Knowledge (XXG)

Dilworth's theorem

Source đź“ť

1952: 2331:
However, the theorem does not extend so simply to partially ordered sets in which the width, and not just the cardinality of the set, is infinite. In this case the size of the largest antichain and the minimum number of chains needed to cover the partial order may be very different from each other.
73:
A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition into finitely many chains, or when there exists a finite upper bound on the size of an antichain, the sizes of the largest antichain and of the smallest chain decomposition are again equal.
91:
chains. Dilworth's theorem states that, in any finite partially ordered set, the largest antichain has the same size as the smallest chain decomposition. Here, the size of the antichain is its number of elements, and the size of the chain decomposition is its number of chains. The width of the
2655:
is defined as the minimum number of chains needed to define the antimatroid, and Dilworth's theorem can be used to show that it equals the width of an associated partial order; this connection leads to a polynomial time algorithm for convex dimension.
86:
in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into
2593: 2363:
A dual of Dilworth's theorem states that the size of the largest chain in a partial order (if finite) equals the smallest number of antichains into which the order may be partitioned. This is called
1367: 2450:
of any perfect graph is also perfect. Therefore, the complement of any comparability graph is perfect; this is essentially just Dilworth's theorem itself, restated in graph-theoretic terms (
712: 1941: 892: 454: 295: 1706: 1277: 1531: 1151: 1038: 938: 2201:
both of which have the same size. But the only nontrivial chains in the partial order are pairs of elements corresponding to the edges in the graph, so the nontrivial chains in
361: 1656: 1071: 542: 498: 1583: 1466: 1420: 1738: 1227: 971: 2918: 641: 1394: 998: 806: 759: 596: 569: 388: 2438:
equals the size of the largest clique. Every comparability graph is perfect: this is essentially just Mirsky's theorem, restated in graph-theoretic terms. By the
1870: 1764: 1557: 1492: 2317: 3010: 2607: 1844: 1824: 1804: 1784: 1623: 1603: 1440: 1297: 1194: 1171: 1111: 1091: 846: 826: 779: 732: 616: 408: 315: 252: 229: 209: 189: 169: 149: 118: 1955:
Proof of Dilworth's theorem via KĹ‘nig's theorem: constructing a bipartite graph from a partial order, and partitioning into chains according to a matching
3997: 3276: 2513: 3980: 3510: 3346: 3150: 2792: 3254: 3827: 1960: 2427:
of a comparability graph is itself a comparability graph, formed from the restriction of the partial order to a subset of its elements.
2399:, is an antichain, and these antichains partition the partial order into a number of antichains equal to the size of the largest chain. 2415:
formed from a partial order by creating a vertex per element of the order, and an edge connecting any two comparable elements. Thus, a
4040: 3963: 3822: 3046: 3817: 3453: 3535: 3069: 2420: 2641: 3854: 3774: 3173: 3097: 2952: 1302: 3448: 3639: 3568: 2836: 3542: 3530: 3493: 3468: 3443: 3397: 3366: 3473: 3463: 646: 2296:
colors; every color class in a proper coloring of the incomparability graph must be a chain. By the assumption that
1875: 851: 413: 3839: 3339: 1968: 3812: 3478: 2454:). Thus, the complementation property of perfect graphs can provide an alternative proof of Dilworth's theorem. 3744: 3371: 3130: 28: 3285: 2094:
contains vertices corresponding to the same element on both sides of the bipartition) and no two elements of
4035: 3992: 3975: 3228: 3126: 2244:
Dilworth's theorem for infinite partially ordered sets states that a partially ordered set has finite width
2134:
chains. Therefore, we have constructed an antichain and a partition into chains with the same cardinality.
1661: 1232: 3904: 3520: 2491: 1497: 1116: 1003: 897: 257: 3064: 2644:
on monotone subsequences can be interpreted as an application of Dilworth's theorem to partial orders of
4030: 3882: 3717: 3708: 3577: 3412: 3376: 3332: 2806: 2439: 2416: 320: 51: 1628: 1043: 3970: 3929: 3919: 3909: 3654: 3617: 3607: 3587: 3572: 3041:, Advances in Mathematics (Springer), vol. 7, New York: Springer, Theorem 5.6, p. 60, 2780: 2495: 59: 503: 459: 3897: 3808: 3754: 3713: 3703: 3592: 3525: 3488: 2408: 2364: 2358: 2281: 3264: 3236:, IMA Volumes in Mathematics and its Applications, vol. 72, Springer-Verlag, pp. 111–131 1562: 1445: 1399: 3936: 3789: 3698: 3688: 3629: 3547: 3297: 3200: 3114: 2969: 2935: 2901: 2858: 2823: 2801: 1711: 1199: 943: 67: 4009: 3849: 3483: 3272: 3946: 3924: 3784: 3769: 3749: 3552: 3307: 3212: 3146: 3042: 2788: 2216:
This connection to bipartite matching allows the width of any partial order to be computed in
3036: 3759: 3612: 3182: 3138: 3106: 3078: 3021: 2961: 2927: 2885: 2850: 2815: 2447: 2435: 2424: 2412: 3196: 3160: 3056: 2981: 2897: 1372: 976: 784: 737: 574: 547: 366: 3941: 3724: 3602: 3597: 3582: 3407: 3392: 3192: 3156: 3052: 2977: 2913: 2893: 2876: 2841: 2645: 2463: 2333: 2217: 1964: 3498: 3248: 2889: 2367:. Its proof is much simpler than the proof of Dilworth's theorem itself: for any element 1849: 1743: 1536: 1471: 1951: 621: 3859: 3844: 3834: 3693: 3671: 3649: 3220: 2995: 2277: 1829: 1809: 1789: 1769: 1608: 1588: 1425: 1282: 1179: 1156: 1096: 1076: 831: 811: 764: 717: 601: 393: 300: 237: 214: 194: 174: 154: 134: 103: 2872:"Recognition algorithms for orders of small width and graphs of small Dilworth number" 92:
partial order is defined as the common size of the antichain and chain decomposition.
4024: 3958: 3914: 3892: 3764: 3634: 3622: 3427: 3204: 3083: 3026: 2989: 2862: 2431: 1959:
Like a number of other results in combinatorics, Dilworth's theorem is equivalent to
43: 3310: 3299:
Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number
2871: 2610:
also concerns antichains in a power set and can be used to prove Sperner's theorem.
