Knowledge (XXG)

Conformational isomerism

Source 📝

1004: 1028: 210: 805: 1170: 1227: 1182: 1187: 31: 1222: 1217: 939: 1361: 342: 1293: 1208: 582: 197:. It is useful for understanding the stability of different isomers, for example, by taking into account the spatial orientation and through-space interactions of substituents. In addition, conformational analysis can be used to predict and explain product selectivity, mechanisms, and rates of reactions. Conformational analysis also plays an important role in rational, structure-based 866:, the two chair conformers interconvert with rapidly at room temperature, with cyclohexane itself undergoing the ring-flip at a rates of approximately 10 ring-flips/sec, with an overall energy barrier of 10 kcal/mol (42 kJ/mol), which precludes their separation at ambient temperatures. However, at low temperatures below the 265:
energy of the gauche conformer. The anti conformer is, therefore, the most stable (≈ 0 kcal/mol). The three eclipsed conformations with dihedral angles of 0°, 120°, and 240° are transition states between conformers. Note that the two eclipsed conformations have different energies: at 0° the
947:
The mechanism requires that the departing atoms or groups follow antiparallel trajectories. For open chain substrates this geometric prerequisite is met by at least one of the three staggered conformers. For some cyclic substrates such as cyclohexane, however, an antiparallel arrangement may not be
800:
are responsible for the relative stability of conformers and their transition states. The contributions of these factors vary depending on the nature of the substituents and may either contribute positively or negatively to the energy barrier. Computational studies of small molecules such as ethane
1122:
The importance of energy minima and energy maxima is seen by extension of these concepts to more complex molecules for which stable conformations may be predicted as minimum-energy forms. The determination of stable conformations has also played a large role in the establishment of the concept of
540:
Three isotherms are given in the diagram depicting the equilibrium distribution of two conformers at different temperatures. At a free energy difference of 0 kcal/mol, this gives an equilibrium constant of 1, meaning that two conformers exist in a 1:1 ratio. The two have equal free energy;
98:
between the local-minimum conformational isomers. Rotations about single bonds involve overcoming a rotational energy barrier to interconvert one conformer to another. If the energy barrier is low, there is free rotation and a sample of the compound exists as a rapidly equilibrating mixture of
1328:
of the other C-H bond. The energetic stabilization of this effect is maximized when the two orbitals have maximal overlap, occurring in the staggered conformation. There is no overlap in the eclipsed conformation, leading to a disfavored energy maximum. On the other hand, an analysis within
229:
dihedral angle in the case of propane) equal to 60° (or approximately equal to 60° in the case of propane). The three eclipsed conformations, in which the dihedral angles are zero, are transition states (energy maxima) connecting two equivalent energy minima, the staggered conformers.
541:
neither is more stable, so neither predominates compared to the other. A negative difference in free energy means that a conformer interconverts to a thermodynamically more stable conformation, thus the equilibrium constant will always be greater than 1. For example, the Δ
185:
to break for interconversion. (Although the distinction is not always clear-cut, since certain bonds that are formally single bonds actually have double bond character that becomes apparent only when secondary resonance contributors are considered, like the C–N bonds of
1312:
for hydrogen of 120 pm, the hydrogen atoms in ethane are never in each other's way. The question of whether steric hindrance is responsible for the eclipsed energy maximum is a topic of debate to this day. One alternative to the steric hindrance explanation is based on
1085: 816:, which measure the energy difference when a substituent on cyclohexane in the axial as compared to the equatorial position. In large (>14 atom) rings, there are many accessible low-energy conformations which correspond to the strain-free diamond lattice. 854:
molecules. Protein side chains exhibit rotamers, whose distribution is determined by their steric interaction with different conformations of the backbone. This is evident from statistical analysis of the conformations of protein side chains in the
734: 573:), the equilibrium constant between two conformers can be increased by increasing the temperature, so that the amount of the less stable conformer present at equilibrium increases (although it always remains the minor conformer). 528: 908:. This is typical for situations where the conformational equilibration is much faster than reaction to form the product. The dependence of a reaction on the stereochemical orientation is therefore usually only visible in 260:
conformer, where the four carbon centres are coplanar and the substituents are 180° apart (refer to free energy diagram of butane). The energy difference between gauche and anti is 0.9 kcal/mol associated with the
942:
Base-induced bimolecular dehydrohalogenation (an E2 type reaction mechanism). The optimum geometry for the transition state requires the breaking bonds to be antiperiplanar, as they are in the appropriate staggered
537:" is useful in general for estimation of equilibrium constants at room temperature from free energy differences. At lower temperatures, a smaller energy difference is needed to obtain a given equilibrium constant.) 912:, in which a particular conformation is locked by substituents. Prediction of rates of many reactions involving the transition between sp2 and sp3 states, such as ketone reduction, alcohol oxidation or 971:-Bu group in the equatorial position, therefore the chloride group is not antiperiplanar with any vicinal hydrogen (it is gauche to all four). The thermodynamically unfavored conformation has the 213:
Relative conformation energy diagram of butane as a function of dihedral angle. A: antiperiplanar, anti or trans. B: synclinal or gauche. C: anticlinal or eclipsed. D: synperiplanar or cis.
2654:
Mo, Yirong; Wu, Wei; Song, Lingchun; Lin, Menghai; Zhang, Qianer; Gao, Jiali (2004-03-30). "The Magnitude of Hyperconjugation in Ethane: A Perspective from Ab Initio Valence Bond Theory".
414: 1697: 565:
conformers at equilibrium. Conversely, a positive difference in free energy means the conformer already is the more stable one, so the interconversion is an unfavorable equilibrium (
107:(an isomer arising from hindered single-bond rotation). When the time scale for interconversion is long enough for isolation of individual rotamers (usually arbitrarily defined as a 353:, where the relative free energies of isomers determines the population of each isomer and the energy barrier of rotation determines the rate of interconversion between isomers: 266:
two methyl groups are eclipsed, resulting in higher energy (≈ 5 kcal/mol) than at 120°, where the methyl groups are eclipsed with hydrogens (≈ 3.5 kcal/mol).
