Knowledge (XXG)

Stochastic control

Source đź“ť

83:: that the optimal control solution in this case is the same as would be obtained in the absence of the additive disturbances. This property is applicable to all centralized systems with linear equations of evolution, quadratic cost function, and noise entering the model only additively; the quadratic assumption allows for the optimal control laws, which follow the certainty-equivalence property, to be linear functions of the observations of the controllers. 969:
In the literature, there are two types of MPCs for stochastic systems; Robust model predictive control and Stochastic Model Predictive Control (SMPC). Robust model predictive control is a more conservative method which considers the worst scenario in the optimization procedure. However, this method,
110:
In the discrete-time case with uncertainty about the parameter values in the transition matrix (giving the effect of current values of the state variables on their own evolution) and/or the control response matrix of the state equation, but still with a linear state equation and quadratic objective
924:
matrices. But if they are so correlated, then the optimal control solution for each period contains an additional additive constant vector. If an additive constant vector appears in the state equation, then again the optimal control solution for each period contains an additional additive constant
986:
chosen at any time, the determinants of the change in wealth are usually the stochastic returns to assets and the interest rate on the risk-free asset. The field of stochastic control has developed greatly since the 1970s, particularly in its applications to finance. Robert Merton used stochastic
102:
In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period. The objective may be to optimize the sum of expected values of a nonlinear (possibly quadratic) objective function over all the time periods from the present to the
111:
function, a Riccati equation can still be obtained for iterating backward to each period's solution even though certainty equivalence does not apply. The discrete-time case of a non-quadratic loss function but only additive disturbances can also be handled, albeit with more complications.
103:
final period of concern, or to optimize the value of the objective function as of the final period only. At each time period new observations are made, and the control variables are to be adjusted optimally. Finding the optimal solution for the present time may involve iterating a
58:
affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either
970:
similar to other robust controls, deteriorates the overall controller's performance and also is applicable only for systems with bounded uncertainties. The alternative method, SMPC, considers soft constraints which limit the risk of violation by a probabilistic inequality.
952:
If the model is in continuous time, the controller knows the state of the system at each instant of time. The objective is to maximize either an integral of, for example, a concave function of a state variable over a horizon from time zero (the present) to a terminal time
900: 627: 79:. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is the 1038:), dynamic programming is used. There is no certainty equivalence as in the older literature, because the coefficients of the control variables—that is, the returns received by the chosen shares of assets—are stochastic. 243: 354: 675: 982:
context, the state variable in the stochastic differential equation is usually wealth or net worth, and the controls are the shares placed at each time in the various assets. Given the
90:
of the model, or decentralization of control—causes the certainty equivalence property not to hold. For example, its failure to hold for decentralized control was demonstrated in
916:
The optimal control solution is unaffected if zero-mean, i.i.d. additive shocks also appear in the state equation, so long as they are uncorrelated with the parameters in the
667: 913:
matrices is the expected value and variance of each element of each matrix and the covariances among elements of the same matrix and among elements across matrices.
469: 50:
that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a
1047: 905:
which is known as the discrete-time dynamic Riccati equation of this problem. The only information needed regarding the unknown parameters in the
1138:(1976). "Optimal Stabilization Policies for Stochastic Linear Systems: The Case of Correlated Multiplicative and Additive disturbances". 1413: 1290: 1116: 1034:
is the main tool of analysis. In the case where the maximization is an integral of a concave function of utility over an horizon (0,
104: 76: 961:. As time evolves, new observations are continuously made and the control variables are continuously adjusted in optimal fashion. 91: 1020: 1442: 992: 125: 1432: 895:{\displaystyle X_{t-1}=Q+\mathrm {E} \left-\mathrm {E} \left\left^{-1}\mathrm {E} \left(B^{\mathsf {T}}X_{t}A\right),} 277: 1140: 1204: 55: 996: 1437: 1062: 87: 31: 86:
Any deviation from the above assumptions—a nonlinear state equation, a non-quadratic objective function,
1067: 119:
A typical specification of the discrete-time stochastic linear quadratic control problem is to minimize
1175:
Mitchell, Douglas W. (1990). "Tractable Risk Sensitive Control Based on Approximate Expected Utility".