3779: 3661: 3644: 3562: 3402: 3355: 3224: 3216: 3168: 2905: 2776: 2614: 2337: 88: 39: 17: 2839:(1988), "Combinatorial representation and convex dimension of convex geometries", 2328:-colorable incomparability graph, and thus has the desired partition into chains. 3215:(1995), "Variations on the monotone subsequence theme of ErdĹ‘s and Szekeres", in 3985: 3678: 3557: 3422: 3137:, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, p. 42, 3092: 2947: 2652: 2588:{\displaystyle \operatorname {width} (B_{n})={n \choose \lfloor {n/2}\rfloor }.} 121: 35: 2916:(1956), "Note on Dilworth's decomposition theorem for partially ordered sets", 3953: 3887: 3728: 3259: 3142: 4004: 3877: 3683: 3315: 2475: 83: 55: 3278:
Lecture Notes in Combinatorics and Probability, Lecture 10: Perfect Graphs
100:
The following proof by induction on the size of the partially ordered set
3799: 3666: 3417: 2292:
as vertices, with an edge between every two incomparable elements) using
2787:, Annals of Discrete Mathematics, vol. 21, Elsevier, p. viii, 2633:
2. Therefore, by Dilworth's theorem, the width of this partial order is
2137:
To prove KĹ‘nig's theorem from Dilworth's theorem, for a bipartite graph
3187: 3118: 2973: 2939: 2854: 2827: 2304:, and by the finite version of Dilworth's theorem, every finite subset 27:"Chain decomposition" redirects here. For the path decomposition, see 3110: 2965: 2931: 2819: 2349:
discusses analogues of Dilworth's theorem in the infinite setting.
2050:, such that each edge in the graph contains at least one vertex in 66:
of the partially order. The theorem is named for the mathematician
1950: 151:
be a finite partially ordered set. The theorem holds trivially if
3328: 3324: 3067:(1972), "Normal hypergraphs and the perfect graph conjecture", 2804:(1950), "A Decomposition Theorem for Partially Ordered Sets", 2950:(1994), "A proof of Dilworth's chain decomposition theorem", 2598:
In other words, a largest family of incomparable subsets of
2870:
Felsner, Stefan; Raghavan, Vijay; Spinrad, Jeremy (2003),
2423:
in a comparability graph corresponds to an antichain. Any
1982:
elements, using KĹ‘nig's theorem, define a bipartite graph
2992:; Kleitman, Daniel J. (1976), "The structure of Sperner 2419:
in a comparability graph corresponds to a chain, and an
62:
needed to cover all elements. This number is called the
2617:, the subinterval forms an antichain with cardinality 3171:(1963), "On Dilworth's theorem in the infinite case", 3095:(1971), "A dual of Dilworth's decomposition theorem", 2707: 2705: 2696: 2336:Îş there is an infinite partially ordered set of width 1967:
matching and several other related theorems including
58:
of incomparable elements equals the minimum number of
2998: 2516: 2343:
whose partition into the fewest chains has Îş chains.
2252:
chains. For, suppose that an infinite partial order
1878: 1852: 1832: 1812: 1792: 1772: 1746: 1714: 1664: 1631: 1611: 1591: 1565: 1539: 1500: 1474: 1448: 1428: 1402: 1375: 1305: 1285: 1235: 1202: 1182: 1159: 1119: 1099: 1079: 1046: 1006: 979: 946: 900: 854: 834: 814: 787: 767: 740: 720: 649: 624: 604: 577: 550: 506: 462: 416: 396: 369: 323: 303: 260: 240: 217: 197: 177: 157: 137: 106: 3296:
Felsner, S.; Raghavan, V. & Spinrad, J. (1999),
3249:
Equivalence of seven major theorems in combinatorics
2395:), consisting of elements that have equal values of 2316:-colorable incomparability graph. Therefore, by the 1362:{\displaystyle \{a\}\cup \{z\in C_{i}:z\leq x_{i}\}} 3870: 3798: 3737: 3507: 3436: 3385: 2193:. By Dilworth's theorem, there exists an antichain 3004: 2587: 1935: 1864: 1838: 1818: 1798: 1778: 1758: 1732: 1700: 1650: 1617: 1597: 1577: 1551: 1525: 1486: 1460: 1434: 1414: 1388: 1361: 1291: 1271: 1221: 1188: 1165: 1145: 1105: 1085: 1065: 1032: 992: 965: 932: 886: 840: 820: 800: 773: 753: 726: 706: 635: 610: 590: 563: 536: 492: 448: 402: 382: 355: 309: 289: 246: 223: 203: 183: 163: 143: 112: 2576: 2545: 2260:, meaning that there are at most a finite number 2919:Proceedings of the American Mathematical Society 2625:chains is easy to achieve: for each odd integer 2205:form a matching in the graph. The complement of 1974:To prove Dilworth's theorem for a partial order 2034:. By KĹ‘nig's theorem, there exists a matching 707:{\displaystyle A:=\{x_{1},x_{2},\dots ,x_{k}\}} 1936:{\displaystyle \{a\},C_{1},C_{2},\dots ,C_{k}} 887:{\displaystyle A_{i}\cap C_{j}\neq \emptyset } 449:{\displaystyle A_{0}\cap C_{i}\neq \emptyset } 234:By induction, we assume that for some integer 3340: 2629:in , form a chain of the numbers of the form 2613:If we order the integers in the interval by 2353:Dual of Dilworth's theorem (Mirsky's theorem) 2264:of elements in any antichain. For any subset 2110:in the same chain whenever there is an edge ( 8: 3135:Sparsity: Graphs, Structures, and Algorithms 2735: 2570: 2554: 2451: 2276:chains (if it exists) may be described as a 2240:Extension to infinite partially ordered sets 2213:with the same cardinality as this matching. 