Knowledge (XXG)

Chaitin's constant

Source 📝

1844: 1184:'s constant Ω are random or incompressible in the sense that we cannot compute them by a halting algorithm with fewer than n-O(1) bits. However, consider the short but never halting algorithm which systematically lists and runs all possible programs; whenever one of them halts its probability gets added to the output (initialized by zero). After finite time the first n bits of the output will never change any more (it does not matter that this time itself is not computable by a halting program). So there is a short non-halting algorithm whose output converges (after finite time) onto the first n bits of Ω. In other words, the 354:(instantaneous code) on the set of finite binary strings. A simple way to enforce prefix-free-ness is to use machines whose means of input is a binary stream from which bits can be read one at a time. There is no end-of-stream marker; the end of input is determined by when the universal machine decides to stop reading more bits, and the remaining bits are not considered part of the accepted string. Here, the difference between the two notions of program mentioned in the last paragraph becomes clear; one is easily recognized by some grammar, while the other requires arbitrary computation to recognize. 34: 594:, are equivalent to solving the halting problem for special programs (which would basically search for counter-examples and halt if one is found), knowing enough bits of Chaitin's constant would also imply knowing the answer to these problems. But as the halting problem is not generally solvable, and therefore calculating any but the first few bits of Chaitin's constant is not possible in a very concise language, this just reduces hard problems to impossible ones, much like trying to build an 1048:, can be used to characterize the halting probabilities among the left-c.e. reals. One can show that a real number in is a Chaitin constant (i.e. the halting probability of some prefix-free universal computable function) if and only if it is left-c.e. and algorithmically random. Ω is among the few 125:
Although there are infinitely many halting probabilities, one for each (universal, see below) method of encoding programs, it is common to use the letter Ω to refer to them as if there were only one. Because Ω depends on the program encoding used, it is sometimes called
1200:(2000) constructed a limit-computable "Super Ω" which in a sense is much more random than the original limit-computable Ω, as one cannot significantly compress the Super Ω by any enumerating non-halting algorithm. 473: 877: 723: 826: 1126:. Calude, Hertling, Khoussainov, and Wang showed that a recursively enumerable real number is an algorithmically random sequence if and only if it is a Chaitin's Ω number. 1380: 1030: 505: 165:
Such a function, intuitively, represents a programming language with the property that no valid program can be obtained as a proper extension of another valid program.
1253: 1106:
until enough elements of the domain have been found so that the probability they represent is within 2 of Ω. After this point, no additional program of length
1455:(1): 3488–3511 (Theme Issue 'The foundations of computation, physics and mentality: the Turing legacy' compiled and edited by Barry Cooper and Samson Abramsky). 889:
represents the probability that a randomly selected infinite sequence of 0s and 1s begins with a bit string (of some finite length) that is in the domain of
1622: 1218:) is prefixed by a random binary string – can be seen as the non-halting probability of a machine with oracle the third iteration of the 1052:
algorithmically random numbers and is the best-known algorithmically random number, but it is not at all typical of all algorithmically random numbers.
1886: 1419: 1168:
is effectively represented, and thus does not directly reflect the complexity of the axiomatic system. This incompleteness result is similar to
1405: 1268: 1896: 1169: 55: 1135: 571:
fashion, all programs of all lengths are run, until enough have halted to jointly contribute enough probability to match these first
1504: 77: 1843: 1583: 1110:
can be in the domain, because each of these would add 2 to the measure, which is impossible. Thus the set of strings of length
539:
may be denoted simply Ω, although different prefix-free universal computable functions lead to different values of Ω.
1615: 1580:
which appeared in the August 2004 edition of Mathematics Today, on the occasion of the 50th anniversary of Alan Turing's death.
1123: 150: 982:> Ω is not computably enumerable. (Reason: every left-c.e. real with this property is computable, which Ω isn't.) 1891: 568: 95: 402: 315:
can generally be seen both as the concatenation of a program part and a data part, and as a single program for the function
290:
represents an "interpreter" that parses the script as a prefix of its input and then executes it on the remainder of input.
1749: 1539:(2002). "Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit". 621:
The probability measure on Cantor space, sometimes called the fair-coin measure, is defined so that for any binary string
1068:
digits of the number. This is equivalent to the existence of a program that enumerates the digits of the real number.
