Knowledge

Chemical reaction network theory

Source đź“ť

1927:
One of the main problems of chemical reaction network theory is the connection between network structure and properties of dynamics. This connection is important even for linear systems, for example, the simple cycle with equal interaction weights has the slowest decay of the oscillations among all
2576:
The quasi steady state approximation or QSS (some of the species, very often these are some of intermediates or radicals, exist in relatively small amounts; they reach quickly their QSS concentrations, and then follow, as dependent quantities, the dynamics of these other species remaining close to
1804:
Results regarding stable periodic solutions attempt to rule out "unusual" behaviour. If a given chemical reaction network admits a stable periodic solution, then some initial conditions will converge to an infinite cycle of oscillating reactant concentrations. For some parameter values it may even
2568:
Modelling of large reaction networks meets various difficulties: the models include too many unknown parameters and high dimension makes the modelling computationally expensive. The model reduction methods were developed together with the first theories of complex chemical reactions. Three simple
930: 147:. The paper of R. Aris in this journal was communicated to the journal by C. Truesdell. It opened the series of papers of other authors (which were communicated already by R. Aris). The well known papers of this series are the works of Frederick J. Krambeck, Roy Jackson, 329: 1145:
For physical reasons, it is usually assumed that reactant concentrations cannot be negative, and that each reaction only takes place if all its reactants are present, i.e. all have non-zero concentration. For mathematical reasons, it is usually assumed that
775: 1795:
in population dynamics can go extinct for some (or all) initial conditions. Similar questions are of interests to chemists and biochemists, i.e. if a given reactant was present to start with, can it ever be completely used up?
3042: 786: 2051: 1237:
These results relate to whether a chemical reaction network can produce significantly different behaviour depending on the initial concentrations of its constituent reactants. This has applications in e.g. modelling
3016:
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chemical Engineering Science. 1987 31, 42(10), 2229-2268.
2486: 155:
and others, published in the 1970s. In his second "prolegomena" paper, R. Aris mentioned the work of N.Z. Shapiro, L.S. Shapley (1965), where an important part of his scientific program was realized.
2349: 2155: 1931:
For nonlinear systems, many connections between structure and dynamics have been discovered. First of all, these are results about stability. For some classes of networks, explicit construction of
1763:
are the intermediates on the surface (adatoms, adsorbed molecules or radicals). This system may have two stable steady states of the surface for the same concentrations of the gaseous components.
1190:), and that increasing the concentration of a reactant increases the rate of any reactions that use it up. This second assumption is compatible with all physically reasonable kinetics, including 203: 198: 2573:
The quasi-equilibrium (or pseudo-equilibrium, or partial equilibrium) approximation (a fraction of reactions approach their equilibrium fast enough and, after that, remain almost equilibrated).
1242:
switches—a high concentration of a key chemical at steady state could represent a biological process being "switched on" whereas a low concentration would represent being "switched off".
2550: 2584:
or bottleneck is a relatively small part of the reaction network, in the simplest cases it is a single reaction, which rate is a good approximation to the reaction rate of the whole network.
513:
Mathematical modelling of chemical reaction networks usually focuses on what happens to the concentrations of the various chemicals involved as time passes. Following the example above, let
1901: 1504: 1347: 1438: 989:. The number of molecules of each reactant used up each time a reaction occurs is constant, as is the number of molecules produced of each product. These numbers are referred to as the 3026: 1775:
models) tend to be subject to random background noise, an unstable steady state solution is unlikely to be observed in practice. Instead of them, stable oscillations or other types of
2671:
F.J. Krambeck, The mathematical structure of chemical kinetics in homogeneous single-phase systems, Archive for Rational Mechanics and Analysis, 1970, Volume 38, Issue 5, pp 317-347,
1045: 2716:
R. Aris, Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda, Archive for Rational Mechanics and Analysis, 1968, Volume 27, Issue 5, pp 356-364
987: 1565: 2279: 2249: 1673: 626: 496: 460: 2382: 1761: 1739: 1717: 1641: 1619: 1587: 587: 551: 413: 377: 1695: 670: 2181: 1229:
As chemical reaction network theory is a diverse and well-established area of research, there is a significant variety of results. Some key areas are outlined below.