1885: 1879: 1727: 1721: 1695: 1671: 1520: 1507: 1356: 1318: 1312: 1306: 1266: 1242: 701: 656: 284: 278: 2759: 2153:), form a partial order on the vertices of 3998:Positive cone of a partially ordered group 3347: 3333: 3325: 2383:) denote the size of the largest of these 2352: 2248:if and only if it may be partitioned into 2102:be a family of chains formed by including 3186: 3082: 3025: 3014:Journal of Combinatorial Theory, Series A 2997: 2684: 2621:. A partition of this partial order into 2575: 2561: 2557: 2544: 2542: 2530: 2515: 1927: 1908: 1895: 1877: 1851: 1831: 1811: 1791: 1771: 1745: 1713: 1663: 1642: 1630: 1610: 1590: 1564: 1538: 1514: 1499: 1473: 1447: 1427: 1401: 1380: 1374: 1350: 1331: 1304: 1284: 1234: 1213: 1201: 1181: 1158: 1137: 1124: 1118: 1098: 1078: 1051: 1045: 1024: 1011: 1005: 984: 978: 957: 945: 924: 911: 899: 872: 859: 853: 833: 813: 792: 786: 766: 745: 739: 719: 695: 676: 663: 648: 623: 603: 582: 576: 555: 549: 505: 461: 434: 421: 415: 395: 374: 368: 347: 328: 322: 302: 259: 239: 216: 196: 176: 156: 136: 105: 3981:Positive cone of an ordered vector space 2711: 2672: 2602:is obtained by selecting the subsets of 2074:that do not correspond to any vertex in 2665: 1625:disjoint chains, as required. Next, if 1569: 1504: 1452: 1406: 275: 2747: 2723: 2443: 2346: 125: 1701:{\displaystyle i\in \{1,2,\dots ,k\}} 1272:{\displaystyle i\in \{1,2,\dots ,k\}} 598:that belongs to an antichain of size 7: 2697:Felsner, Raghavan & Spinrad 2003 2608:Lubell–Yamamoto–Meshalkin inequality 1526:{\displaystyle A\setminus \{x_{i}\}} 1146:{\displaystyle x_{j}\not \geq x_{i}} 1033:{\displaystyle x_{i}\not \geq x_{j}} 933:{\displaystyle y\in A_{i}\cap C_{j}} 290:{\displaystyle P':=P\setminus \{a\}} 3230:Discrete Probability and Algorithms 2498:states that a maximum antichain of 2434:if, in every induced subgraph, the 1422:does not have an antichain of size 3508:Properties & Types ( 2890:10.1023/B:ORDE.0000034609.99940.fb 2549: 2403:Perfection of comparability graphs 2375:as their largest element, and let 2332:In particular, for every infinite 2288:(a graph that has the elements of 2098:are comparable to each other. Let 881: 443: 356:{\displaystyle C_{1},\dots ,C_{k}} 191:has at least one element, and let 25: 3964:Positive cone of an ordered field 2953:The American Mathematical Monthly 2224:-element partial orders of width 808:. Fix arbitrary distinct indices 3818:Ordered topological vector space 2371:, consider the chains that have 1651:{\displaystyle a\not \geq x_{i}} 1073:. By interchanging the roles of 1066:{\displaystyle x_{i}\not \geq y} 2458:Width of special partial orders 2387:-maximal chains. Then each set 363:and has at least one antichain 2536: 2523: 2181:, and there exists an edge in 1442:. Induction then implies that 1113:in this argument we also have 537:{\displaystyle i=1,2,\dots ,k} 493:{\displaystyle i=1,2,\dots ,k} 1: 3775:Series-parallel partial order 3174:Israel Journal of Mathematics 3098:American Mathematical Monthly 2651:The "convex dimension" of an 3454:Cantor's isomorphism theorem 3255:"Dual of Dilworth's Theorem" 3084:10.1016/0012-365X(72)90006-4 3027:10.1016/0097-3165(76)90077-7 2197:and a partition into chains 1578:{\displaystyle P\setminus K} 1461:{\displaystyle P\setminus K} 1415:{\displaystyle P\setminus K} 70:, who published it in 1950. 3494:Szpilrajn extension theorem 3469:Hausdorff maximal principle 3444:Boolean prime ideal theorem 2606:that have median size. The 2090:elements (possibly more if 1733:{\displaystyle A\cup \{a\}} 1222:{\displaystyle a\geq x_{i}} 966:{\displaystyle y\leq x_{j}} 50:states that, in any finite 4057: 3840:Topological vector lattice 2494:or, notationally, (2, ⊆). 2356: 2228:can be recognized in time 2070:be the set of elements of 2062:have the same cardinality 571:be the maximal element in 254:the partially ordered set 171:is empty. So, assume that 26: 4041:Theorems in combinatorics 3362: 3143:10.1007/978-3-642-27875-4 3131:Ossona de Mendez, Patrice 3035:Harzheim, Egbert (2005), 1947:Proof via KĹ‘nig's theorem 54:, the maximum size of an 3449:Cantor–Bernstein theorem 3133:(2012), "Theorem 3.13", 2785:Topics on Perfect Graphs 2736:Berge & Chvátal 1984 2452:Berge & Chvátal 1984 2209:forms a vertex cover in 2042:, and a set of vertices 1943:, completing the proof. 