2330:
Jensen, Frederick R.; Bushweller, C. Hackett (1969-06-01). "Separation of conformers. II. Axial and equatorial isomers of chlorocyclohexane and trideuteriomethoxycyclohexane".
603: 1169: 217:
Rotating their carbon–carbon bonds, the molecules ethane and propane have three local energy minima. They are structurally and energetically equivalent, and are called the
801:
suggest that electrostatic effects make the greatest contribution to the energy barrier; however, the barrier is traditionally attributed primarily to steric interactions.
585:
Boltzmann distribution % of lowest energy conformation in a two component equilibrating system at various temperatures (°C, color) and energy difference in kcal/mol (
2696: 2427: 1656: 828:
are conformational isomers which can be separated due to restricted rotation. The equilibrium between conformational isomers can be observed using a variety of
99:
multiple conformers; if the energy barrier is high enough then there is restricted rotation, a molecule may exist for a relatively long time period as a stable
967:-butylcyclohexyl chloride cannot easily eliminate but instead undergoes substitution (see diagram below) because the most stable conformation has the bulky 449: 870:
point one can directly monitor the equilibrium by NMR spectroscopy and by dynamic, temperature dependent NMR spectroscopy the barrier interconversion.
877:
spectroscopy at varying temperatures. The technique applies to barriers of 8–14 kcal/mol, and species exhibiting such dynamics are often called "
1494:
due to electrostatic repulsion of the fluorine atoms in the 1,3 positions. Evidence for the helix structure in the crystalline state is derived from
983:-Bu group "locks" the ring in the conformation where it is in the equatorial position and substitution reaction is observed. On the other hand, 2409: 2314: 2124: 1107:, exists as an infinite number of conformations with respect to rotation around the C–C bond. Two of these are recognised as energy minimum ( 900:
Reaction rates are highly dependent on the conformation of the reactants. In many cases the dominant product arises from the reaction of the
533:
Thus, every 1.36 kcal/mol corresponds to a factor of about 10 in term of equilibrium constant at temperatures around room temperature. (The "
233:
The butane molecule is the simplest molecule for which single bond rotations result in two types of nonequivalent structures, known as the
2611:
Bickelhaupt, F. Matthias; Baerends, Evert Jan (2003-09-15). "The Case for Steric Repulsion Causing the Staggered Conformation of Ethane".
161:
molecules have different handedness and optical activities, and can only be interconverted by breaking one or more bonds connected to the
2760: 2466: 2203: 1798: 1520: 1236:
groups are in closer proximity than the sum of their van der Waals radii. The interaction between the two methyl groups is repulsive (
1003: 856: 46:
conformation on the left is a transition state between conformers. Above: Newman projection; below: depiction of spatial orientation.
1877: 1734: 850:
constants as measured by NMR. The equation aids in the elucidation of protein folding as well as the conformations of other rigid
1251:
stored in butane conformers with greater steric hindrance than the 'anti'-conformer ground state is given by these values:
905: 1955: 1815: 269:
While simple molecules can be described by these types of conformations, more complex molecules require the use of the
1166:
conformation, which is the energy maximum for ethane. In the eclipsed conformation the torsional angle is minimised.
1115:) forms. The existence of specific conformations is due to hindered rotation around sigma bonds, although a role for 221:. For each molecule, the three substituents emanating from each carbon–carbon bond are staggered, with each H–C–C–H 1052:-butyl group and hydrogen atoms in the 1,3-diaxial position is so strong that the cyclohexane ring will revert to a 345:
Equilibrium distribution of two conformers at different temperatures given the free energy of their interconversion.
1037:
isomer can attain antiperiplanarity only via the unfavored axial conformer; therefore, it does not eliminate. The
804: 359: 209: 1558: 298: 2765: 1535: 1330: 1053: 991:-butylcyclohexyl chloride undergoes elimination because antiperiplanarity of Cl and H can be achieved when the 909: 283: 83: 1553: 1350: 270: 166: 2574:"Rebuttal to the Bickelhaupt–Baerends Case for Steric Repulsion Causing the Staggered Conformation of Ethane" 1360: 1207: 1689:, Vol. 14 (N. L. Allinger, E. L. Eliel and S. H. Wilen, Eds.), Hoboken, NJ:John Wiley & Sons, pp. 1-82; 1563: 1487: 867: 812:
In the case of cyclic systems, the steric effect and contribution to the free energy can be approximated by
138: 1300:
The textbook explanation for the existence of the energy maximum for an eclipsed conformation in ethane is
1041:
isomer is already in the correct geometry in its most stable conformation; therefore, it eliminates easily.
1027: 553:
conformer is −0.47 kcal/mol at 298 K. This gives an equilibrium constant is about 2.2 in favor of the
141:
isomers) where interconversion necessarily involves breaking and reforming of chemical bonds. For example,
1226: 1108: 594: 824:
The short timescale of interconversion precludes the separation of conformational isomers in most cases.
165:
atom and reforming a similar bond in a different direction or spatial orientation. They also differ from
1495: 1181: 1112: 772:
is the molar ideal gas constant (approximately equal to 8.314 J/(mol·K) or 1.987 cal/(mol·K)), and
729:{\displaystyle {\frac {N_{i}}{N_{\text{total}}}}={\frac {e^{-E_{i}/RT}}{\sum _{k=1}^{M}e^{-E_{k}/RT}}}.} 190:, for instance.) Due to rapid interconversion, conformers are usually not isolable at room temperature. 162: 1694: 1186: 2141: 2004:
forms, there is a statistical factor that needs to be taken into account as an entropic term. Thus, Δ
2620: 2073: 1827: 1476: 1309: 1237: 1196:, the two staggered conformations are no longer equivalent and represent two distinct conformers:the 1124: 924: 777: 2483: 2116: 1751: 1568: 1334: 1325: 1073: 843: 350: 318: 30: 888:
is used to measure conformer ratios. For the axial and equatorial conformer of bromocyclohexane, ν
2755: 2164: 1639: 1583: 1573: 1503: 1453: 917: 878: 851: 262: 2039: 1221: 1056:
conformation. The strain in cyclic structures is usually characterized by deviations from ideal
2401: 1790: 2729: 2679: 2671: 2636: 2593: 2554: 2546: 2511: 2503: 2462: 2405: 2347: 2310: 2284: 2266: 2199: 2120: 2089: 2064:
Liu, Shubin (7 February 2013). "Origin and Nature of Bond Rotation Barriers: A Unified View".