1094: 1074: 2212: 2078: 1173: 1127: 2815: 2899: 2662:
R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archive for Rational Mechanics and Analysis, 1965, Volume 19, Issue 2, pp 81-99.
1817:. The simplest catalytic oscillator (nonlinear self-oscillations without autocatalysis) can be produced from the catalytic trigger by adding a "buffer" step. 681: 2699: 143: 925:{\displaystyle {\dot {x}}\equiv {\frac {dx}{dt}}=\left({\begin{array}{c}{\frac {da}{dt}}\\{\frac {db}{dt}}\\{\frac {dc}{dt}}\\\vdots \end{array}}\right).} 2787: 2084:-th component. The theorem about systems without interactions between different components states that if a network consists of reactions of the form 1953: 96:
Three eras of chemical dynamics can be revealed in the flux of research and publications. These eras may be associated with leaders: the first is the
119:
was searching for the general law of chemical reaction related to specific chemical properties. The term "chemical dynamics" belongs to van’t Hoff.
3043:
Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph.
347:
form a reaction network. The reactions are represented by the arrows. The reactants appear to the left of the arrows, in this example they are
122:
The Semenov-Hinshelwood focus was an explanation of critical phenomena observed in many chemical systems, in particular in flames. A concept
1813:
behaviour. While stable periodic solutions are unusual in real-world chemical reaction networks, well-known examples exist, such as the
1935:
is possible without apriori assumptions about special relations between rate constants. Two results of this type are well known: the
1814: 1523: 628:, and so on. Since all of these concentrations will not in general remain constant, they can be written as a function of time e.g. 2977:
V.I. Bykov, G.S. Yablonskii, V.F. Kim, "On the simple model of kinetic self-oscillations in catalytic reaction of CO oxidation",
3073: 2852: 2393: 939: 116: 97: 158:
Since then, the chemical reaction network theory has been further developed by a large number of researchers internationally.
2284: 2087: 324:{\displaystyle {\begin{aligned}{\ce {{2H2}+ O2}}&{\ce {-> 2H2O}}\\{\ce {{C}+ O2}}&{\ce {-> CO2}}\end{aligned}}} 45:
systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in
2577:
the QSS). The QSS is defined as the steady state under the condition that the concentrations of other species do not change.
1195: 2916:
I. Otero-Muras, J. R. Banga and A. A. Alonso, "Characterizing multistationarity regimes in biochemical reaction networks",
1771:
Stability determines whether a given steady state solution is likely to be observed in reality. Since real systems (unlike
1202:
kinetics. Sometimes further assumptions are made about reaction rates, e.g. that all reactions obey mass action kinetics.
2869: 1199: 2638: 2588:
The quasi-equilibrium approximation and the quasi steady state methods were developed further into the methods of slow
2736: 2725:
N.Z. Shapiro, L.S. Shapley, Mass action law and the Gibbs free energy function, SIAM J. Appl. Math. 16 (1965) 353–375.
2491: 993:
of the reaction, and the difference between the two (i.e. the overall number of molecules used up or produced) is the
2766:
M. Mincheva and D. Siegel, "Nonnegativity and positiveness of solutions to mass action reaction–diffusion systems",
1946:
The deficiency zero theorem gives sufficient conditions for the existence of the Lyapunov function in the classical
2897:
E. Feliu, M. Knudsen and C. Wiuf., "Signaling cascades: Consequences of varying substrate and phosphatase levels",
2626: 1825: 1461: 1261: 1182:
It is also commonly assumed that no reaction features the same chemical as both a reactant and a product (i.e. no
179: 2749:
H. Kunze and D. Siegel, "Monotonicity properties of chemical reactions with a single initial bimolecular step",
148: 2614:Ăśber simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme 1370: 105: 90: 2784: 1218: 1003: 3007:
B.L. Clarke, Theorems on chemical network stability. The Journal of Chemical Physics. 1975, 62(3), 773-775.