1740:is an antichain of size 1533:is an antichain of size 1369:. Then by the choice of 761:be an antichain of size 211:be a maximal element of 29:Heavy path decomposition 3993:Partially ordered group 3813:Specialization preorder 2760:Edelman & Saks 1988 2486:—essentially {1, 2, …, 2430:An undirected graph is 2318:De Bruijn–ErdĹ‘s theorem 2272:, a decomposition into 1969:Hall's marriage theorem 1946: 973:, by the definition of 3479:Kruskal's tree theorem 3474:Knaster–Tarski theorem 3464:Dushnik–Miller theorem 3227:; et al. (eds.), 3006: 2642:ErdĹ‘s–Szekeres theorem 2589: 1956: 1937: 1866: 1846:can be covered by the 1840: 1820: 1800: 1780: 1760: 1734: 1702: 1652: 1619: 1599: 1579: 1553: 1527: 1494:disjoint chains since 1488: 1462: 1436: 1416: 1390: 1363: 1293: 1273: 1223: 1190: 1167: 1147: 1107: 1087: 1067: 1034: 994: 967: 934: 888: 842: 822: 802: 775: 755: 734:is an antichain. Let 728: 708: 637: 612: 592: 565: 538: 494: 450: 404: 384: 357: 311: 291: 248: 225: 205: 185: 165: 145: 114: 3007: 2884:(4): 351–364 (2004), 2807:Annals of Mathematics 2590: 2440:perfect graph theorem 2282:incomparability graph 1954: 1938: 1867: 1841: 1821: 1801: 1781: 1761: 1735: 1703: 1653: 1620: 1600: 1580: 1554: 1528: 1489: 1463: 1437: 1417: 1391: 1389:{\displaystyle x_{i}} 1364: 1294: 1274: 1224: 1196:. Suppose first that 1191: 1168: 1153:. This verifies that 1148: 1108: 1088: 1068: 1035: 995: 993:{\displaystyle x_{j}} 968: 935: 889: 843: 823: 803: 801:{\displaystyle x_{i}} 776: 756: 754:{\displaystyle A_{i}} 729: 709: 638: 613: 593: 591:{\displaystyle C_{i}} 566: 564:{\displaystyle x_{i}} 539: 495: 451: 405: 385: 383:{\displaystyle A_{0}} 358: 312: 292: 249: 226: 206: 186: 166: 146: 115: 52:partially ordered set 3971:Ordered vector space 3070:Discrete Mathematics 2996: 2514: 1876: 1850: 1830: 1810: 1790: 1770: 1744: 1712: 1662: 1629: 1609: 1589: 1563: 1537: 1498: 1472: 1446: 1426: 1400: 1373: 1303: 1283: 1233: 1200: 1180: 1157: 1117: 1097: 1077: 1044: 1004: 1000:. This implies that 977: 944: 898: 852: 832: 812: 785: 765: 738: 718: 647: 622: 602: 575: 548: 504: 460: 414: 394: 367: 321: 301: 258: 238: 215: 195: 175: 155: 135: 120:is based on that of 104: 3809:Alexandrov topology 3755:Lexicographic order 3714:Well-quasi-ordering 2802:Dilworth, Robert P. 2409:comparability graph 1865:{\displaystyle k+1} 1759:{\displaystyle k+1} 1552:{\displaystyle k-1} 1487:{\displaystyle k-1} 18:Chain decomposition 3790:Transitive closure 3750:Converse/Transpose 3459:Dilworth's theorem 3311:"Dilworth's Lemma" 3308:Weisstein, Eric W. 3213:Steele, J. Michael 3188:10.1007/BF02759806 3127:NešetĹ™il, Jaroslav 3002: 2855:10.1007/BF00143895 2835:Edelman, Paul H.; 2585: 2324:itself also has a 2220:. More precisely, 1957: 1933: 1862: 1836: 1816: 1796: 1776: 1756: 1730: 1698: 1648: 1615: 1605:can be covered by 1595: 1575: 1549: 1523: 1484: 1468:can be covered by 1458: 1432: 1412: 1386: 1359: 1289: 1269: 1219: 1186: 1163: 1143: 1103: 1083: 1063: 1030: 990: 963: 930: 884: 838: 818: 798: 771: 751: 724: 704: 636:{\displaystyle P'} 633: 608: 588: 561: 534: 490: 446: 400: 380: 353: 307: 297:can be covered by 287: 244: 221: 201: 181: 161: 141: 110: 68:Robert P. Dilworth 48:Dilworth's theorem 38:, in the areas of 4018: 4017: 3976:Partially ordered 3785:Symmetric closure 3770:Reflexive closure 3513: 3152:978-3-642-27874-7 3005:{\displaystyle k} 2794:978-0-444-86587-8 2574: 2507:has size at most 2496:Sperner's theorem 1839:{\displaystyle P} 1819:{\displaystyle P} 1799:{\displaystyle a} 1779:{\displaystyle P} 1618:{\displaystyle k} 1598:{\displaystyle P} 1435:{\displaystyle k} 1292:{\displaystyle K} 1189:{\displaystyle P} 1176:We now return to 1173:is an antichain. 1166:{\displaystyle A} 1106:{\displaystyle j} 1086:{\displaystyle i} 841:{\displaystyle j} 821:{\displaystyle i} 774:{\displaystyle k} 727:{\displaystyle A} 714:. We claim that 611:{\displaystyle k} 403:{\displaystyle k} 310:{\displaystyle k} 247:{\displaystyle k} 224:{\displaystyle P} 204:{\displaystyle a} 184:{\displaystyle P} 164:{\displaystyle P} 144:{\displaystyle P} 113:{\displaystyle P} 16:(Redirected from 4048: 3760:Linear extension 3509: 3489:Mirsky's theorem 3349: 3342: 3335: 3326: 3321: 3320: 3302: 3292: 3290: 3284:, archived from 3283: 3268: 3263:, archived from 3237: 3235: 3207: 3190: 3169:Perles, Micha A. 3163: 3121: 3087: 3086: 3059: 3030: 3029: 3011: 3009: 3008: 3003: 2984: 2942: 2914:Fulkerson, D. R. 2908: 2865: 2837:Saks, Michael E. 2830: 2797: 2763: 2757: 2751: 2745: 2739: 2733: 2727: 2721: 2715: 2709: 2700: 2694: 2688: 2682: 2676: 2670: 2594: 2592: 2591: 2586: 2581: 2580: 2579: 2573: 2569: 2565: 2548: 2535: 2534: 2436:chromatic number 