837: 176:
that takes one argument, a finite binary string, and possibly returns a single binary string as output. The function
48: 42: 1608: 218: 1818: 960: 358: 579:
hasn't halted yet, then it never will, since its contribution to the halting probability would affect the first
59: 1211: 1204: 670: 591: 1214:(UTM) – namely, the probability that it remains universal even when every input of it (as a 775: 1071:
No halting probability is computable. The proof of this fact relies on an algorithm which, given the first
1679: 1033: 912: 610:
is the collection of all infinite sequences of 0s and 1s. A halting probability can be interpreted as the
20: 1704: 1860: 1273: 1049: 915:(also known as Martin-Löf random or 1-random). This means that the shortest program to output the first 138: 1595: 1536: 1197: 524: 1372: 1865: 1855: 1456: 1385: 1041: 1003: 512: 295: 482: 1699: 1689: 1672: 1084: 986: 938:, which means that its digits are equidistributed as if they were generated by tossing a fair coin. 615: 182: 118:
that a randomly constructed program will halt. These numbers are formed from a construction due to
1573: 1411: 1774: 1739: 1717: 1631: 1500: 1474: 1401: 1292: 942: 142: 1225: 618:
on Cantor space. It is from this interpretation that halting probabilities take their name.
1811: 1806: 1784: 1769: 1734: 1652: 1548: 1464: 1393: 1208: 1189: 1141: 1040:
Not every set that is Turing equivalent to the halting problem is a halting probability. A
968: 351: 173: 91: 945:; there is no computable function that enumerates its binary expansion, as discussed below. 1577: 1219: 1181: 1145: 1076: 997: 949: 552: 370: 119: 927:
bits enable us to find out exactly which programs halt among all those of length at most
1460: 1389: 1667: 1657: 611: 595: 362: 187: 1295: 1880: 1722: 1684: 1371:
Calude, Cristian S.; Hertling, Peter H.; Khoussainov, Bakhadyr; Wang, Yongge (1998),
1215: 1165: 993: 935: 366: 263: 134: 1529: 1789: 1759: 1415: 1149: 607: 1172:
in that it shows that no consistent formal theory for arithmetic can be complete.
1122:
A real number is random if the binary sequence representing the real number is an
1256: 528: 115: 111: 1591: 153:, meaning there is not even any algorithm which can reliably guess its digits. 1552: 1185: 278:
can be used to simulate any computable function of one variable. Informally,
146: 1478: 1469: 1444: 1588:, Gregory Chaitin, originally appeared in Scientific American, March 2006. 1570:
Survey article discussing recent advances in the study of Chaitin's Omega.
1188:
first n bits of Ω are highly compressible in the sense that they are
1060:
A real number is called computable if there is an algorithm which, given
1557:
Preprint: Algorithmic Theories of Everything (arXiv: quant-ph/ 0011122)
1397: 1600: 1193: 1114:
in the domain is exactly the set of such strings already enumerated.
161:
The definition of a halting probability relies on the existence of a
1567: 1342: 1340: 190:
that computes it, in the sense that for any finite binary strings
523:. The requirement that the domain be prefix-free, together with 1384:, vol. 1373, Springer Berlin Heidelberg, pp. 596–606, 222:
if the following property holds: for every computable function
1604: 1160:
th can be proven to be 1 or 0 within that system. The constant
27: 1525:
An Introduction to Kolmogorov Complexity and Its Applications
388:
be the domain of a prefix-free universal computable function
590:
Because many outstanding problems in number theory, such as
1828: 923:− O(1). This is because, as in the Goldbach example, those 907:
Each Chaitin constant Ω has the following properties:
656:
be a prefix-free universal computable function. The domain
1373:"Recursively Enumerable Reals and Chaitin Ω numbers" 629:
has measure 2. This implies that for each natural number
1541:
International Journal of Foundations of Computer Science
756:
contains all sequences in cantor space that begin with
1497:
Information and Randomness: An Algorithmic Perspective
645:) = 1 has measure 1/2, and the set of sequences whose 468:{\displaystyle \Omega _{F}=\sum _{p\in P_{F}}2^{-|p|}} 1228: 1140:
For each specific consistent effectively represented
1006: 840: 778: 673: 485: 405: 357:
The domain of any universal computable function is a
1090:
The algorithm proceeds as follows. Given the first
614:
of a certain subset of Cantor space under the usual
583:
bits. Thus, the halting problem would be solved for
1594:and generalizations of algorithmic information, by 1592:
Limit-computable Super Omega more random than Omega
1445:"Universality probability of a prefix-free machine" 1196:with respect to the set of enumerating algorithms. 149:to compute its digits. Each halting probability is 19:"Omega number" redirects here. For other uses, see 1247: 1024: 871: 820: 717: 499: 467: 282:represents a "script" for the computable function 1449:Philosophical Transactions of the Royal Society A 1358: 1346: 1331: 1319: 963:; a real number with such a property is called a 872:{\displaystyle \bigcup _{i\in \mathbb {N} }S_{i}} 563:for which the halting problem is to be solved be 16:Halting probability of a random computer program 1130:Incompleteness theorem for halting probabilities 664:consists of an infinite set of binary strings 1616: 201:if and only if the Turing machine halts with 130:when not referring to any specific encoding. 8: 712: 680: 1623: 1609: 1601: 346:. This can be rephrased as: the domain of 163:prefix-free universal computable function. 114:that, informally speaking, represents the 1468: 1233: 1227: 1102:, the algorithm enumerates the domain of 1016: 1011: 1005: 863: 853: 852: 845: 839: 811: 803: 799: 783: 777: 718:{\displaystyle P=\{p_{1},p_{2},\ldots \}} 700: 687: 672: 484: 458: 450: 446: 434: 423: 410: 404: 78:Learn how and when to remove this message 21:Omega (disambiguation) § Mathematics 1192:by a very short algorithm; they are not 1180:As mentioned above, the first n bits of 919:bits of Ω must be of size at least 551:bits of Ω, one could calculate the 41:This article includes a list of general 1284: 1203:For an alternative "Super Ω", the 527:, ensures that this sum converges to a 226:of a single variable there is a string 821:{\displaystyle \sum _{p\in P}2^{-|p|}} 649:th element is 0 also has measure 1/2. 596:oracle machine for the halting problem 1516:Algorithmic Randomness and Complexity 1443:Barmpalias, G. and Dowe D.L. (2012). 1156:such that no bit of Ω after the 625:the set of sequences that begin with 7: 1514:Downey, R.; Hirschfeldt, D. (2010). 1425:from the original on 19 January 2004 893:. It is for this reason that Ω 831:represents the measure of the set 543:Relationship to the halting problem 1075:digits of Ω, solves Turing's 1008: 765:. These sets are disjoint because 407: 47:it lacks sufficient corresponding 14: 899:is called a halting probability. 