69:
Dynamical properties of reaction networks were studied in chemistry and physics after the invention of the
1130: 1051: 58: 2593: 2581: 1947: 506:
and neither of the products are used in the reactions, the set of reactants and the set of products are
50: 1246: 1806: 1772: 1054: 948: 129:
Aris’ activity was concentrated on the detailed systematization of mathematical ideas and approaches.
126:
elaborated by these researchers influenced many sciences, especially nuclear physics and engineering.
1788: 936: 503: 34: 3027:
Thermodynamic function analogue for reactions proceeding without interaction of various substances
1532: 2954: 2934: 2873: 2596:. The methods of limiting steps gave rise to many methods of the analysis of the reaction graph. 2589: 2254: 2221: 1191: 138: 78: 70: 38: 2354: 1646: 596: 469: 430: 1744: 1722: 1700: 1624: 1592: 1570: 631: 560: 524: 386: 350: 1932: 1678: 1134: 997:. This means that the equation representing the chemical reaction network can be rewritten as 183: 171: 2850:
M. Domijan and M. Kirkilionis, "Bistability and oscillations in chemical reaction networks",
2160: 1079: 1059: 2385: 942: 101: 82: 74: 54: 2190: 2056: 112:
era. The "eras" may be distinguished based on the main focuses of the scientific leaders:
2791: 1176: 1149: 1103: 152: 134: 109: 2937:, T.A. Akramov, "Multiplicity of the Steady State in Heterogeneous Catalytic Reactions", 17: 770:{\displaystyle x(t)=\left({\begin{array}{c}a(t)\\b(t)\\c(t)\\\vdots \end{array}}\right)} 499: 123: 3067: 1250: 1187: 990: 518: 507: 1810: 1206: 46: 2959:"The simplest catalytic mechanism permitting several steady states of the surface" 133:
The mathematical discipline "chemical reaction network theory" was originated by
2046:{\displaystyle G(c)=\sum _{i}c_{i}\left(\ln {\frac {c_{i}}{c_{i}^{*}}}-1\right)} 1210: 1919:
where (BZ) is an intermediate that does not participate in the main reaction.
187: 81:(1901), development of the quantitative theory of chemical chain reactions by 1697:
is the "adsorption place" on the surface of the solid catalyst (for example,
1776: 1183: 86: 42: 2833:
G. Craciun and C. Pantea, "Identifiability of chemical reaction networks",
2281:
are non-negative integers) and allows the stoichiometric conservation law
2807: 2627:
Some Problems Relating to Chain Reactions and to the Theory of Combustion
1214: 380: 2958: 2613: 1941:
theorem about systems without interactions between different components
1792: 1239: 1133:
where each output value represents a reaction rate, referred to as the
175: 2813:
properties, injectivity and stability in chemical reaction systems",
424: 416: 833: 2995: 2878:"Extended detailed balance for systems with irreversible reactions" 2650: 2877: 2734:
P. Érdi and J. Tóth, "Mathematical models of chemical reactions",
463: 427:). The products appear to the right of the arrows, here they are 3058: 2994:
A.N. Gorban, N. Jarman, E. Steur, C. van Leeuwen, I.Yu. Tyukin,
2653:, Mathematical Modelling of Natural Phenomena 10(5) (2015), 1–5. 137:, a famous expert in chemical engineering, with the support of 2680:
F. J. M. Horn and R. Jackson, "General Mass Action Kinetics",
2697:
M. Feinberg, "Complex balancing in general kinetic systems",
2998:
Math. Model. Nat. Phenom. Vol. 10, No. 3, 2015, pp. 212–231.
2616:, Monatshefte fĂĽr Chemie / Chemical Monthly 32(8), 849--906. 2481:{\displaystyle \sum _{i}m_{i}|c_{i}^{1}(t)-c_{i}^{2}(t)|} 1661: 1607: 1547: 1277: 611: 575: 539: 484: 445: 401: 365: 313: 293: 263: 239: 222: 73:. The essential steps in this study were introduction of 3045:
Current Opinion in Chemical Engineering 2018 21C, 48-59.