2425:induced subgraph 2413:undirected graph 2365:Mirsky's theorem 2359:Mirsky's theorem 2018:) is an edge in 1942: 1940: 1939: 1934: 1932: 1931: 1913: 1912: 1900: 1899: 1871: 1869: 1868: 1863: 1845: 1843: 1842: 1837: 1825: 1823: 1822: 1817: 1805: 1803: 1802: 1797: 1785: 1783: 1782: 1777: 1765: 1763: 1762: 1757: 1739: 1737: 1736: 1731: 1707: 1705: 1704: 1699: 1657: 1655: 1654: 1649: 1647: 1646: 1624: 1622: 1621: 1616: 1604: 1602: 1601: 1596: 1584: 1582: 1581: 1576: 1558: 1556: 1555: 1550: 1532: 1530: 1529: 1524: 1519: 1518: 1493: 1491: 1490: 1485: 1467: 1465: 1464: 1459: 1441: 1439: 1438: 1433: 1421: 1419: 1418: 1413: 1395: 1393: 1392: 1387: 1385: 1384: 1368: 1366: 1365: 1360: 1355: 1354: 1336: 1335: 1298: 1296: 1295: 1290: 1278: 1276: 1275: 1270: 1228: 1226: 1225: 1220: 1218: 1217: 1195: 1193: 1192: 1187: 1172: 1170: 1169: 1164: 1152: 1150: 1149: 1144: 1142: 1141: 1129: 1128: 1112: 1110: 1109: 1104: 1092: 1090: 1089: 1084: 1072: 1070: 1069: 1064: 1056: 1055: 1039: 1037: 1036: 1031: 1029: 1028: 1016: 1015: 999: 997: 996: 991: 989: 988: 972: 970: 969: 964: 962: 961: 939: 937: 936: 931: 929: 928: 916: 915: 893: 891: 890: 885: 877: 876: 864: 863: 847: 845: 844: 839: 827: 825: 824: 819: 807: 805: 804: 799: 797: 796: 780: 778: 777: 772: 760: 758: 757: 752: 750: 749: 733: 731: 730: 725: 713: 711: 710: 705: 700: 699: 681: 680: 668: 667: 642: 640: 639: 634: 632: 617: 615: 614: 609: 597: 595: 594: 589: 587: 586: 570: 568: 567: 562: 560: 559: 543: 541: 540: 535: 499: 497: 496: 491: 455: 453: 452: 447: 439: 438: 426: 425: 409: 407: 406: 401: 389: 387: 386: 381: 379: 378: 362: 360: 359: 354: 352: 351: 333: 332: 317:disjoint chains 316: 314: 313: 308: 296: 294: 293: 288: 268: 253: 251: 250: 245: 230: 228: 227: 222: 210: 208: 207: 202: 190: 188: 187: 182: 170: 168: 167: 162: 150: 148: 147: 142: 119: 117: 116: 111: 21: 4056: 4055: 4051: 4050: 4049: 4047: 4046: 4045: 4021: 4020: 4019: 4014: 4010:Young's lattice 3866: 3794: 3733: 3583:Heyting algebra 3531:Boolean algebra 3503: 3484:Laver's theorem 3432: 3398:Boolean algebra 3393:Binary relation 3381: 3358: 3353: 3306: 3305: 3295: 3288: 3281: 3271: 3253: 3245: 3233: 3221:Diaconis, Persi 3211: 3167: 3153: 3125: 3111:10.2307/2316481 3091: 3063: 3049: 3034: 2994: 2993: 2988: 2966:10.2307/2975628 2946: 2932:10.2307/2033375 2912: 2869: 2834: 2820:10.2307/1969503 2800: 2795: 2781:Chvátal, Václav 2775: 2772: 2767: 2766: 2758: 2754: 2746: 2742: 2734: 2730: 2722: 2718: 2710: 2703: 2695: 2691: 2683: 2679: 2671: 2667: 2662: 2646:order dimension 2553: 2543: 2526: 2512: 2511: 2506: 2473: 2464:Boolean lattice 2460: 2421:independent set 2405: 2361: 2355: 2341: 2334:cardinal number 2242: 2218:polynomial time 1965:bipartite graph 1961:KĹ‘nig's theorem 1949: 1923: 1904: 1891: 1874: 1873: 1848: 1847: 1828: 1827: 1808: 1807: 1788: 1787: 1768: 1767: 1742: 1741: 1710: 1709: 1660: 1659: 1638: 1627: 1626: 1607: 1606: 1587: 1586: 1561: 1560: 1535: 1534: 1510: 1496: 1495: 1470: 1469: 1444: 1443: 1424: 1423: 1398: 1397: 1376: 1371: 1370: 1346: 1327: 1301: 1300: 1281: 1280: 1231: 1230: 1209: 1198: 1197: 1178: 1177: 1155: 1154: 1133: 1120: 1115: 1114: 1095: 1094: 1075: 1074: 1047: 1042: 1041: 1020: 1007: 1002: 1001: 980: 975: 974: 953: 942: 941: 920: 907: 896: 895: 868: 855: 850: 849: 830: 829: 810: 809: 788: 783: 782: 763: 762: 741: 736: 735: 716: 715: 691: 672: 659: 645: 644: 625: 620: 619: 600: 599: 578: 573: 572: 551: 546: 545: 502: 501: 458: 457: 430: 417: 412: 411: 392: 391: 370: 365: 364: 343: 324: 319: 318: 299: 298: 261: 256: 255: 236: 235: 213: 212: 193: 192: 173: 172: 153: 152: 133: 132: 102: 101: 98: 96:Inductive proof 80: 32: 23: 22: 15: 12: 11: 5: 4054: 4052: 4044: 4043: 4038: 4036:Perfect graphs 4033: 4023: 4022: 4016: 4015: 4013: 4012: 4007: 4002: 4001: 4000: 3990: 3989: 3988: 3983: 3978: 3968: 3967: 3966: 3956: 3951: 3950: 3949: 3944: 3937:Order morphism 3934: 3933: 3932: 3922: 3917: 3912: 3907: 3902: 3901: 3900: 3890: 3885: 3880: 3874: 3872: 3868: 3867: 3865: 3864: 3863: 3862: 3857: 3855:Locally convex 3852: 3847: 3837: 3835:Order topology 3832: 3831: 3830: 3828:Order topology 3825: 3815: 3805: 3803: 3796: 3795: 3793: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3741: 3739: 3735: 3734: 3732: 3731: 3721: 3711: 3706: 3701: 3696: 3691: 3686: 3681: 3676: 3675: 3674: 3664: 3659: 3658: 3657: 3652: 3647: 3642: 3640:Chain-complete 3632: 3627: 3626: 3625: 3620: 3615: 3610: 3605: 3595: 3590: 3585: 3580: 3575: 3565: 3560: 3555: 3550: 3545: 3540: 3539: 3538: 3528: 3523: 3517: 3515: 3505: 3504: 3502: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3446: 3440: 3438: 3434: 3433: 3431: 3430: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3389: 