1936: 1873: 1843: 1794: 1730: 1631: 1317:
as analyzed within the Natural Bond Orbital framework. In the staggered conformation, one C-H
1296:
Relative energies of conformations of butane with respect to rotation of the central C-C bond.
1241: 1174: 1139: 321:, including the secondary and tertiary structure of biopolymers (nucleic acids and proteins). 309:– energetics related to rotation about the single bond between an sp carbon and an sp carbon. 2710: 2663: 2628: 2585: 2538: 2495: 2441: 2393: 2339: 2274: 2258: 2191: 2156: 2108: 2081: 1928: 1835: 1782: 1722: 1714: 1670: 1621: 1499: 1314: 1301: 1282: 1248: 1151: 1116: 839: 797: 158: 95: 1216: 2378: 1515: 1437: 1399: 1354: 1346: 1333:
shows that 2-orbital-4-electron (steric) repulsions are dominant over hyperconjugation. A
1321: 1232:
Both conformations are free of torsional strain, but, in the gauche conformation, the two
1128: 1065: 885: 835: 324: 134: 59: 2109: 1894: 1709:
Alkorta, Ibon; Jose Elguero; Christian Roussel; Nicolas Vanthuyne; Patrick Piras (2012).
948:
attainable depending on the substituents which might set a conformational lock. Adjacent
2624: 2220: 2077: 1831: 975:-Bu group in the axial position, which is higher in energy by more than 5 kcal/mol (see 938: 341: 2279: 2246: 1718: 1578: 793: 789: 312: 306: 222: 1932: 2749: 2573: 2394: 1783: 1543: 1069: 1061: 928: 523:{\displaystyle K\approx 10^{-\Delta G^{\circ }/(1.36{\text{ kcal}}/\mathrm {mol} )}.} 17: 2706: 2437: 2168: 1666: 1643: 2365: 1963: 1278: 1084: 913: 829: 432: 2484:"Hyperconjugation not steric repulsion leads to the staggered structure of ethane" 956:
positions (that is, both are in axial position, one going up and one going down).
873:
The dynamics of conformational (and other kinds of) isomerism can be monitored by
581: 427:
is the difference in standard free energy between the two conformers in kcal/mol,
1839: 2701: 2432: 1661: 1530: 1525: 1305: 1292: 1159: 1096: 1057: 952:
on a cyclohexane ring can achieve antiperiplanarity only when they occupy trans
949: 863: 825: 293: 289: 198: 187: 182: 127: 119: 67: 2728:
Kenji Monde, Nobuaki Miura, Mai Hashimoto, Tohru Taniguchi, and Tamotsu Inabe
2160: 1318: 1100: 847: 253: 193:
The study of the energetics between different conformations is referred to as
94:. Conformations that correspond to local maxima on the energy surface are the 2705:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 2675: 2640: 2597: 2550: 2507: 2436:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 2364:
Schneider, H.-J.; Schmidt, G.; Thomas F. J. Am. Chem. Soc., 1983, 105, 3556.
2351: 2270: 1635: 2714: 2445: 2195: 1674: 1626: 1609: 1465: 123: 108: 51: 2683: 2667: 2632: 2589: 2558: 2515: 2262: 2093: 1940: 1847: 276:
More specific examples of conformational isomerism are detailed elsewhere:
78:
that differ by rotation about single bonds can be referred to as different
2288: 953: 916:
is possible if all conformers and their relative stability ruled by their
2247:"Bayesian statistical analysis of protein side-chain rotamer preferences" 1483: 1383:
a torsion angle between 30° and 150° or between −30° and −150° is called
1286: 1163: 796:
interactions of the substituents as well as orbital interactions such as
593:
The fractional population distribution of different conformers follows a
569: < 1). Even for highly unfavorable changes (large positive Δ 75: 70:(refer to figure on single bond rotation). While any two arrangements of 27:
Different molecular structures formed only by rotation about single bonds
2343: 2183: 838:
also generates stable conformational isomers which can be observed. The
2737: 1726: 976: 813: 244:
For example, butane has three conformers relating to its two methyl (CH
178: 2726:
Conformational Analysis of Chiral Helical Perfluoroalkyl Chains by VCD
2085: 1665:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (1996) " 1150:
with respect to the nearest hydrogen atom on the other carbon so that
111:
of interconversion of 1000 seconds or longer), the isomers are termed
2542: 2499: 1713:. Advances in Heterocyclic Chemistry. Vol. 105. pp. 1–188. 1548: 1472: 1233: 1193: 1135: 1104: 1089: 440: 63: 35: 301:, which includes cyclohexane conformations as well as other details. 2400:(Dodr. ed.). Sausalito, CA: University Science Books. p.  1610:"Basic terminology of stereochemistry (IUPAC Recommendations 1996)" 133:
Conformational isomers are thus distinct from the other classes of
1491: 1490:
changes the stereochemistry from the zigzag geometry to that of a
1456:
or "Pitzer strain" refers to resistance to twisting about a bond.
1291: 1155: 1083: 937: 803: 580: 1428:
a torsion angle between 90° and 150° or −90° and −150° is called
1390:
a torsion angle between 0° and ±30° or ±150° and 180° is called
1154:
is minimised. The staggered conformation is more stable by 12.5
1021:-Bu group is in the axial position exerting 7-atom interactions. 71: 780:. The denominator of the right side is the partition function. 1919:
Dunbrack, R. (2002). "Rotamer Libraries in the 21st Century".
1711:
Atropisomerism and Axial Chirality in Heteroaromatic Compounds
1414:
a torsion angle between 30° to 90° and −30° to −90° is called
874: 177:) isomers, another class of stereoisomers, which require the 130:
constitutes another common form of conformational isomerism.
1685:Ōki, Michinori (1983) Recent Advances in Atropisomerism, in 1359: 1206: 1173:
staggered conformation left, eclipsed conformation right in
1168: 747:
conformers in thermodynamic equilibrium. On the right side,
927:, which involve the simultaneous removal of a proton and a 286:, including with chair and boat conformations among others. 2537:(6837). Springer Science and Business Media LLC: 539–541. 2529:
Weinhold, Frank (2001). "A new twist on molecular shape".