3029:, Chemical Engineering Science, 1986 41(11), 2739-2745. 3059:
Specialist wiki on the mathematics of reaction networks
2344:{\displaystyle M(c)=\sum _{i}m_{i}c_{i}={\text{const}}} 2150:{\displaystyle n_{k}A_{i}\to \sum _{j}\beta _{kj}A_{j}} 1076:
represents the net stoichiometry of a reaction, and so
2516: 1862: 1407: 1312: 705: 2494: 2396: 2357: 2287: 2257: 2224: 2193: 2163: 2090: 2059: 1956: 1828: 1747: 1725: 1703: 1681: 1649: 1627: 1595: 1573: 1535: 1464: 1373: 1264: 1152: 1106: 1082: 1062: 1006: 951: 789: 684: 634: 599: 563: 527: 472: 433: 389: 353: 201: 57:
due to the interesting problems that arise from the
675:These variables can then be combined into a vector 2544: 2480: 2376: 2343: 2273: 2243: 2206: 2175: 2149: 2072: 2045: 1895: 1755: 1733: 1711: 1689: 1667: 1635: 1613: 1581: 1559: 1498: 1432: 1341: 1253:that allows multiplicity of steady states (1976): 1167: 1121: 1088: 1068: 1039: 981: 924: 769: 664: 620: 581: 545: 490: 454: 407: 371: 323: 166:A chemical reaction network (often abbreviated to 1870: 1869: 1852: 1851: 1415: 1414: 1397: 1396: 1320: 1319: 1302: 1301: 141:, the founder and editor-in-chief of the journal 2545:{\displaystyle c^{1}(t)\;{\mbox{and}}\;c^{2}(t)} 1928:linear systems with the same number of states. 3037: 3035: 1896:{\displaystyle {\ce {{B}+ Z <=> (BZ)}}} 1499:{\displaystyle {\ce {{AZ}+BZ -> {AB}+2Z}}} 1342:{\displaystyle {\ce {{A2}+2Z <=> 2AZ}}} 780:and their evolution with time can be written 8: 2783:P. De Leenheer, D. Angeli and E. D. Sontag, 502:). In this example, since the reactions are 3025:A.N. Gorban, V.I. Bykov, G.S. Yablonskii, 1249:is the simplest catalytic reaction without 144:Archive for Rational Mechanics and Analysis 2522: 2514: 1923:Network structure and dynamical properties 1433:{\displaystyle {\ce {{B}+Z <=> BZ}}} 2639:Chemical Kinetics in the Past Few Decades 2527: 2515: 2499: 2493: 2473: 2458: 2453: 2431: 2426: 2417: 2411: 2401: 2395: 2362: 2356: 2336: 2327: 2317: 2307: 2286: 2262: 2256: 2229: 2223: 2198: 2192: 2162: 2141: 2128: 2118: 2105: 2095: 2089: 2064: 2058: 2024: 2019: 2009: 2003: 1986: 1976: 1955: 1881: 1871: 1864: 1863: 1861: 1853: 1846: 1844: 1843: 1841: 1830: 1829: 1827: 1748: 1746: 1726: 1724: 1704: 1702: 1682: 1680: 1660: 1655: 1650: 1648: 1628: 1626: 1606: 1601: 1596: 1594: 1574: 1572: 1546: 1541: 1536: 1534: 1491: 1480: 1466: 1465: 1463: 1416: 1409: 1408: 1406: 1398: 1391: 1389: 1388: 1386: 1375: 1374: 1372: 1334: 1321: 1314: 1313: 1311: 1303: 1296: 1294: 1293: 1291: 1287: 1276: 1271: 1266: 1265: 1263: 1151: 1105: 1081: 1061: 1008: 1007: 1005: 953: 952: 950: 884: 860: 836: 832: 805: 791: 790: 788: 704: 683: 633: 610: 605: 600: 598: 574: 569: 564: 562: 538: 533: 528: 526: 483: 478: 473: 471: 444: 