1246: 1135: 51: 1085: 1008: 1030:, is subject to stochastic processes on the components of wealth. In this case, in continuous time 1016: 1236: 1213: 1157: 1052: 17: 1409: 1359: 1286: 1112: 1031: 988: 389: 639: 1392: 1349: 1184: 1149: 1012: 983: 460: 264: 1231:
Hashemian; Armaou (2017). "Stochastic MPC Design for a Two-Component Granulation Process".
622:{\displaystyle u_{t}^{*}=-\left^{-1}\mathrm {E} \left(B^{\mathsf {T}}X_{t}A\right)y_{t-1},} 1004: 64: 42: 1383:(1991). "A Simplified Treatment of the Theory of Optimal Regulation of Brownian Motion". 457:
distributed through time, so the expected value operations need not be time-conditional.
1250: 1057: 253: 47: 445:) are known symmetric positive definite cost matrices. We assume that each element of 1426: 1396: 1380: 1188: 60: 1202:
Turnovsky, Stephen (1974). "The stability properties of optimal economic policies".
1104: 1280: 1354: 1337: 1026:
The maximization, say of the expected logarithm of net worth at a terminal date
1363: 944:
is characterized by removing the time subscripts from its dynamic equation.
1217: 1161: 1000: 979: 75:
An extremely well-studied formulation in stochastic control is that of
936:
goes to infinity, can be found by iterating the dynamic equation for
1153: 1241: 932:(if it exists), relevant for the infinite-horizon problem in which 1003:
literature. Influential mathematical textbook treatments were by
463:
can be used to obtain the optimal control solution at each time,
1406:
Stochastic Controls : Hamiltonian Systems and HJB Equations
1338:"Blockchain Token Economics: A Mean-Field-Type Game Perspective" 957:, or a concave function of a state variable at some future date 454: 107:
backwards in time from the last period to the present period.
632:
with the symmetric positive definite cost-to-go matrix
1323:
Stochastic Optimal Control and the US Financial Crisis
678: 642: 472: 280: 128: 238:{\displaystyle \mathrm {E} _{1}\sum _{t=1}^{S}\left} 1308:
Controlled Markov Processes and Viscosity Solutions
271:is the time horizon, subject to the state equation 894: 661: 621: 348: 237: 1109:Analysis and Control of Dynamic Economic Systems 349:{\displaystyle y_{t}=A_{t}y_{t-1}+B_{t}u_{t},} 54:-driven fashion, that random noise with known 8: 1282:Deterministic and Stochastic Optimal Control 1130: 1128: 367:Ă— 1 vector of observable state variables, 1353: 1240: 1048:Backward stochastic differential equation 875: 864: 863: 849: 840: 817: 806: 805: 793: 773: 762: 761: 747: 730: 719: 718: 704: 683: 677: 647: 641: 604: 586: 575: 574: 560: 551: 526: 515: 514: 500: 482: 477: 471: 337: 327: 308: 298: 285: 279: 224: 210: 209: 204: 191: 177: 176: 171: 156: 145: 135: 130: 127: 1385:Journal of Economic Dynamics and Control 1336:Barreiro-Gomez, J.; Tembine, H. (2019). 1078: 1099: 1097: 1095: 1093: 865: 807: 763: 720: 576: 516: 211: 178: 88:noise in the multiplicative parameters 1404:Yong, Jiongmin; Zhou, Xun Yu (1999). 