2028:–0.88 kcal/mol + 0.41 kcal/mol = –0.47 kcal/mol, at 298 K. 1337:
study also emphasizes the importance of steric effects.
923:
One example with configurational isomers is provided by
1281:
exert a greater steric strain because of their greater
82:, conformations that correspond to local minima on the 66:
can be interconverted just by rotations about formally
1667:
Free rotation (hindered rotation, restricted rotation)
252:
conformers, which have the methyls ±60° apart and are
784:
Factors contributing to the free energy of conformers
606: 452: 362: 1872:(8 ed.). Belmont, CA: Brooks/Cole. p. 98. 935:
periplanar positions under the influence of a base.
332:
Free energy and equilibria of conformational isomers
42:
conformation on the right is a conformer, while the
995:-Bu group is in the favorable equatorial position. 2305:Eliel, E. L.; Wilen, S. H.; Mander, L. N. (1994). 1353:for specifying angles (called either torsional or 820:Isolation or observation of conformational isomers 739:The left hand side is the proportion of conformer 728: 522: 408: 38:to interconvert one conformation to another. The 1435:a torsion angle between ±150° and 180° is called 1103:. The smallest alkane with such a chemical bond, 2366:https://pubs.acs.org/doi/pdf/10.1021/ja00349a031 1376:a torsion angle between ±90° and 180° is called 2482:Pophristic, Vojislava; Goodman, Lionel (2001). 2115:(8th ed.). New York: McGraw-Hill. p.  1996:is –0.88 kcal/mol. However, because there are 1574:Molecular Symmetry § Molecular nonrigidity 1142:, a hydrogen atom on one carbon atom has a 60° 2392:Dougherty, Eric V. Anslyn; Dennis, A. (2006). 1397:a torsion angle between 0° and ±30° is called 1369:a torsion angle between 0° and ±90° is called 327:– due to restricted inversion of a bond angle. 2190:. Oxford: Blackwell Scientific Publications. 1357:) between substituents around a single bond: 1095:Alkane conformers arise from rotation around 8: 1009:Thermodynamically unfavored conformation of 409:{\displaystyle K=e^{-\Delta G^{\circ }/RT},} 1816:"The Principles of Conformational Analysis" 1776: 1774: 1772: 1345:Naming alkanes per standards listed in the 1131:of reactions controlled by steric effects. 2423: 2421: 808:Contributions to rotational energy barrier 545:for the transformation of butane from the 315:– due to restricted rotation about a bond. 292:conformations, including medium rings and 2278: 2142:"Conformational analysis of cycloalkanes" 1826:(3945). Elsevier Publishing Co.: 539–44. 1625: 959:One consequence of this analysis is that 707: 701: 693: 683: 672: 654: 648: 640: 634: 623: 613: 607: 605: 501: 496: 491: 480: 474: 463: 451: 390: 384: 373: 361: 2332:Journal of the American Chemical Society 2300: 2298: 2188:IUPAC Compendium of Chemical Terminology 340: 208: 29: 2656:Angewandte Chemie International Edition 2578:Angewandte Chemie International Edition 1781:Anslyn, Eric; Dennis Dougherty (2006). 1595: 2245:Dunbrack, R. L.; Cohen, F. E. (1997). 1693:, DOI: 10.1002/9780470147238.ch1, see 273:to describe the different conformers. 1921:Current Opinion in Structural Biology 577:Population distribution of conformers 7: 2307:Stereochemistry Of Organic Compounds 1603: 1601: 1599: 1017:-butylcyclohexyl chloride where the 2066:The Journal of Physical Chemistry A 1119:is proposed by a competing theory. 2702:Compendium of Chemical Terminology 2433:Compendium of Chemical Terminology 1719:10.1016/B978-0-12-396530-1.00001-2 1662:Compendium of Chemical Terminology 1521:Backbone-dependent rotamer library 857:Backbone-dependent rotamer library 508: 505: 502: 467: 377: 349:Conformational isomers exist in a 25: 2396:Modern Physical Organic Chemistry 1960:University of Illinois at Chicago 1785:Modern Physical Organic Chemistry 557:conformer, or a 31:69 mixture of 443:. In units of kcal/mol at 298 K, 1895:"Butane Conformational Analysis" 1324:donates electron density to the 1225: 1220: 1215: 1185: 1180: 1026: 1002: 896:Conformation-dependent reactions 435:(1.987×10 kcal/mol K), and 1127:and the ability to predict the 1048:The repulsion between an axial 743:in an equilibrating mixture of 439:is the system's temperature in 2572:Weinhold, Frank (2003-09-15). 1984:The standard enthalpy change Δ 1789:. University Science. p.  1255:Gauche, conformer – 3.8 kJ/mol 892:differs by almost 50 cm. 842:relates the dihedral angle of 512: 485: 423:is the equilibrium constant, Δ 34:Rotation about single bond of 1: 2225:Chemical and Engineering News 1933:10.1016/S0959-440X(02)00344-5 1475:groups experience additional 764:) is the energy of conformer 2140:Dragojlovic, Veljko (2015). 