439: 434: 432: 400: 395: 390: 388: 364: 359: 354: 352: 312: 307: 299: 292: 287: 275: 274: 262: 257: 252: 245: 238: 233: 221: 216: 211: 207: 206: 202: 200: 2806:M. Banaji, P. Donnell and S. Baigent, " 2605: 1845: 1800:Existence of stable periodic solutions 1390: 1295: 1221:concentration of reactants, and so on. 1040:{\displaystyle {\dot {x}}=\Gamma V(x)} 77:for the complex chemical reactions by 53:. It has also attracted interest from 2996:Leaders do not Look Back, or do They? 2796:J. Math. Chem.', 41(3):295–314, 2007. 2785:"Monotone chemical reaction networks" 7: 1819: 1455: 1364: 1255: 192: 182:the set of reactants), and a set of 108:era and the third is definitely the 2560:) monotonically decreases in time. 85:(1934), development of kinetics of 1083: 1063: 1022: 100:era, the second may be called the 25: 2651:Three Waves of Chemical Dynamics 2569:basic ideas have been invented: 31:Chemical reaction network theory 2953:V.I. Bykov, V.I. Elokhin, G.S. 2933:M.G. Slin'ko, V.I. Bykov, G.S. 982:{\displaystyle {\dot {x}}=f(x)} 945:, commonly written in the form 593:represent the concentration of 557:represent the concentration of 2539: 2533: 2511: 2505: 2474: 2470: 2464: 2443: 2437: 2418: 2297: 2291: 2111: 1966: 1960: 1888: 1882: 1872: 1847: 1815:Belousov–Zhabotinsky reactions 1477: 1417: 1392: 1322: 1297: 1162: 1156: 1116: 1110: 1034: 1028: 976: 970: 749: 743: 733: 727: 717: 711: 694: 688: 659: 653: 644: 638: 300: 246: 1: 2637:Hinshelwood's Nobel Lecture 1787:Persistence has its roots in 1560:{\displaystyle {\ce {A2, B}}} 2882:Chemical Engineering Science 2649:A.N. Gorban, G.S. Yablonsky 2187:is the number of reactions, 2080:is the concentration of the 41:the behaviour of real-world 2737:Manchester University Press 2274:{\displaystyle \beta _{kj}} 2244:{\displaystyle n_{k}\geq 1} 1668:{\displaystyle {\ce {CO2}}} 1177:continuously differentiable 621:{\displaystyle {\ce {H2O}}} 491:{\displaystyle {\ce {CO2}}} 455:{\displaystyle {\ce {H2O}}} 186:. For example, the pair of 178:, a set of products (often 27:Area of applied mathematics 3090: 2963:React. Kinet. Catal. Lett. 2700:Arch. Rational Mech. Anal. 2625:Semyonov's Nobel Lecture 2377:{\displaystyle m_{i}>0} 1767:Stability of steady states 1756:{\displaystyle {\ce {BZ}}} 1734:{\displaystyle {\ce {AZ}}} 1712:{\displaystyle {\ce {Pt}}} 1636:{\displaystyle {\ce {CO}}} 1614:{\displaystyle {\ce {O2}}} 1582:{\displaystyle {\ce {AB}}} 1205:Other assumptions include 582:{\displaystyle {\ce {O2}}} 546:{\displaystyle {\ce {H2}}} 408:{\displaystyle {\ce {O2}}} 372:{\displaystyle {\ce {H2}}} 149:Friedrich Josef Maria Horn 93:, and many other results. 