555:for all programs of a size up to 535:is clear from context then Ω 205:on its tape when given the input 1842: 1576:article based on one written by 1523:Li, Ming; Vitányi, Paul (1997). 1136:Chaitin's incompleteness theorem 515:which has one summand for every 32: 1574:Omega and why maths has no TOEs 1269:Gödel's incompleteness theorems 1124:algorithmically random sequence 1083:. Since the halting problem is 1025:{\displaystyle \Delta _{2}^{0}} 769:is a prefix-free set. The sum 602:Interpretation as a probability 507:denotes the length of a string 145:, which means that there is no 1887:Algorithmic information theory 1530:Introduction chapter full-text 1240: 1234: 1170:Gödel's incompleteness theorem 812: 804: 500:{\displaystyle \left|p\right|} 459: 451: 133:Each halting probability is a 96:algorithmic information theory 1: 1499:(second ed.). Springer. 1359:Downey & Hirschfeldt 2010 1347:Downey & Hirschfeldt 2010 1332:Downey & Hirschfeldt 2010 1320:Downey & Hirschfeldt 2010 1087:, Ω cannot be computed. 1079:for programs of length up to 330:if there are no two elements 1495:Calude, Cristian S. (2002). 974:The set of rational numbers 307:on which it is defined. For 1897:Real transcendental numbers 311:that are universal, such a 1913: 1568:Aspects of Chaitin's Omega 1152:, there exists a constant 1133: 934:As a consequence, it is a 637:in Cantor space such that 18: 1851: 1840: 1638: 1553:10.1142/S0129054102001291 747:of Cantor space; the set 359:computably enumerable set 342:is a proper extension of 303:is the set of all inputs 1212:Universal Turing Machine 1205:universality probability 365:. The domain is always 338:in its domain such that 141:real number that is not 1248:{\displaystyle O^{(3)}} 1094:digits of Ω and a 633:, the set of sequences 62:more precise citations. 1470:10.1098/rsta.2011.0319 1249: 1118:Algorithmic randomness 1044:equivalence relation, 1034:arithmetical hierarchy 1026: 913:algorithmically random 873: 822: 729:Each of these strings 719: 501: 469: 392:. The constant Ω 128:Chaitin's construction 1892:Theory of computation 1300:mathworld.wolfram.com 1274:Kolmogorov complexity 1250: 1027: 965:left-c.e. real number 961:computably enumerable 874: 823: 720: 592:Goldbach's conjecture 575:bits. If the program 531:between 0 and 1. If 502: 470: 1585:The Limits of Reason 1296:"Chaitin's Constant" 1257:Turing Jump notation 1226: 1064:, returns the first 1004: 838: 776: 738:determines a subset 671: 483: 403: 104:Chaitin omega number 1537:Schmidhuber, Jürgen 1461:2012RSPTA.370.3488B 1390:1998LNCS.1373..596C 1361:, pp. 228–229. 1164:depends on how the 1046:Solovay equivalence 1021: 987:arithmetical number 883:In this way, Ω 616:probability measure 396:is then defined as 274:. This means that 266:of the two strings 108:halting probability 1632:Irrational numbers 1596:Jürgen Schmidhuber 1518:. Springer-Verlag. 1398:10.1007/bfb0028594 1293:Weisstein, Eric W. 1245: 1198:Jürgen Schmidhuber 1022: 1007: 1000:and thus at level 869: 858: 818: 794: 715: 559:. Let the program 547:Knowing the first 525:Kraft's inequality 497: 465: 441: 230:such that for all 1874: 1873: 1775:Supersilver ratio 1740:Supergolden ratio 1700:Twelfth root of 2 1407:978-3-540-64230-5 1334:, Theorem 5.1.11. 