1840:10.1126/science.169.3945.539 1211:anti vs gauche conformations 1134:In the example of staggered 904:conformer, by virtue of the 2461:(6 ed.). Brooks Cole. 2227:. American Chemical Society 1200:(left-most, below) and the 2782: 2761:Physical organic chemistry 2381:. Imperial College London. 2107:Carey, Francis A. (2011). 1614:Pure and Applied Chemistry 884:Besides NMR spectroscopy, 2161:10.1007/s40828-015-0014-0 2040:"Conformational Analysis" 1956:"Chapter 6: Conformation" 1687:Topics in Stereochemistry 1559:Macrocyclic stereocontrol 1536:Cyclohexane conformations 1349:is done according to the 1099:hybridised carbon–carbon 914:nucleophilic substitution 337:Equilibrium of conformers 299:Carbohydrate conformation 284:Cyclohexane conformations 241:conformers (see figure). 2736:; 128(18) pp 6000–6001; 2662:(15). Wiley: 1986–1990. 2377:Rzepa, Henry S. (2014). 1699:, accessed 12 June 2014. 1691:published online in 2007 1331:molecular orbital theory 906:Curtin-Hammett principle 830:spectroscopic techniques 86:are specifically called 84:potential energy surface 56:conformational isomerism 2715:10.1351/goldbook.G02593 2446:10.1351/goldbook.T06406 2196:10.1351/goldbook.A00511 2044:Imperial College London 1675:10.1351/goldbook.F02520 1627:10.1351/pac199668122193 1608:Moss, GP (1996-01-01). 1564:Molecular configuration 1488:polytetrafluoroethylene 1076:(Prelog) interactions. 920:is taken into account. 910:configurational isomers 864:cyclohexane derivatives 195:conformational analysis 2668:10.1002/anie.200352931 2633:10.1002/ange.200350947 2590:10.1002/anie.200351777 2457:McMurry, J.E. (2003). 2263:10.1002/pro.5560060807 1814:Barton, Derek (1970). 1482:Replacing hydrogen by 1365: 1297: 1212: 1177: 1111:) and energy maximum ( 1109:staggered conformation 1092: 1080:Alkane stereochemistry 944: 809: 730: 688: 595:Boltzmann distribution 590: 524: 410: 346: 214: 88:conformational isomers 47: 2309:. J. Wiley and Sons. 1756:University of Calgary 1496:X-ray crystallography 1363: 1295: 1210: 1204:(right-most, below). 1172: 1113:eclipsed conformation 1087: 941: 925:elimination reactions 807: 731: 668: 584: 525: 411: 344: 212: 33: 18:Chemical conformation 1477:pentane interference 1364:syn/anti peri/clinal 1310:Van der Waals radius 1238:van der Waals strain 1125:asymmetric induction 979:). As a result, the 778:absolute temperature 604: 450: 360: 219:staggered conformers 157:- configurations of 2625:2003AngCh.115.4315B 2344:10.1021/ja01040a022 2078:2013JPCA..117..962L 1966:on 11 November 2013 1899:University of Texas 1868:J, McMurry (2012). 1832:1970Sci...169..539B 1820:Nobel Media AB 2013 1569:Molecular modelling 1554:Klyne–Prelog system 1351:Klyne–Prelog system 1335:valence bond theory 1326:antibonding orbital 1202:gauche conformation 351:dynamic equilibrium 271:Klyne–Prelog system 2738:Graphical abstract 2221:"Karplus Equation" 1584:Strain (chemistry) 1504:circular dichroism 1441:(ap), also called 1418:(sc), also called 1403:(sp), also called 1366: 1304:, but, with a C-C 1298: 1213: 1178: 1093: 945: 810: 726: 591: 520: 406: 347: 280:Ring conformation 215: 48: 2730:J. Am. Chem. Soc. 2619:(35): 4315–4320. 2613:Angewandte Chemie 2584:(35): 4188–4194. 2494:(6837): 565–568. 2459:Organic Chemistry 2411:978-1-891389-31-3 2338:(12): 3223–3225. 2316:978-0-471-01670-0 2182:McNaught (1997). 2126:978-0-07-340261-1 2111:Organic chemistry 2086:10.1021/jp312521z 1870:Organic chemistry 1752:"Stereochemistry" 1620:(12): 2193–2222. 1285:compared to lone 1258:Eclipsed H and CH 1247:A measure of the 1198:anti-conformation 1175:Newman projection 1140:Newman projection 1088:Conformations of 846:protons to their 721: 629: 626: 549:conformer to the 494: 431:is the universal 148: 144: 101:rotational isomer 96:transition states 16:(Redirected from 2773: 2740: 2723: 2717: 2694: 2688: 2687: 2651: 2645: 2644: 2608: 2602: 2601: 2569: 2563: 2562: 2543:10.1038/35079225 2526: 2520: 2519: 2500:10.1038/35079036 2479: 2473: 2472: 2454: 2448: 2425: 2416: 2415: 2399: 2389: 2383: 2382: 2374: 2368: 2362: 2356: 2355: 2327: 2321: 2320: 2302: 2293: 2292: 2282: 2257:(8): 1661–1681. 2242: 2236: 2235: 2233: 2232: 2219:Dalton, Louisa. 