3387: 3383: 3382: 3380: 3379: 3374: 3369: 3363: 3360: 3359: 3354: 3352: 3351: 3344: 3337: 3329: 3323: 3322: 3303: 3293: 3269: 3251: 3244: 3243:External links 3241: 3240: 3239: 3209: 3181:(2): 108–109, 3165: 3151: 3123: 3105:(8): 876–877, 3089: 3077:(3): 253–267, 3065:Lovász, LászlĂł 3061: 3047: 3032: 3001: 2990:Greene, Curtis 2986: 2960:(4): 352–353, 2944: 2926:(4): 701–702, 2910: 2867: 2832: 2814:(1): 161–166, 2798: 2793: 2771: 2768: 2765: 2764: 2752: 2740: 2728: 2716: 2701: 2689: 2685:Fulkerson 1956 2677: 2664: 2663: 2661: 2658: 2596: 2595: 2584: 2578: 2572: 2568: 2564: 2560: 2556: 2552: 2547: 2541: 2538: 2533: 2529: 2525: 2522: 2519: 2502: 2469: 2459: 2456: 2404: 2401: 2357:Main article: 2354: 2351: 2339: 2241: 2238: 2054:and such that 1948: 1945: 1930: 1926: 1922: 1919: 1916: 1911: 1907: 1903: 1898: 1894: 1890: 1887: 1884: 1881: 1861: 1858: 1855: 1835: 1815: 1806:is maximal in 1795: 1775: 1755: 1752: 1749: 1729: 1726: 1723: 1720: 1717: 1697: 1694: 1691: 1688: 1685: 1682: 1679: 1676: 1673: 1670: 1667: 1645: 1641: 1637: 1634: 1614: 1594: 1574: 1571: 1568: 1548: 1545: 1542: 1522: 1517: 1513: 1509: 1506: 1503: 1483: 1480: 1477: 1457: 1454: 1451: 1431: 1411: 1408: 1405: 1383: 1379: 1358: 1353: 1349: 1345: 1342: 1339: 1334: 1330: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1288: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1216: 1212: 1208: 1205: 1185: 1162: 1140: 1136: 1132: 1127: 1123: 1102: 1082: 1062: 1059: 1054: 1050: 1027: 1023: 1019: 1014: 1010: 987: 983: 960: 956: 952: 949: 927: 923: 919: 914: 910: 906: 903: 883: 880: 875: 871: 867: 862: 858: 837: 817: 795: 791: 781:that contains 770: 748: 744: 723: 703: 698: 694: 690: 687: 684: 679: 675: 671: 666: 662: 658: 655: 652: 631: 628: 607: 585: 581: 558: 554: 533: 530: 527: 524: 521: 518: 515: 512: 509: 489: 486: 483: 480: 477: 474: 471: 468: 465: 445: 442: 437: 433: 429: 424: 420: 399: 377: 373: 350: 346: 342: 339: 336: 331: 327: 306: 286: 283: 280: 277: 274: 271: 267: 264: 243: 220: 200: 180: 160: 140: 109: 97: 94: 79: 76: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4053: 4042: 4039: 4037: 4034: 4032: 4029: 4028: 4026: 4011: 4008: 4006: 4003: 3999: 3996: 3995: 3994: 3991: 3987: 3984: 3982: 3979: 3977: 3974: 3973: 3972: 3969: 3965: 3962: 3961: 3960: 3959:Ordered field 3957: 3955: 3952: 3948: 3945: 3943: 3940: 3939: 3938: 3935: 3931: 3928: 3927: 3926: 3923: 3921: 3918: 3916: 3915:Hasse diagram 3913: 3911: 3908: 3906: 3903: 3899: 3896: 3895: 3894: 3893:Comparability 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3875: 3873: 3869: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3842: 3841: 3838: 3836: 3833: 3829: 3826: 3824: 3821: 3820: 3819: 3816: 3814: 3810: 3807: 3806: 3804: 3801: 3797: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3765:Product order 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3742: 3740: 3738:Constructions 3736: 3730: 3726: 3722: 3719: 3715: 3712: 3710: 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3673: 3670: 3669: 3668: 3665: 3663: 3660: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3637: 3636: 3635:Partial order 3633: 3631: 3628: 3624: 3623:Join and meet 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3600: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3570: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3537: 3534: 3533: 3532: 3529: 3527: 3524: 3522: 3521:Antisymmetric 3519: 3518: 3516: 3512: 3506: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3441: 3439: 3435: 3429: 3428:Weak ordering 3426: 3424: 3421: 3419: 3416: 3414: 3413:Partial order 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3390: 3388: 3384: 3378: 3375: 3373: 3370: 3368: 3365: 3364: 3361: 3357: 3350: 3345: 3343: 3338: 3336: 3331: 3330: 3327: 3318: 3317: 3312: 3309: 3304: 3301: 3300: 3294: 3291:on 2011-07-20 3287: 3280: 3279: 3274: 3273:Babai, LászlĂł 3270: 3267:on 2007-07-14 3266: 3262: 3261: 3256: 3252: 3250: 3247: 3246: 3242: 3232: 3231: 3226: 3225:Spencer, Joel 3222: 3218: 3217:Aldous, David 3214: 3210: 3206: 3202: 3198: 3194: 3189: 3184: 3180: 3176: 3175: 3170: 3166: 3162: 3158: 3154: 3148: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3099: 3094: 3090: 3085: 3080: 3076: 3072: 3071: 3066: 3062: 3058: 3054: 3050: 3048:0-387-24219-8 3044: 3040: 3039: 3033: 3028: 3023: 3019: 3015: 2999: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2954: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2921: 2920: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2878: 2873: 2868: 2864: 2860: 2856: 2852: 2848: 2844: 2843: 2838: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2808: 2803: 2799: 2796: 2790: 