994:Turing equivalent 943:computable number 841: 779: 519:in the domain of 419: 367:Turing equivalent 151:Martin-Löf random 88: 87: 80: 1904: 1846: 1834: 1824: 1812:Square root of 7 1807:Square root of 6 1802: 1785:Square root of 5 1780: 1770:Square root of 3 1765: 1755: 1745: 1735:Square root of 2 1728: 1713: 1695: 1663: 1648: 1625: 1618: 1611: 1602: 1556: 1528: 1519: 1510: 1483: 1482: 1472: 1440: 1434: 1433: 1432: 1430: 1424: 1377: 1368: 1362: 1356: 1350: 1344: 1335: 1329: 1323: 1322:, Theorem 6.1.3. 1317: 1311: 1310: 1308: 1306: 1289: 1254: 1252: 1251: 1246: 1244: 1243: 1190:limit-computable 1150:Peano arithmetic 1142:axiomatic system 1031: 1029: 1028: 1023: 1020: 1015: 969:recursion theory 950:rational numbers 878: 876: 875: 870: 868: 867: 857: 856: 827: 825: 824: 819: 817: 816: 815: 807: 793: 724: 722: 721: 716: 705: 704: 692: 691: 506: 504: 503: 498: 496: 474: 472: 471: 466: 464: 463: 462: 454: 440: 439: 438: 415: 414: 352:prefix-free code 174:partial function 100:Chaitin constant 92:computer science 83: 76: 72: 69: 63: 58:this article by 49:inline citations 36: 35: 28: 1912: 1911: 1907: 1906: 1905: 1903: 1902: 1901: 1877: 1876: 1875: 1870: 1847: 1838: 1832: 1822: 1801: 1793: 1778: 1763: 1753: 1743: 1726: 1708: 1693: 1661: 1646: 1634: 1629: 1578:Gregory Chaitin 1564: 1535: 1522: 1513: 1507: 1494: 1491: 1486: 1442: 1441: 1437: 1428: 1426: 1422: 1408: 1375: 1370: 1369: 1365: 1357: 1353: 1345: 1338: 1330: 1326: 1318: 1314: 1304: 1302: 1291: 1290: 1286: 1282: 1265: 1229: 1224: 1223: 1220:halting problem 1182:Gregory Chaitin 1178: 1146:natural numbers 1138: 1132: 1120: 1077:halting problem 1058: 1056:Uncomputability 1002: 1001: 998:halting problem 959:< Ω is 905: 898: 888: 859: 836: 835: 795: 774: 773: 764: 755: 746: 737: 696: 683: 669: 668: 604: 553:halting problem 545: 538: 486: 481: 480: 442: 430: 406: 401: 400: 395: 387: 379: 371:halting problem 262:represents the 159: 120:Gregory Chaitin 84: 73: 67: 64: 54:Please help to 53: 37: 33: 24: 17: 12: 11: 5: 1910: 1908: 1900: 1899: 1894: 1889: 1879: 1878: 1872: 1871: 1869: 1868: 1863: 1861:Transcendental 1858: 1852: 1849: 1848: 1841: 1839: 1837: 1836: 1826: 1815: 1814: 1809: 1804: 1797: 1787: 1782: 1772: 1767: 1757: 1747: 1737: 1731: 1730: 1720: 1718:Cube root of 2 1715: 1702: 1697: 1687: 1682: 1680:Logarithm of 2 1676: 1675: 1670: 1665: 1655: 1650: 1639: 1636: 1635: 1630: 1628: 1627: 1620: 1613: 1605: 1599: 1598: 1589: 1581: 1571: 1563: 1562:External links 1560: 1559: 1558: 1547:(4): 587–612. 1533: 1520: 1511: 1505: 1490: 1487: 1485: 1484: 1435: 1406: 1363: 1351: 1349:, p. 405. 1336: 1324: 1312: 1283: 1281: 1278: 1277: 1276: 1271: 1264: 1261: 1242: 1239: 1236: 1232: 1177: 1174: 1134:Main article: 1131: 1128: 1119: 1116: 1057: 1054: 1038: 1037: 1019: 1014: 1010: 990: 983: 972: 946: 939: 932: 904: 901: 894: 884: 881: 880: 866: 862: 855: 851: 848: 844: 829: 828: 814: 810: 806: 802: 798: 792: 789: 786: 782: 760: 751: 742: 733: 727: 726: 714: 711: 708: 703: 699: 695: 690: 686: 682: 679: 676: 603: 600: 567:bits long. In 544: 541: 536: 495: 492: 489: 477: 476: 461: 457: 453: 449: 445: 437: 433: 429: 426: 422: 418: 413: 409: 393: 385: 378: 375: 363:computable set 188:Turing machine 186:if there is a 158: 155: 139:transcendental 86: 85: 40: 38: 31: 15: 13: 10: 9: 6: 4: 3: 2: 1909: 1898: 1895: 1893: 1890: 1888: 1885: 1884: 1882: 1867: 1866:Trigonometric 1864: 1862: 1859: 1857: 1856:Schizophrenic 1854: 1853: 1850: 1845: 1830: 