2216: 2210: 2209: 2179: 2173: 2172: 2146: 2137: 2131: 2130: 2114: 2104: 2098: 2097: 2061: 2055: 2054: 2052: 2050: 2035: 2029: 1982: 1976: 1975: 1973: 1971: 1962:. Archived from 1951: 1945: 1944: 1916: 1910: 1909: 1907: 1905: 1890: 1884: 1883: 1865: 1859: 1858: 1856: 1854: 1811: 1805: 1804: 1788: 1778: 1767: 1766: 1764: 1762: 1747: 1741: 1740: 1706: 1700: 1683: 1677: 1654: 1648: 1647: 1629: 1605: 1500:NMR spectroscopy 1454:Torsional strain 1315:hyperconjugation 1308:of 154 pm and a 1302:steric hindrance 1283:electron density 1249:potential energy 1229: 1224: 1219: 1189: 1184: 1152:steric hindrance 1117:hyperconjugation 1066:torsional angles 1030: 1006: 931:from vicinal or 840:Karplus equation 798:hyperconjugation 735: 733: 732: 727: 722: 720: 719: 718: 711: 706: 705: 687: 682: 666: 665: 658: 653: 652: 635: 630: 628: 627: 624: 618: 617: 608: 529: 527: 526: 521: 516: 515: 511: 500: 495: 492: 484: 479: 478: 415: 413: 412: 407: 402: 401: 394: 389: 388: 146: 142: 21: 2781: 2780: 2776: 2775: 2774: 2772: 2771: 2770: 2766:Stereochemistry 2746: 2745: 2744: 2743: 2724: 2720: 2695: 2691: 2653: 2652: 2648: 2610: 2609: 2605: 2571: 2570: 2566: 2528: 2527: 2523: 2481: 2480: 2476: 2469: 2456: 2455: 2451: 2426: 2419: 2412: 2391: 2390: 2386: 2376: 2375: 2371: 2363: 2359: 2329: 2328: 2324: 2317: 2304: 2303: 2296: 2251:Protein Science 2244: 2243: 2239: 2230: 2228: 2218: 2217: 2213: 2206: 2181: 2180: 2176: 2144: 2139: 2138: 2134: 2127: 2106: 2105: 2101: 2063: 2062: 2058: 2048: 2046: 2037: 2036: 2032: 1983: 1979: 1969: 1967: 1954:Bruzik, Karol. 1953: 1952: 1948: 1918: 1917: 1913: 1903: 1901: 1893:Bauld, Nathan. 1892: 1891: 1887: 1880: 1867: 1866: 1862: 1852: 1850: 1813: 1812: 1808: 1801: 1780: 1779: 1770: 1760: 1758: 1749: 1748: 1744: 1737: 1708: 1707: 1703: 1684: 1680: 1655: 1651: 1607: 1606: 1597: 1592: 1516:Anomeric effect 1512: 1471:, the terminal 1462: 1355:dihedral angles 1347:IUPAC Gold Book 1343: 1322:bonding orbital 1272: 1268: 1261: 1230: 1190: 1144:torsional angle 1129:stereochemistry 1082: 1046: 1045: 1044: 1043: 1042: 1031: 1023: 1022: 1007: 898: 891: 886:IR spectroscopy 836:Protein folding 822: 788:The effects of 786: 755: 697: 689: 667: 644: 636: 619: 609: 602: 601: 579: 470: 459: 448: 447: 380: 369: 358: 357: 339: 334: 325:Akamptisomerism 247: 228: 207: 139:configurational 126:of substituted 60:stereoisomerism 28: 23: 22: 15: 12: 11: 5: 2779: 2777: 2769: 2768: 2763: 2758: 2748: 2747: 2742: 2741: 2718: 2689: 2646: 2603: 2564: 2521: 2474: 2468:978-0534000134 2467: 2449: 2417: 2410: 2384: 2379:"Cycloalkanes" 2369: 2357: 2322: 2315: 2294: 2237: 2211: 2205:978-0967855097 2204: 2184:"Atropisomers" 2174: 2132: 2125: 2099: 2072:(5): 962–965. 2056: 2038:Rzepa, Henry. 2030: 1977: 1946: 1927:(4): 431–440. 1911: 1885: 1878: 1860: 1806: 1800:978-1891389313 1799: 1768: 1742: 1735: 1701: 1678: 1649: 1594: 1593: 1591: 1588: 1587: 1586: 1581: 1579:Steric effects 1576: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1540: 1539: 1528: 1523: 1518: 1511: 1508: 1461: 1458: 1451: 1450: 1438:antiperiplanar 1433: 1426: 1412: 1395: 1388: 1381: 1374: 1342: 1339: 1275: 1274: 1270: 1266: 1263: 1259: 1256: 1242:energy barrier 1214: 1179: 1081: 1078: 1032: 1025: 1024: 1008: 1001: 1000: 999: 998: 997: 902:less prevalent 897: 894: 889: 821: 818: 785: 782: 751: 737: 736: 725: 717: 714: 710: 704: 700: 696: 692: 686: 681: 678: 675: 671: 664: 661: 657: 651: 647: 643: 639: 633: 622: 616: 612: 578: 575: 531: 530: 519: 514: 510: 507: 504: 499: 490: 487: 483: 477: 473: 469: 466: 462: 458: 455: 417: 416: 405: 400: 397: 393: 387: 383: 379: 376: 372: 368: 365: 338: 335: 333: 330: 329: 328: 322: 316: 313:Atropisomerism 310: 307:Allylic strain 304: 303: 302: 296: 287: 248:) groups: two 245: 226: 223:dihedral angle 206: 203: 120:atropisomerism 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2778: 2767: 2764: 2762: 2759: 2757: 2754: 2753: 2751: 2739: 2735: 2731: 2727: 2722: 2719: 2716: 2712: 2708: 2704: 2703: 2698: 2693: 2690: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2650: 2647: 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2615:(in German). 2614: 2607: 2604: 2599: 2595: 2591: 2587: 2583: 2579: 2575: 2568: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2525: 2522: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2478: 2475: 2470: 2464: 2460: 2453: 2450: 2447: 2443: 2439: 2438:torsion angle 2435: 2434: 2429: 2424: 2422: 2418: 2413: 2407: 2403: 2398: 2397: 2388: 2385: 2380: 2373: 2370: 2367: 2361: 2358: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2323: 2318: 2312: 2308: 2301: 2299: 2295: 2290: 2286: 2281: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2238: 2226: 2222: 2215: 2212: 2207: 2201: 2197: 2193: 2189: 2185: 2178: 2175: 2170: 2166: 2162: 2158: 2154: 2150: 2143: 2136: 2133: 2128: 2122: 2118: 2113: 2112: 2103: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2060: 2057: 2045: 2041: 2034: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1981: 1978: 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1912: 1900: 1896: 1889: 1886: 1881: 1879:9780840054449 1875: 1871: 1864: 1861: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1796: 1792: 1787: 1786: 1777: 1775: 1773: 1769: 1757: 1753: 1746: 1743: 1738: 1736:9780123965301 1732: 1728: 1724: 1720: 1716: 1712: 1705: 1702: 1698: 1695: 1692: 1688: 1682: 1679: 1676: 1672: 1668: 1664: 1663: 1658: 1653: 1650: 1645: 1641: 1637: 1633: 1628: 1623: 1619: 1615: 1611: 1604: 1602: 1600: 1596: 1589: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1544:Gauche effect 1542: 1537: 1534: 1533: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1513: 1509: 1507: 1506:in solution. 