928:The steady-state characterization of 7: 940:repeatedly until it converges; then 1015:. These techniques were applied by 978:In a continuous time approach in a 965:Stochastic model predictive control 421:matrix of control multipliers, and 850: 794: 748: 705: 561: 501: 131: 25: 375:Ă— 1 vector of control variables, 77:linear quadratic Gaussian control 1279:Fleming, W.; Rishel, R. (1975). 636:evolving backwards in time from 1306:Fleming, W.; Soner, M. (2006). 18:Certainty equivalence principle 832: 798: 413:realization of the stochastic 81:certainty equivalence property 1: 455:independently and identically 92:Witsenhausen's counterexample 27:Probabilistic optimal control 1397:10.1016/0165-1889(91)90037-2 1189:10.1016/0264-9993(90)90018-Y 263:, superscript T indicates a 1355:10.1109/ACCESS.2019.2917517 1086:Definition from Answers.com 1021:financial crisis of 2007–08 461:Induction backwards in time 1459: 1141:Review of Economic Studies 999:changed the nature of the 991:of safe and risky assets. 29: 1205:American Economic Review 256:operator conditional on 56:probability distribution 1266:Continuous Time Finance 1264:Merton, Robert (1990). 662:{\displaystyle X_{S}=Q} 398:state transition matrix 105:matrix Riccati equation 1408:. New York: Springer. 1063:Multiplier uncertainty 896: 663: 623: 350: 239: 161: 32:Stochastic programming 1321:Stein, J. L. (2012). 1068:Stochastic scheduling 1011:, and by Fleming and 897: 664: 624: 351: 240: 141: 71:Certainty equivalence 1443:Stochastic processes 676: 640: 470: 278: 126: 52:Bayesian probability 1325:. Springer-Science. 1251:2017arXiv170404710H 1111:. New York: Wiley. 487: 388:realization of the 216: 183: 1433:Stochastic control 1177:Economic Modelling 1136:Turnovsky, Stephen 1053:Stochastic process 989:optimal portfolios 892: 659: 619: 473: 346: 235: 200: 167: 46:is a sub field of 37:Stochastic control 987:control to study 16:(Redirected from 1450: 1419: 1400: 1368: 1367: 1357: 1333: 1327: 1326: 1318: 1312: 1311: 1303: 1297: 1296: 1276: 1270: 1269: 1261: 1255: 1254: 1244: 1233:IEEE Proceedings 1228: 1222: 1221: 1199: 1193: 1192: 1172: 1166: 1165: 1132: 1123: 1122: 1105:Chow, Gregory P. 1101: 1088: 1083: 984:asset allocation 901: 899: 898: 893: 888: 884: 880: 879: 870: 869: 868: 853: 848: 847: 839: 835: 822: 821: 812: 811: 810: 797: 786: 782: 778: 777: 768: 767: 766: 751: 743: 739: 735: 734: 725: 724: 723: 708: 694: 693: 668: 666: 665: 660: 652: 651: 628: 626: 625: 620: 615: 614: 599: 595: 591: 590: 581: 580: 579: 564: 559: 558: 550: 546: 545: 541: 531: 530: 521: 520: 519: 504: 486: 481: 355: 353: 352: 347: 342: 341: 332: 331: 319: 318: 303: 302: 290: 289: 265:matrix transpose 244: 242: 241: 236: 234: 230: 229: 228: 215: 214: 208: 196: 195: 182: 181: 175: 160: 155: 140: 139: 134: 21: 1458: 1457: 1453: 1452: 1451: 1449: 1448: 1447: 1423: 1422: 1416: 1403: 1379: 1376: 1374:Further reading 1371: 1348:: 64603–64613. 1335: 1334: 1330: 1320: 1319: 1315: 1305: 1304: 1300: 1293: 1278: 1277: 1273: 1263: 1262: 1258: 1230: 1229: 1225: 1201: 1200: 1196: 1174: 1173: 1169: 1154:10.2307/2296614 1134: 1133: 1126: 1119: 1103: 1102: 1091: 1084: 1080: 1076: 1044: 976: 967: 950: 948:Continuous time 871: 859: 858: 854: 813: 801: 792: 788: 787: 769: 757: 756: 752: 726: 714: 713: 709: 679: 674: 673: 643: 638: 637: 600: 582: 570: 569: 565: 522: 510: 509: 505: 499: 495: 494: 468: 467: 408: 383: 333: 323: 304: 294: 281: 276: 275: 262: 251: 220: 187: 166: 162: 129: 124: 123: 117: 100: 73: 65:continuous time 43:optimal control 34: 28: 23: 22: 15: 12: 11: 5: 1456: 1454: 1446: 1445: 1440: 1438:Control theory 1435: 1425: 1424: 1421: 1420: 1414: 1401: 1391:(4): 657–673. 