1827: 1820: 1817: 1816: 1813: 1810: 1808: 1805: 1800: 1796: 1791: 1788: 1786: 1783: 1776: 1773: 1771: 1768: 1761: 1758: 1751: 1750:Erdős–Borwein 1748: 1741: 1738: 1736: 1733: 1732: 1724: 1723:Plastic ratio 1721: 1719: 1716: 1711: 1706: 1703: 1701: 1698: 1691: 1688: 1686: 1683: 1681: 1678: 1677: 1674: 1671: 1669: 1666: 1659: 1656: 1654: 1651: 1644: 1641: 1640: 1637: 1633: 1626: 1621: 1619: 1614: 1612: 1607: 1606: 1603: 1597: 1593: 1590: 1587: 1586: 1582: 1579: 1575: 1572: 1569: 1566: 1565: 1561: 1554: 1550: 1546: 1542: 1538: 1534: 1531: 1526: 1521: 1517: 1512: 1508: 1506:3-540-43466-6 1502: 1498: 1493: 1492: 1488: 1480: 1476: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1439: 1436: 1421: 1417: 1413: 1409: 1403: 1399: 1395: 1391: 1387: 1383: 1382: 1374: 1367: 1364: 1360: 1355: 1352: 1348: 1343: 1341: 1337: 1333: 1328: 1325: 1321: 1316: 1313: 1301: 1297: 1294: 1288: 1285: 1279: 1275: 1272: 1270: 1267: 1266: 1262: 1260: 1258: 1237: 1230: 1221: 1217: 1216:binary string 1213: 1210: 1206: 1201: 1199: 1195: 1191: 1187: 1183: 1175: 1173: 1171: 1167: 1166:formal system 1163: 1159: 1155: 1151: 1147: 1143: 1137: 1129: 1127: 1125: 1117: 1115: 1113: 1109: 1105: 1101: 1097: 1093: 1088: 1086: 1082: 1078: 1074: 1069: 1067: 1063: 1055: 1053: 1051: 1047: 1043: 1035: 1017: 1012: 999: 995: 991: 988: 985:Ω is an 984: 981: 977: 973: 970: 966: 962: 958: 954: 951: 947: 944: 940: 937: 936:normal number 933: 930: 926: 922: 918: 914: 910: 909: 908: 902: 900: 897: 892: 887: 864: 860: 849: 846: 842: 834: 833: 832: 808: 800: 796: 790: 787: 784: 780: 772: 771: 770: 768: 763: 759: 754: 750: 745: 741: 736: 732: 709: 706: 701: 697: 693: 688: 684: 677: 674: 667: 666: 665: 663: 659: 655: 650: 648: 644: 640: 636: 632: 628: 624: 619: 617: 613: 609: 601: 599: 597: 593: 588: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 542: 540: 534: 530: 526: 522: 518: 514: 511:. This is an 510: 493: 490: 487: 455: 447: 443: 435: 431: 427: 424: 420: 416: 411: 399: 398: 397: 391: 384: 376: 374: 372: 368: 364: 360: 355: 353: 349: 345: 341: 337: 333: 329: 325: 322:The function 320: 318: 314: 310: 306: 302: 298: 297: 291: 289: 285: 281: 277: 273: 269: 265: 264:concatenation 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 220: 215: 212:The function 210: 208: 204: 200: 197: 193: 189: 185: 184: 179: 175: 171: 168:Suppose that 166: 164: 156: 154: 152: 148: 144: 140: 136: 131: 129: 123: 121: 117: 113: 109: 105: 101: 97: 93: 82: 79: 71: 68:November 2011 61: 57: 51: 50: 44: 39: 30: 29: 26: 22: 1798: 1794: 1790:Silver ratio 1760:Golden ratio 1709: 1642: 1584: 1544: 1540: 1524: 1515: 1496: 1452: 1448: 1438: 1427:, retrieved 1379: 1366: 1354: 1327: 1315: 1303:. Retrieved 1299: 1287: 1202: 1179: 1161: 1157: 1153: 1139: 1121: 1111: 1107: 1103: 1099: 1095: 1091: 1089: 1080: 1072: 1070: 1065: 1061: 1059: 1045: 1039: 979: 975: 964: 956: 952: 941:It is not a 928: 924: 920: 916: 906: 895: 890: 885: 882: 830: 766: 761: 757: 752: 748: 743: 739: 734: 730: 728: 661: 657: 653: 651: 646: 642: 638: 634: 630: 626: 622: 620: 608:Cantor space 605: 589: 584: 580: 576: 572: 564: 560: 556: 548: 546: 532: 520: 516: 513:infinite sum 508: 478: 389: 382: 380: 361:but never a 356: 347: 343: 339: 335: 331: 327: 323: 321: 316: 312: 308: 304: 300: 294: 292: 287: 283: 279: 275: 271: 267: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 217: 213: 211: 206: 202: 198: 195: 191: 181: 177: 169: 167: 162: 160: 132: 127: 124: 107: 103: 99: 94:subfield of 89: 74: 65: 46: 25: 1527:. Springer. 