2786: 2782: 2778: 2777:Berge, Claude 2774: 2773: 2769: 2761: 2756: 2753: 2749: 2744: 2741: 2737: 2732: 2729: 2725: 2720: 2717: 2713: 2712:Harzheim 2005 2708: 2706: 2702: 2698: 2693: 2690: 2686: 2681: 2678: 2674: 2673:Dilworth 1950 2669: 2666: 2659: 2657: 2654: 2649: 2647: 2643: 2638: 2636: 2632: 2628: 2624: 2620: 2616: 2611: 2609: 2605: 2601: 2582: 2566: 2562: 2558: 2550: 2539: 2531: 2527: 2520: 2517: 2510: 2509: 2508: 2505: 2501: 2497: 2493: 2490:}—ordered by 2489: 2485: 2482:-element set 2481: 2477: 2472: 2468: 2465: 2457: 2455: 2453: 2449: 2445: 2444:Lovász (1972) 2441: 2437: 2433: 2428: 2426: 2422: 2418: 2414: 2410: 2402: 2400: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2360: 2350: 2348: 2347:Perles (1963) 2344: 2342: 2335: 2329: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2239: 2237: 2235: 2231: 2227: 2223: 2219: 2214: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2165:exactly when 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2135: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2082:has at least 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1972: 1970: 1966: 1962: 1953: 1944: 1928: 1924: 1920: 1917: 1914: 1909: 1905: 1901: 1896: 1892: 1888: 1882: 1859: 1856: 1853: 1833: 1813: 1793: 1773: 1753: 1750: 1747: 1724: 1718: 1715: 1692: 1689: 1686: 1683: 1680: 1677: 1674: 1668: 1665: 1643: 1639: 1635: 1632: 1612: 1592: 1572: 1566: 1546: 1543: 1540: 1515: 1511: 1501: 1481: 1478: 1475: 1455: 1449: 1429: 1409: 1403: 1381: 1377: 1351: 1347: 1343: 1340: 1337: 1332: 1328: 1324: 1321: 1315: 1309: 1299:be the chain 1286: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1239: 1236: 1214: 1210: 1206: 1203: 1183: 1174: 1160: 1138: 1134: 1130: 1125: 1121: 1100: 1080: 1060: 1057: 1052: 1048: 1025: 1021: 1017: 1012: 1008: 985: 981: 958: 954: 950: 947: 925: 921: 917: 912: 908: 904: 901: 878: 873: 869: 865: 860: 856: 835: 815: 793: 789: 768: 746: 742: 721: 696: 692: 688: 685: 682: 677: 673: 669: 664: 660: 653: 650: 629: 626: 605: 583: 579: 556: 552: 531: 528: 525: 522: 519: 516: 513: 510: 507: 487: 484: 481: 478: 475: 472: 469: 466: 463: 440: 435: 431: 427: 422: 418: 397: 375: 371: 348: 344: 340: 337: 334: 329: 325: 304: 281: 272: 269: 265: 262: 241: 232: 218: 198: 178: 158: 138: 129: 127: 123: 107: 95: 93: 90: 85: 77: 75: 71: 69: 65: 61: 57: 53: 49: 45: 44:combinatorics 41: 37: 30: 19: 4031:Order theory 3802:& Orders 3780:Star product 3709:Well-founded 3662:Prefix order 3618:Distributive 3608:Complemented 3578:Foundational 3543:Completeness 3499:Zorn's lemma 3458: 3403:Cyclic order 3386:Key concepts 3356:Order theory 3314: 3298: 3286:the original 3277: 3265:the original 3258: 3229: 3178: 3172: 3134: 3102: 3096: 3093:Mirsky, Leon 3074: 3068: 3038:Ordered sets 3037: 3020:(1): 41–68, 3017: 3013: 3012:-families", 2957: 2951: 2948:Galvin, Fred 2923: 2917: 2881: 2875: 2849:(1): 23–32, 2846: 2840: 2811: 2805: 2784: 2755: 2743: 2731: 2719: 2692: 2680: 2668: 2650: 2639: 2634: 2630: 2626: 2622: 2618: 2615:divisibility 2612: 2603: 2599: 2597: 2503: 2499: 2487: 2483: 2479: 2470: 2466: 2461: 2429: 2406: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2362: 2345: 2330: 2325: 2321: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2243: 2233: 2229: 2225: 2221: 2215: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1973: 1958: 1175: 233: 130: 99: 81: 72: 63: 47: 40:order theory 33: 3986:Riesz space 3947:Isomorphism 3823:Normal cone 3745:Composition 3679:Semilattice 3588:Homogeneous 3573:Equivalence 3423:Total order 2748:Steele 1995 2724:Mirsky 1971 2653:antimatroid 2010:and where ( 410:. Clearly, 36:mathematics 4025:Categories 3954:Order type 3888:Cofinality 3729:Well-order 3704:Transitive 3593:Idempotent 3526:Asymmetric 3260:PlanetMath 2770:References 2448:complement 2300:has width 2256:has width 643:, and set 4005:Upper set 3942:Embedding 3878:Antichain 3699:Tolerance 3689:Symmetric 3684:Semiorder 3630:Reflexive 3548:Connected 3316:MathWorld 3205:120943065 2863:119826035 2571:⌋ 2555:⌊ 2521:⁡ 2492:inclusion 2476:power set 2157:in which 1918:… 1719:∪ 1687:… 1669:∈ 1658:for each 1585:. Thus, 1570:∖ 1544:− 1505:∖ 1479:− 1453:∖ 1407:∖ 1344:≤ 1325:∈ 1316:∪ 1258:… 1240:∈ 1229:for some 1207:≥ 951:≤ 918:∩ 905:∈ 882:∅ 879:≠ 866:∩ 686:… 526:… 482:… 444:∅ 441:≠ 428:∩ 338:… 276:∖ 84:antichain 78:Statement 56:antichain 3800:Topology 3667:Preorder 3650:Eulerian 3613:Complete 3563:Directed 3553:Covering 3418:Preorder 3377:Category 3372:Glossary 3275:(2005), 2783:(1984), 2278:coloring 1998:) where 1636:≱ 1131:≱ 1058:≱ 1040:, since 1018:≱ 630:′ 390:of size 266:′ 89:disjoint 3905:Duality 3883:Cofinal 3871:Related 3850:FrĂ©chet 3727:)  3603:Bounded 