1505: 1501: 1497: 1493: 1489: 1485: 1480: 1478: 1474: 1470: 1468: 1460:Special cases 1459: 1457: 1455: 1448: 1444: 1440: 1439: 1434: 1431: 1427: 1425: 1421: 1417: 1413: 1410: 1406: 1402: 1401: 1400:synperiplanar 1396: 1393: 1389: 1386: 1382: 1379: 1375: 1372: 1368: 1367: 1362: 1358: 1356: 1352: 1348: 1340: 1338: 1336: 1332: 1329:quantitative 1327: 1323: 1320: 1316: 1311: 1307: 1303: 1294: 1290: 1288: 1284: 1280: 1279:methyl groups 1277:The eclipsed 1264: 1257: 1254: 1253: 1252: 1250: 1245: 1243: 1239: 1235: 1228: 1223: 1218: 1209: 1205: 1203: 1199: 1195: 1188: 1183: 1176: 1171: 1167: 1165: 1161: 1157: 1153: 1149: 1148:torsion angle 1145: 1141: 1137: 1132: 1130: 1126: 1120: 1118: 1114: 1110: 1106: 1102: 1098: 1091: 1086: 1079: 1077: 1075: 1071: 1070:Pitzer strain 1067: 1063: 1062:Baeyer strain 1059: 1055: 1051: 1040: 1036: 1029: 1020: 1016: 1012: 1005: 996: 994: 990: 986: 982: 978: 974: 970: 966: 962: 957: 955: 951: 940: 936: 934: 930: 929:leaving group 926: 921: 919: 915: 911: 907: 903: 895: 893: 887: 882: 880: 876: 871: 869: 865: 860: 858: 853: 849: 845: 841: 837: 833: 831: 827: 819: 817: 815: 806: 802: 799: 795: 791: 790:electrostatic 783: 781: 779: 775: 771: 767: 763: 760:= 1, 2, ..., 759: 754: 750: 746: 742: 723: 715: 712: 708: 702: 698: 694: 690: 684: 679: 676: 673: 669: 662: 659: 655: 649: 645: 641: 637: 631: 620: 614: 610: 600: 599: 598: 596: 588: 583: 576: 574: 572: 568: 564: 560: 556: 552: 548: 544: 538: 536: 517: 497: 488: 481: 475: 471: 464: 460: 456: 453: 446: 445: 444: 442: 438: 434: 430: 426: 422: 403: 398: 395: 391: 385: 381: 374: 370: 366: 363: 356: 355: 354: 352: 343: 336: 331: 326: 323: 320: 317: 314: 311: 308: 305: 300: 297: 295: 291: 288: 285: 282: 281: 279: 278: 277: 274: 272: 267: 264: 259: 255: 251: 242: 240: 236: 231: 225:(and H–C–C–CH 224: 220: 211: 204: 202: 200: 196: 191: 189: 184: 180: 176: 172: 168: 164: 160: 156: 152: 140: 136: 135:stereoisomers 131: 129: 125: 121: 118: 114: 110: 106: 102: 97: 93: 89: 85: 81: 80:conformations 77: 73: 69: 65: 62:in which the 61: 58:is a form of 57: 53: 45: 41: 37: 32: 19: 2733: 2725: 2721: 2700: 2692: 2659: 2655: 2649: 2616: 2612: 2606: 2581: 2577: 2567: 2534: 2530: 2524: 2491: 2487: 2477: 2458: 2452: 2431: 2395: 2387: 2372: 2360: 2335: 2331: 2325: 2306: 2254: 2250: 2240: 2229:. Retrieved 2224: 2214: 2187: 2177: 2152: 2148: 2135: 2110: 2102: 2069: 2065: 2059: 2047:. Retrieved 2043: 2033: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1980: 1968:. Retrieved 1964:the original 1959: 1949: 1924: 1920: 1914: 1902:. Retrieved 1898: 1888: 1869: 1863: 1851:. Retrieved 1823: 1819: 1809: 1784: 1759:. Retrieved 1755: 1745: 1710: 1704: 1690: 1686: 1681: 1660: 1652: 1617: 1613: 1481: 1466: 1463: 1452: 1449:conformation 1446: 1442: 1436: 1429: 1423: 1419: 1415: 1411:conformation 1408: 1404: 1398: 1391: 1384: 1377: 1370: 1344: 1341:Nomenclature 1299: 1276: 1273:– 19 kJ/mol. 1246: 1231: 1201: 1197: 1191: 1147: 1143: 1133: 1121: 1094: 1074:transannular 1054:twisted boat 1049: 1047: 1038: 1034: 1018: 1014: 1010: 992: 988: 984: 980: 972: 968: 964: 960: 958: 950:substituents 946: 943:conformation 932: 922: 901: 899: 883: 872: 861: 834: 826:Atropisomers 823: 811: 787: 773: 769: 765: 761: 757: 752: 748: 744: 740: 738: 592: 586: 570: 566: 562: 558: 554: 550: 546: 542: 539: 534: 532: 436: 433:gas constant 428: 424: 420: 418: 348: 275: 268: 257: 254:enantiomeric 249: 243: 238: 234: 232: 218: 216: 194: 192: 183:double bonds 174: 170: 154: 150: 132: 128:cyclohexanes 116: 113:atropisomers 112: 104: 100: 91: 87: 79: 68:single bonds 55: 49: 43: 39: 2049:11 November 1970:10 November 1853:10 November 1750:Hunt, Ian. 1727:10261/62060 1531:Cyclohexane 1526:Cycloalkane 1306:bond length 1265:Eclipsed CH 1262:– 16 kJ/mol 1101:sigma bonds 1058:bond angles 868:coalescence 294:macrocycles 290:Cycloalkane 199:drug design 179:π-component 2750:Categories 2231:2013-10-27 1904:28 October 1761:28 October 1590:References 1430:anticlinal 1392:periplanar 1240:), and an 848:J-coupling 493: kcal 92:conformers 2756:Isomerism 2676:1433-7851 2641:0044-8249 2598:1433-7851 2551:0028-0836 2508:1476-4687 2352:0002-7863 2271:0961-8368 2149:Chemtexts 2000:possible 1636:1365-3075 1498:and from 1416:synclinal 1244:results. 