1690:{\displaystyle {\ce {Z}}} 1050:Here, each column of the 665:{\displaystyle a(t),b(t)} 18:Chemical reaction network 1589:are gases (for example, 1526:of catalytic oxidation. 935:This is an example of a 553:in the surrounding air, 91:Cyril Norman Hinshelwood 2612:Wegscheider, R. (1901) 2176:{\displaystyle k\leq r} 1937:deficiency zero theorem 1233:Number of steady states 1089:{\displaystyle \Gamma } 1069:{\displaystyle \Gamma } 59:mathematical structures 3074:Mathematical chemistry 2682:Archive Rational Mech. 2546: 2488:between two solutions 2482: 2378: 2345: 2275: 2245: 2208: 2177: 2151: 2074: 2047: 1897: 1757: 1735: 1713: 1691: 1669: 1637: 1615: 1583: 1561: 1522:This is the classical 1500: 1434: 1343: 1169: 1131:vector-valued function 1123: 1090: 1070: 1041: 983: 926: 771: 666: 622: 583: 547: 492: 456: 409: 373: 325: 2939:Dokl. Akad. Nauk SSSR 2594:singular perturbation 2547: 2483: 2384:), then the weighted 2379: 2346: 2276: 2246: 2209: 2207:{\displaystyle A_{i}} 2178: 2152: 2075: 2073:{\displaystyle c_{i}} 2048: 1898: 1758: 1736: 1714: 1692: 1670: 1638: 1616: 1584: 1562: 1501: 1435: 1344: 1170: 1124: 1091: 1071: 1042: 984: 927: 772: 667: 623: 584: 548: 493: 457: 410: 374: 326: 51:theoretical chemistry 2985:(3) (1978), 637–639. 2968:(2) (1976), 191–198. 2900:Adv. Exp. Med. Biol. 2824:(6):1523–1547, 2007. 2492: 2394: 2355: 2285: 2255: 2222: 2191: 2161: 2088: 2057: 1954: 1826: 1745: 1723: 1701: 1679: 1647: 1625: 1593: 1571: 1533: 1524:adsorption mechanism 1462: 1371: 1262: 1168:{\displaystyle V(x)} 1150: 1122:{\displaystyle V(x)} 1104: 1098:stoichiometry matrix 1080: 1060: 1004: 949: 787: 682: 632: 597: 561: 525: 470: 431: 387: 351: 199: 2590:invariant manifolds 2463: 2436: 2029: 1858: 1791:. A non-persistent 1789:population dynamics 1663: 1609: 1549: 1403: 1308: 1279: 613: 577: 541: 486: 447: 403: 367: 315: 295: 265: 241: 224: 55:pure mathematicians 35:applied mathematics 2860:(4):467–501, 2009. 2790:2014-08-12 at the 2757:(4):339–344, 2002. 2592:and computational 2542: 2520: 2478: 2449: 2422: 2406: 2374: 2341: 2312: 2271: 2241: 2204: 2173: 2147: 2123: 2070: 2043: 2015: 1981: 1933:Lyapunov functions 1893: 1877: 1753: 1731: 1709: 1687: 1665: 1651: 1633: 1611: 1597: 1579: 1557: 1537: 1496: 1430: 1422: 1339: 1327: 1267: 1165: 1141:Common assumptions 1119: 1086: 1066: 1037: 979: 922: 913: 767: 761: 662: 618: 601: 579: 565: 543: 529: 488: 474: 452: 435: 405: 391: 369: 355: 321: 319: 303: 283: 253: 229: 212: 139:Clifford Truesdell 79:Rudolf Wegscheider 71:law of mass action 2903:(Adv Syst Biol), 2888::5388–5399, 2011. 2774::1135–1145, 2007. 