1489:Works cited 1305:3 September 1209:prefix-free 1176:Super Omega 1085:undecidable 948:The set of 569:dovetailing 529:real number 328:prefix-free 116:probability 112:real number 60:introducing 1881:Categories 1690:Lemniscate 1280:References 1186:enumerable 1148:, such as 978:such that 955:such that 903:Properties 598:would be. 377:Definition 326:is called 216:is called 183:computable 180:is called 157:Background 143:computable 43:references 1653:Liouville 1643:Chaitin's 1050:definable 1009:Δ 850:∈ 843:⋃ 801:− 788:∈ 781:∑ 710:… 448:− 428:∈ 421:∑ 408:Ω 219:universal 147:algorithm 1479:22711870 1429:20 March 1420:archived 1381:STACS 98 1263:See also 1144:for the 340:p′ 336:p′ 254:); here 199:F(x) = y 1819:Euler's 1705:Apéry's 1457:Bibcode 1416:5493426 1386:Bibcode 1222:(i.e., 1032:of the 996:to the 612:measure 369:to the 90:In the 56:improve 1685:Dottie 1503:  1477:  1414:  1404:  1255:using 1194:random 992:It is 911:It is 479:where 296:domain 286:, and 258:  242:  135:normal 45:, but 1673:Cahen 1668:Omega 1658:Prime 1423:(PDF) 1412:S2CID 1376:(PDF) 1207:of a 1042:finer 350:is a 172:is a 110:is a 106:) or 1501:ISBN 1475:PMID 1431:2022 1402:ISBN 1307:2024 652:Let 606:The 381:Let 293:The 270:and 246:) = 194:and 137:and 98:, a 1712:(3) 1549:doi 1465:doi 1453:370 1394:doi 1259:). 967:in 660:of 299:of 1883:: 1829:Pi 1545:13 1543:. 1473:. 1463:. 1451:. 1447:. 1418:, 1410:, 1400:, 1392:, 1378:, 1339:^ 1298:. 1098:≤ 587:. 373:. 334:, 319:. 234:, 209:. 196:y, 122:. 1835:) 1833:π 1831:( 1825:) 1823:e 1821:( 1803:) 1799:S 1795:δ 1792:( 1781:) 1779:ς 1777:( 1766:) 1764:φ 1762:( 1756:) 1754:E 1752:( 1746:) 1744:ψ 1742:( 1729:) 1727:ρ 1725:( 1714:) 1710:ζ 1707:( 1696:) 1694:ϖ 1692:( 1664:) 1662:ρ 1660:( 1649:) 1647:Ω 1645:( 1624:e 1617:t 1610:v 1555:. 1551:: 1532:. 1509:. 1481:. 1467:: 1459:: 1396:: 1388:: 1309:. 1241:) 1238:3 1235:( 1231:O 1162:N 1158:N 1154:N 1112:k 1108:k 1104:F 1100:n 1096:k 1092:n 1081:n 1073:n 1066:n 1062:n 1036:. 1018:0 1013:2 989:. 980:q 976:q 971:. 957:q 953:q 931:. 929:n 925:n 921:n 917:n 896:F 891:F 886:F 879:. 865:i 861:S 854:N 847:i 813:| 809:p 805:| 797:2 791:P 785:p 767:P 762:i 758:p 753:i 749:S 744:i 740:S 735:i 731:p 725:. 713:} 707:, 702:2 698:p 694:, 689:1 685:p 681:{ 678:= 675:P 662:F 658:P 654:F 647:n 643:n 641:( 639:f 635:f 631:n 627:x 623:x 585:p 581:N 577:p 573:N 565:N 561:p 557:N 549:N 537:F 533:F 521:F 517:p 509:p 494:| 491:p 488:| 475:, 460:| 456:p 452:| 444:2 436:F 432:P 425:p 417:= 412:F 394:F 390:F 386:F 383:P 348:F 344:p 332:p 324:F 317:F 313:p 309:F 305:p 301:F 288:F 284:f 280:w 276:F 272:x 268:w 260:x 256:w 252:x 250:( 248:f 244:x 240:w 238:( 236:F 232:x 228:w 224:f 214:F 207:x 203:y 192:x 178:F 170:F 102:( 81:) 75:( 70:) 66:( 52:. 23:.

Index

Omega (disambiguation) § Mathematics
references
inline citations
improve
introducing
Learn how and when to remove this message
computer science
algorithmic information theory
real number
probability
Gregory Chaitin
normal
transcendental
computable
algorithm
Martin-Löf random
partial function
computable
Turing machine
universal
concatenation
domain
prefix-free code
computably enumerable set
computable set
Turing equivalent
halting problem
infinite sum
Kraft's inequality
real number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.