1807:f 1802:) 1800:M 1798:( 1795:R 1787:a 1757:i 1749:i 1745:c 1739:R 1732:i 1728:c 1722:R 1718:n 1714:c 1710:R 1707:2 1704:c 1700:R 1697:1 1694:c 1690:R 1677:R 1671:1 1667:1 1660:1 1655:R 1650:) 1648:a 1644:R 1642:) 1640:a 1627:R 1621:R 1615:a 1608:n 1598:1 1589:R 1584:1 1579:R 1572:n 1568:a 1562:1 1559:a 1554:1 1549:R 1542:i 1538:R 1531:n 1527:R 1521:1 1518:R 1512:R 1502:R 1496:R 1490:R 1484:a 1468:a 1459:R 1453:B 1449:R 1447:) 1445:e 1438:A 1428:e 1422:R 1418:B 1414:A 1404:R 1400:R 1398:( 1395:R 1387:R 1383:M 1374:E 1369:1 1365:0 1360:M 1354:M 1352:) 1350:e 1346:B 1336:A 1330:E 1324:e 1318:M 1314:B 1310:A 1301:) 1299:M 1297:( 1294:R 1289:E 1283:R 1277:M 1270:- 1267:R 1261:R 1249:. 1240:( 1237:R 1226:R 1210:a 1198:R 1192:a 1175:. 1168:R 1152:. 1145:R 1138:i 1134:e 1128:R 1124:n 1120:e 1116:R 1113:2 1110:e 1106:R 1103:1 1100:e 1094:R 1086:1 1082:0 1062:. 1051:R 1037:R 1031:S 1026:) 1024:S 1020:r 989:. 962:0 941:a 937:b 931:b 925:a 908:a 901:. 888:. 885:R 871:R 865:a 859:. 856:I 852:a 848:I 844:b 838:R 832:b 825:I 817:I 813:R 807:I 803:a 794:a 771:( 768:R 746:a 717:a 707:. 704:R 698:f 692:e 686:f 682:e 678:a 672:a 649:R 633:a 627:R 615:1 611:0 602:. 599:R 589:a 583:R 577:x 557:R 551:a 542:b 536:a 530:a 526:b 516:R 510:a 489:b 483:a 449:k 445:f 436:Z 432:x 426:f 418:) 416:f 411:f 406:R 392:f 385:R 381:f 375:R 361:Z 354:Z 350:Z 348:4 343:Z 336:Z 332:Z 330:3 325:Z 321:Z 317:Z 313:Z 311:3 303:5 299:2 295:4 291:3 287:1 283:0 244:2 240:3 236:2 232:6 227:Z 223:Z 219:R 207:2 202:m 197:1 193:0 180:p 174:p 156:n 149:n 139:Z 102:n 93:a 89:a 85:a 81:a 77:a 63:a 59:a 53:a 20:)

Index

Centrally primitive
ring theory
mathematics
ring
idempotent
Inductively
integer
matrix ring
idempotent matrix
modules
homological
Boolean algebra
ring of integers modulo n
squarefree
Chinese remainder theorem
product of rings
prime
field
quotient ring
polynomial
hyperboloid
split-quaternion
unity
centre
indecomposable
direct sum
nonzero
submodules
local ring
simple module

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