2519: 2397: 2339: 2303: 2214:is the symbol of 2114: 2030: 1972: 1917: 1916: 1887: 1879: 1840: 1833: 1751: 1729: 1707: 1685: 1654: 1631: 1600: 1577: 1555: 1540: 1520: 1519: 1494: 1483: 1476: 1469: 1454: 1453: 1428: 1424: 1385: 1378: 1363: 1362: 1337: 1329: 1290: 1270: 1247:catalytic trigger 1245:For example, the 1219:spatially uniform 1016: 995:net stoichiometry 961: 902: 878: 854: 823: 799: 616: 604: 568: 532: 477: 450: 438: 394: 358: 345: 344: 306: 286: 278: 268: 256: 232: 215: 37:that attempts to 16:(Redirected from 3081: 3046: 3039: 3030: 3023: 3017: 3014: 3008: 3005: 2999: 2992: 2986: 2975: 2969: 2951: 2945: 2944:(4) (1976), 876. 2931: 2925: 2924:(7):e39194,2012. 2914: 2908: 2895: 2889: 2867: 2861: 2848: 2842: 2831: 2825: 2804: 2798: 2781: 2775: 2764: 2758: 2747: 2741: 2732: 2726: 2723: 2717: 2714: 2708: 2695: 2689: 2678: 2672: 2669: 2663: 2660: 2654: 2647: 2641: 2635: 2629: 2623: 2617: 2610: 2551: 2549: 2548: 2543: 2532: 2531: 2521: 2517: 2504: 2503: 2487: 2485: 2484: 2479: 2477: 2462: 2457: 2435: 2430: 2421: 2416: 2415: 2405: 2383: 2381: 2380: 2375: 2367: 2366: 2350: 2348: 2347: 2342: 2340: 2337: 2332: 2331: 2322: 2321: 2311: 2280: 2278: 2277: 2272: 2270: 2269: 2250: 2248: 2247: 2242: 2234: 2233: 2213: 2211: 2210: 2205: 2203: 2202: 2182: 2180: 2179: 2174: 2156: 2154: 2153: 2148: 2146: 2145: 2136: 2135: 2122: 2110: 2109: 2100: 2099: 2079: 2077: 2076: 2071: 2069: 2068: 2052: 2050: 2049: 2044: 2042: 2038: 2031: 2028: 2023: 2014: 2013: 2004: 1991: 1990: 1980: 1911: 1902: 1900: 1899: 1894: 1892: 1891: 1885: 1880: 1878: 1876: 1875: 1868: 1860: 1859: 1857: 1850: 1842: 1838: 1834: 1831: 1820: 1762: 1760: 1759: 1754: 1752: 1749: 1740: 1738: 1737: 1732: 1730: 1727: 1718: 1716: 1715: 1710: 1708: 1705: 1696: 1694: 1693: 1688: 1686: 1683: 1674: 1672: 1671: 1666: 1664: 1662: 1659: 1652: 1642: 1640: 1639: 1634: 1632: 1629: 1620: 1618: 1617: 1612: 1610: 1608: 1605: 1598: 1588: 1586: 1585: 1580: 1578: 1575: 1566: 1564: 1563: 1558: 1556: 1553: 1548: 1545: 1538: 1514: 1505: 1503: 1502: 1497: 1495: 1492: 1484: 1481: 1474: 1470: 1467: 1456: 1448: 1439: 1437: 1436: 1431: 1429: 1426: 1425: 1423: 1421: 1420: 1413: 1405: 1404: 1402: 1395: 1387: 1383: 1379: 1376: 1365: 1357: 1348: 1346: 1345: 1340: 1338: 1335: 1330: 1328: 1326: 1325: 1318: 1310: 1309: 1307: 1300: 1292: 1288: 1280: 1278: 1275: 1268: 1256: 1225:Types of results 1196:Michaelis–Menten 1174: 1172: 1171: 1166: 1128: 1126: 1125: 1120: 1095: 1093: 1092: 1087: 1075: 1073: 1072: 1067: 1046: 1044: 1043: 1038: 1018: 1017: 1009: 988: 986: 985: 980: 963: 962: 954: 943:dynamical system 931: 929: 928: 923: 918: 914: 903: 901: 893: 885: 879: 877: 869: 861: 855: 853: 845: 837: 824: 822: 814: 806: 801: 800: 792: 776: 774: 773: 768: 766: 762: 671: 669: 668: 663: 627: 625: 624: 619: 617: 614: 612: 609: 602: 592: 588: 586: 585: 580: 578: 576: 573: 566: 556: 552: 550: 549: 544: 542: 540: 537: 530: 516: 497: 495: 494: 489: 487: 485: 482: 475: 461: 459: 