1162:than the 1064:), ideal 879:fluxional 852:aliphatic 695:− 670:∑ 642:− 535:1.36 rule 476:∘ 468:Δ 465:− 457:≈ 386:∘ 378:Δ 375:− 256:, and an 167:geometric 124:ring-flip 109:half-life 52:chemistry 2684:15065281 2559:11385553 2516:11385566 2169:94348487 2094:23327680 1941:12163064 1848:17746022 1644:98272391 1510:See also 1484:fluorine 1469:-pentane 1287:hydrogen 1164:eclipsed 814:A values 76:molecule 44:eclipsed 2621:Bibcode 2289:9260279 2280:2143774 2074:Bibcode 2022:H° + RT 1988:° from 1828:Bibcode 1289:atoms. 977:A value 954:diaxial 844:vicinal 776:is the 441:kelvins 319:Folding 239:gauche- 159:organic 137:(i. e. 122:). The 105:rotamer 64:isomers 2707:gauche 2682:  2674:  2639:  2596:  2557:  2549:  2531:Nature 2514:  2506:  2488:Nature 2465:  2408:  2350:  2313:  2287:  2277:  2269:  2202:  2167:  2123:  2092:  2008:° = Δ 2002:gauche 1990:gauche 1939:  1876:  1846:  1797:  1733:  1642:  1634:  1549:Isomer 1473:methyl 1447:trans- 1420:gauche 1385:clinal 1269:and CH 1234:methyl 1194:butane 1136:ethane 1105:ethane 1090:Ethane 918:strain 794:steric 589:-axis) 559:gauche 547:gauche 419:where 263:strain 250:gauche 237:- and 188:amides 163:chiral 149:- and 40:gauche 36:butane 2697:IUPAC 2428:IUPAC 2165:S2CID 2155:(3). 2145:(PDF) 2024:ln 2 1657:IUPAC 1640:S2CID 1492:helix 1443:anti- 1319:sigma 1072:) or 1035:trans 1011:trans 961:trans 625:total 205:Types 175:trans 74:in a 72:atoms 2734:2006 2680:PMID 2672:ISSN 2637:ISSN 2594:ISSN 2555:PMID 2547:ISSN 2512:PMID 2504:ISSN 2463:ISBN 2406:ISBN 2348:ISSN 2311:ISBN 2285:PMID 2267:ISSN 2200:ISBN 2121:ISBN 2090:PMID 2051:2013 2018:S° = 2012:° – 1994:anti 1972:2013 1937:PMID 1906:2013 1874:ISBN 1855:2013 1844:PMID 1795:ISBN 1763:2013 1731:ISBN 1696:and 1632:ISSN 1502:and 1432:(ac) 1424:skew 1409:cis- 1405:syn- 1378:anti 1033:The 1015:tert 989:tert 965:tert 933:anti 792:and 563:anti 555:anti 551:anti 489:1.36 258:anti 235:anti 117:see: 2711:doi 2709:". 2664:doi 2629:doi 2617:115 2586:doi 2539:doi 2535:411 2496:doi 2492:411 2442:doi 2440:". 2402:104 2340:doi 2275:PMC 2259:doi 2192:doi 2157:doi 2117:105 2082:doi 2070:117 1998:two 1992:to 1929:doi 1836:doi 1824:169 1723:hdl 1715:doi 1671:doi 1669:". 1622:doi 1486:in 1464:In 1445:or 1422:or 1407:or 1394:(p) 1387:(c) 1380:(a) 1373:(s) 1371:syn 1192:In 1160:mol 1146:or 1138:in 1039:cis 1013:-4- 987:-4- 985:cis 963:-4- 890:CBr 881:". 875:NMR 862:In 597:: 181:of 171:cis 103:or 90:or 50:In 2752:: 2732:; 2699:, 2678:. 2670:. 2660:43 2658:. 2635:. 2627:. 2592:. 2582:42 2580:. 2576:. 2553:. 2545:. 2533:. 2510:. 2502:. 2490:. 2486:. 2430:, 2420:^ 2404:. 2346:. 2336:91 2334:. 2297:^ 2283:. 2273:. 2265:. 2253:. 2249:. 2223:. 2198:. 2186:. 2163:. 2151:. 2147:. 2119:. 2088:. 2080:. 2068:. 2042:. 1958:. 1935:. 1925:12 1923:. 1897:. 1842:. 1834:. 1822:. 1818:. 1793:. 1791:95 1771:^ 1754:. 1729:. 1721:. 1659:, 1638:. 1630:. 1618:68 1616:. 1612:. 1598:^ 1479:. 1156:kJ 1097:sp 859:. 832:. 768:, 571:G° 543:G° 461:10 425:G° 201:. 54:, 2713:: 2686:. 2666:: 2643:. 2631:: 2623:: 2600:. 2588:: 2561:. 2541:: 2518:. 2498:: 2471:. 2444:: 2414:. 2354:. 2342:: 2319:. 2291:. 2261:: 2255:6 2234:. 2208:. 2194:: 2171:. 2159:: 2153:1 2129:. 2096:. 2084:: 2076:: 2053:. 2026:= 2020:Δ 2016:Δ 2014:T 2010:H 2006:G 1986:H 1974:. 1943:. 1931:: 1908:. 1882:. 1857:. 1838:: 1830:: 1803:. 1765:. 1739:. 1725:: 1717:: 1673:: 1646:. 1624:: 1538:. 1467:n 1271:3 1267:3 1260:3 1158:/ 1068:( 1060:( 1050:t 1019:t 993:t 981:t 973:t 969:t 774:T 770:R 766:k 762:M 758:k 756:( 753:k 749:E 745:M 741:i 724:. 716:T 713:R 709:/ 703:k 699:E 691:e 685:M 680:1 677:= 674:k 663:T 660:R 656:/ 650:i 646:E 638:e 632:= 621:N 615:i 611:N 587:x 567:K 561:: 518:. 513:) 509:l 506:o 503:m 498:/ 486:( 482:/ 472:G 454:K 437:T 429:R 421:K 404:, 399:T 396:R 392:/ 382:G 371:e 367:= 364:K 246:3 227:3 173:/ 169:( 155:S 153:/ 151:R 147:D 145:/ 143:L 115:( 20:)

Index

Chemical conformation

butane
chemistry
stereoisomerism
isomers
single bonds
atoms
molecule
potential energy surface
transition states
half-life
atropisomerism
ring-flip
cyclohexanes
stereoisomers
configurational
organic
chiral
geometric
π-component
double bonds
amides
drug design

dihedral angle
enantiomeric
strain
Klyne–Prelog system
Cyclohexane conformations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.