1381:Dixit, Avinash 1375: 1372: 1370: 1369: 1328: 1313: 1298: 1291: 1271: 1256: 1223: 1212:(1): 136–148. 1194: 1183:(2): 161–164. 1167: 1124: 1117: 1089: 1077: 1075: 1072: 1071: 1070: 1065: 1060: 1058:Control theory 1055: 1050: 1043: 1040: 1032:ItĂ´'s equation 975: 972: 966: 963: 949: 946: 903: 902: 891: 887: 883: 878: 874: 867: 862: 857: 852: 846: 843: 838: 834: 831: 828: 825: 820: 816: 809: 804: 800: 796: 791: 785: 781: 776: 772: 765: 760: 755: 750: 746: 742: 738: 733: 729: 722: 717: 712: 707: 703: 700: 697: 692: 689: 686: 682: 658: 655: 650: 646: 630: 629: 618: 613: 610: 607: 603: 598: 594: 589: 585: 578: 573: 568: 563: 557: 554: 549: 544: 540: 537: 534: 529: 525: 518: 513: 508: 503: 498: 493: 490: 485: 480: 476: 404: 379: 357: 356: 345: 340: 336: 330: 326: 322: 317: 314: 311: 307: 301: 297: 293: 288: 284: 260: 254:expected value 249: 246: 245: 233: 227: 223: 219: 213: 207: 203: 199: 194: 190: 186: 180: 174: 170: 165: 159: 154: 151: 148: 144: 138: 133: 116: 113: 99: 96: 72: 69: 48:control theory 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1455: 1444: 1441: 1439: 1436: 1434: 1431: 1430: 1428: 1417: 1415:0-387-98723-1 1411: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1377: 1373: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1332: 1329: 1324: 1317: 1314: 1309: 1302: 1299: 1294: 1292:0-387-90155-8 1288: 1284: 1283: 1275: 1272: 1267: 1260: 1257: 1252: 1248: 1243: 1238: 1235:: 4386–4391. 1234: 1227: 1224: 1219: 1215: 1211: 1207: 1206: 1198: 1195: 1190: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1155: 1151: 1148:(1): 191–94. 1147: 1143: 1142: 1137: 1131: 1129: 1125: 1120: 1118:0-471-15616-7 1114: 1110: 1106: 1100: 1098: 1096: 1094: 1090: 1087: 1082: 1079: 1073: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1045: 1041: 1039: 1037: 1033: 1029: 1024: 1022: 1018: 1014: 1010: 1006: 1002: 998: 997:Black–Scholes 994: 990: 985: 981: 973: 971: 964: 962: 960: 956: 947: 945: 943: 939: 935: 931: 926: 923: 919: 914: 912: 908: 889: 885: 881: 876: 872: 860: 855: 844: 841: 836: 829: 826: 823: 818: 814: 802: 789: 783: 779: 774: 770: 758: 753: 744: 740: 736: 731: 727: 715: 710: 701: 698: 695: 690: 687: 684: 680: 672: 671: 670: 669:according to 656: 653: 648: 644: 635: 616: 611: 608: 605: 601: 596: 592: 587: 583: 571: 566: 555: 552: 547: 542: 538: 535: 532: 527: 523: 511: 506: 496: 491: 488: 483: 478: 474: 466: 465: 464: 462: 458: 456: 452: 448: 444: 440: 436: 432: 428: 424: 420: 416: 412: 407: 403: 399: 397: 393: 387: 382: 378: 374: 370: 366: 362: 343: 338: 334: 328: 324: 320: 315: 312: 309: 305: 299: 295: 291: 286: 282: 274: 273: 272: 270: 266: 259: 255: 231: 225: 221: 217: 205: 201: 197: 192: 188: 184: 172: 168: 163: 157: 152: 149: 146: 142: 136: 122: 121: 120: 114: 112: 108: 106: 98:Discrete time 97: 95: 93: 89: 84: 82: 78: 70: 68: 66: 62: 61:discrete time 57: 53: 49: 45: 44: 38: 33: 19: 1405: 1388: 1384: 1345: 1341: 1331: 1322: 1316: 1307: 1301: 1281: 1274: 1268:. Blackwell. 