3598:Lattice 3571:)  3569:Partial 3437:Results 3408:Lattice 3197:0168497 3161:2920058 3119:2316481 3057:2127991 2982:1270960 2974:2975628 2940:2033375 2906:1363140 2898:2079151 2828:1969503 2474:is the 2432:perfect 2280:of the 2122:; then 2078:; then 2066:. Let 1872:chains 1826:). Now 1786:(since 1708:, then 940:. Then 848:. Then 124: ( 3930:Subnet 3910:Filter 3860:Normed 3845:Banach 3811:& 3718:Better 3655:Strict 3645:Graded 3536:topics 3367:Topics 3203:  3195:  3159:  3149:  3117:  3055:  3045:  2980:  2972:  2938:  2904:  2896:  2861:  2826:  2791:  2478:of an 2446:, the 2417:clique 2411:is an 2312:has a 2177:is in 2169:is in 1279:. Let 894:. Let 544:, let 500:. For 122:Galvin 60:chains 3920:Ideal 3898:Graph 3694:Total 3672:Total 3558:Dense 3289:(PDF) 3282:(PDF) 3234:(PDF) 3201:S2CID 3115:JSTOR 2970:JSTOR 2936:JSTOR 2902:S2CID 2877:Order 2859:S2CID 2842:Order 2824:JSTOR 2660:Notes 2648:two. 2518:width 2185:from 2161:< 2118:) in 2026:< 2022:when 1978:with 64:width 3511:list 3147:ISBN 3043:ISBN 2789:ISBN 2640:The 2462:The 2236:). 2126:has 2106:and 2058:and 1093:and 828:and 456:for 131:Let 126:1994 42:and 3925:Net 3725:Pre 3183:doi 3139:doi 3107:doi 3079:doi 3022:doi 2962:doi 2958:101 2928:doi 2886:doi 2851:doi 2816:doi 2442:of 2308:of 2284:of 2268:of 2189:to 2141:= ( 2046:in 2038:in 2030:in 1986:= ( 1963:on 1766:in 1559:in 618:in 128:). 82:An 34:In 4027:: 3313:. 3257:, 3223:; 3219:; 3199:, 3193:MR 3191:, 3177:, 3157:MR 3155:, 3145:, 3129:; 3113:, 3103:78 3101:, 3073:, 3053:MR 3051:, 3018:20 3016:, 2978:MR 2976:, 2968:, 2956:, 2934:, 2922:, 2900:, 2894:MR 2892:, 2882:20 2880:, 2874:, 2857:, 2845:, 2822:, 2812:51 2810:, 2779:; 2704:^ 2637:. 2407:A 2320:, 2234:kn 2173:, 2130:- 2086:- 2006:= 2002:= 1971:. 1396:, 654::= 270::= 231:. 46:, 3723:( 3720:) 3716:( 3567:( 3514:) 3348:e 3341:t 3334:v 3319:. 3238:. 3208:. 3185:: 3179:1 3164:. 3141:: 3122:. 3109:: 3088:. 3081:: 3075:2 3060:. 3031:. 3024:: 3000:k 2985:. 2964:: 2943:. 2930:: 2924:7 2909:. 2888:: 2866:. 2853:: 2847:5 2831:. 2818:: 2762:. 2750:. 2738:. 2726:. 2714:. 2699:. 2687:. 2675:. 2635:n 2631:m 2627:m 2623:n 2619:n 2604:X 2600:X 2583:. 2577:) 2567:2 2563:/ 2559:n 2551:n 2546:( 2540:= 2537:) 2532:n 2528:B 2524:( 2504:n 2500:B 2488:n 2484:X 2480:n 2471:n 2467:B 2397:N 2393:i 2391:( 2389:N 2385:x 2381:x 2379:( 2377:N 2373:x 2369:x 2340:0 2338:ℵ 2326:w 2322:P 2314:w 2310:P 2306:S 2302:w 2298:P 2294:w 2290:S 2286:S 2274:w 2270:P 2266:S 2262:w 2258:w 2254:P 2250:w 2246:w 2232:( 2230:O 2226:k 2222:n 2211:G 2207:A 2203:P 2199:P 2195:A 2191:v 2187:u 2183:E 2179:V 2175:v 2171:U 2167:u 2163:v 2159:u 2155:G 2151:E 2149:, 2147:V 2145:, 2143:U 2139:G 2132:m 2128:n 2124:P 2120:M 2116:y 2114:, 2112:x 2108:y 2104:x 2100:P 2096:A 2092:C 2088:m 2084:n 2080:A 2076:C 2072:S 2068:A 2064:m 2060:C 2056:M 2052:C 2048:G 2044:C 2040:G 2036:M 2032:S 2028:v 2024:u 2020:G 2016:v 2014:, 2012:u 2008:S 2004:V 2000:U 1996:E 1994:, 1992:V 1990:, 1988:U 1984:G 1980:n 1976:S 1929:k 1925:C 1921:, 1915:, 1910:2 1906:C 1902:, 1897:1 1893:C 1889:, 1886:} 1883:a 1880:{ 1860:1 1857:+ 1854:k 1834:P 1814:P 1794:a 1774:P 1754:1 1751:+ 1748:k 1728:} 1725:a 1722:{ 1716:A 1696:} 1693:k 1690:, 1684:, 1681:2 1678:, 1675:1 1672:{ 1666:i 1644:i 1640:x 1633:a 1613:k 1593:P 1573:K 1567:P 1547:1 1541:k 1521:} 1516:i 1512:x 1508:{ 1502:A 1482:1 1476:k 1456:K 1450:P 1430:k 1410:K 1404:P 1382:i 1378:x 1357:} 1352:i 1348:x 1341:z 1338:: 1333:i 1329:C 1322:z 1319:{ 1313:} 1310:a 1307:{ 1287:K 1267:} 1264:k 1261:, 1255:, 1252:2 1249:, 1246:1 1243:{ 1237:i 1215:i 1211:x 1204:a 1184:P 1161:A 1139:i 1135:x 1126:j 1122:x 1101:j 1081:i 1061:y 1053:i 1049:x 1026:j 1022:x 1013:i 1009:x 986:j 982:x 959:j 955:x 948:y 926:j 922:C 913:i 909:A 902:y 874:j 870:C 861:i 857:A 836:j 816:i 794:i 790:x 769:k 747:i 743:A 722:A 702:} 697:k 693:x 689:, 683:, 678:2 674:x 670:, 665:1 661:x 657:{ 651:A 627:P 606:k 584:i 580:C 557:i 553:x 532:k 529:, 523:, 520:2 517:, 514:1 511:= 508:i 488:k 485:, 479:, 476:2 473:, 470:1 467:= 464:i 436:i 432:C 423:0 419:A 398:k 376:0 372:A 349:k 345:C 341:, 335:, 330:1 326:C 305:k 285:} 282:a 279:{ 273:P 263:P 242:k 219:P 199:a 179:P 159:P 139:P 108:P 31:. 20:)

Index

Chain decomposition
Heavy path decomposition
mathematics
order theory
combinatorics
partially ordered set
antichain
chains
Robert P. Dilworth
antichain
disjoint
Galvin
1994

KĹ‘nig's theorem
bipartite graph
Hall's marriage theorem
polynomial time
coloring
incomparability graph
De Bruijn–Erdős theorem
cardinal number
ℵ0
Perles (1963)
Mirsky's theorem
Mirsky's theorem
comparability graph
undirected graph
clique
independent set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