1265: 1259: 1232: 1226: 1209: 1203: 1197: 1180: 1176: 1170: 1145: 1139: 1108: 1081: 1035: 1027: 1025: 995:and that of 977: 968: 958: 954: 951: 941: 937: 933: 929: 927: 921: 917: 915: 910: 906: 904: 633: 631: 459: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 409:is the time 405: 401: 395: 391: 385: 384:is the time 380: 376: 372: 368: 364: 360: 358: 268: 257: 247: 118: 109: 101: 85: 80: 74: 40: 36: 35: 1342:IEEE Access 1310:. Springer. 453:is jointly 390:stochastic 41:stochastic 1427:Categories 1242:1704.04710 1074:References 974:In finance 30:See also: 1364:2169-3536 842:− 745:− 688:− 609:− 553:− 492:− 484:∗ 313:− 143:∑ 1107:(1976). 1042:See also 993:His work 925:vector. 1247:Bibcode 1218:1814888 1162:2296614 1019:to the 1005:Fleming 1001:finance 980:finance 252:is the 248:where E 115:Example 1412:  1362:  1289:  1216:  1160:  1115:  1009:Rishel 433:) and 363:is an 359:where 267:, and 1237:arXiv 1214:JSTOR 1158:JSTOR 1017:Stein 1013:Soner 371:is a 1410:ISBN 1360:ISSN 1287:ISBN 1113:ISBN 1007:and 920:and 909:and 449:and 1393:doi 1350:doi 1185:doi 1150:doi 63:or 39:or 1429:: 1389:15 1387:. 1358:. 1344:. 1340:. 1285:. 1245:. 1210:64 1208:. 1179:. 1156:. 1146:43 1144:. 1127:^ 1092:^ 1023:. 441:Ă— 429:Ă— 417:Ă— 400:, 394:Ă— 94:. 67:. 1418:. 1399:. 1395:: 1366:. 1352:: 1346:7 1295:. 1253:. 1249:: 1239:: 1220:. 1191:. 1187:: 1181:7 1164:. 1152:: 1121:. 1036:T 1028:T 959:T 955:T 942:X 938:X 934:S 930:X 922:B 918:A 911:B 907:A 890:, 886:) 882:A 877:t 873:X 866:T 861:B 856:( 851:E 845:1 837:] 833:) 830:R 827:+ 824:B 819:t 815:X 808:T 803:B 799:( 795:E 790:[ 784:] 780:B 775:t 771:X 764:T 759:A 754:[ 749:E 741:] 737:A 732:t 728:X 721:T 716:A 711:[ 706:E 702:+ 699:Q 696:= 691:1 685:t 681:X 657:Q 654:= 649:S 645:X 634:X 617:, 612:1 606:t 602:y 597:) 593:A 588:t 584:X 577:T 572:B 567:( 562:E 556:1 548:] 543:) 539:R 536:+ 533:B 528:t 524:X 517:T 512:B 507:( 502:E 497:[ 489:= 479:t 475:u 451:B 447:A 443:k 439:k 437:( 435:R 431:n 427:n 425:( 423:Q 419:k 415:n 411:t 406:t 402:B 396:n 392:n 386:t 381:t 377:A 373:k 369:u 365:n 361:y 344:, 339:t 335:u 329:t 325:B 321:+ 316:1 310:t 306:y 300:t 296:A 292:= 287:t 283:y 269:S 261:0 258:y 250:1 232:] 226:t 222:u 218:R 212:T 206:t 202:u 198:+ 193:t 189:y 185:Q 179:T 173:t 169:y 164:[ 158:S 153:1 150:= 147:t 137:1 132:E 20:)

Index

Certainty equivalence principle
Stochastic programming
optimal control
control theory
Bayesian probability
probability distribution
discrete time
continuous time
linear quadratic Gaussian control
noise in the multiplicative parameters
Witsenhausen's counterexample
matrix Riccati equation
expected value
matrix transpose
stochastic n Ă— n state transition matrix
independently and identically
Induction backwards in time
finance
asset allocation
optimal portfolios
His work
Black–Scholes
finance
Fleming
Rishel
Soner
Stein
financial crisis of 2007–08
ItĂ´'s equation
Backward stochastic differential equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