458: 453: 451: 448: 446: 443: 436: 422: 414: 412: 411: 406: 404: 402: 399: 392: 378: 376: 375: 370: 368: 366: 363: 356: 339: 330: 328: 327: 322: 320: 316: 314: 311: 304: 296: 294: 291: 284: 279: 276: 269: 266: 264: 261: 254: 242: 240: 237: 230: 225: 223: 220: 213: 193: 83:Nikolay Semyonov 75:detailed balance 21: 3089: 3088: 3084: 3083: 3082: 3080: 3079: 3078: 3064: 3063: 3055: 3050: 3049: 3040: 3033: 3024: 3020: 3015: 3011: 3006: 3002: 2993: 2989: 2979:Doklady AN USSR 2976: 2972: 2952: 2948: 2932: 2928: 2915: 2911: 2896: 2892: 2868: 2864: 2849: 2845: 2832: 2828: 2805: 2801: 2792:Wayback Machine 2782: 2778: 2765: 2761: 2748: 2744: 2733: 2729: 2724: 2720: 2715: 2711: 2707::187–194, 1972. 2696: 2692: 2679: 2675: 2670: 2666: 2661: 2657: 2648: 2644: 2636: 2632: 2624: 2620: 2611: 2607: 2602: 2566: 2564:Model reduction 2523: 2495: 2490: 2489: 2407: 2392: 2391: 2358: 2353: 2352: 2323: 2313: 2283: 2282: 2258: 2253: 2252: 2225: 2220: 2219: 2194: 2189: 2188: 2159: 2158: 2137: 2124: 2101: 2091: 2086: 2085: 2060: 2055: 2054: 2005: 1996: 1992: 1982: 1952: 1951: 1925: 1909: 1824: 1823: 1802: 1785: 1769: 1743: 1742: 1721: 1720: 1699: 1698: 1677: 1676: 1645: 1644: 1623: 1622: 1591: 1590: 1569: 1568: 1531: 1530: 1512: 1460: 1459: 1446: 1369: 1368: 1355: 1260: 1259: 1235: 1227: 1148: 1147: 1143: 1102: 1101: 1078: 1077: 1058: 1057: 1002: 1001: 947: 946: 912: 911: 905: 904: 894: 886: 881: 880: 870: 862: 857: 856: 846: 838: 828: 815: 807: 785: 784: 760: 759: 753: 752: 737: 736: 721: 720: 700: 680: 679: 630: 629: 595: 594: 590: 559: 558: 554: 523: 522: 514: 468: 467: 429: 428: 420: 385: 384: 349: 348: 337: 318: 317: 297: 271: 270: 243: 197: 196: 164: 153:Martin Feinberg 135:Rutherford Aris 124:chain reactions 67: 28: 23: 22: 15: 12: 11: 5: 3087: 3085: 3077: 3076: 3066: 3065: 3062: 3061: 3054: 3053:External links 3051: 3048: 3047: 3031: 3018: 3009: 3000: 2987: 2970: 2946: 2926: 2909: 2890: 2862: 2853:J. Math. Biol. 2843: 2835:J. Math. Chem. 2826: 2818:J. Appl. Math. 2799: 2776: 2768:J. Math. Chem. 2759: 2751:J. Math. Chem. 2742: 2727: 2718: 2709: 2690: 2673: 2664: 2655: 2642: 2630: 2618: 2604: 2603: 2601: 2598: 2586: 2585: 2578: 2574: 2565: 2562: 2552:with the same 2541: 2538: 2535: 2530: 2526: 2513: 2510: 2507: 2502: 2498: 2476: 2472: 2469: 2466: 2461: 2456: 2452: 2448: 2445: 2442: 2439: 2434: 2429: 2425: 2420: 2414: 2410: 2404: 2400: 2373: 2370: 2365: 2361: 2335: 2330: 2326: 2320: 2316: 2310: 2306: 2302: 2299: 2296: 2293: 2290: 2268: 2265: 2261: 2240: 2237: 2232: 2228: 2218:th component, 2201: 2197: 2172: 2169: 2166: 2144: 2140: 2134: 2131: 2127: 2121: 2117: 2113: 2108: 2104: 2098: 2094: 2067: 2063: 2041: 2037: 2034: 2027: 2022: 2018: 2012: 2008: 2002: 1999: 1995: 1989: 1985: 1979: 1975: 1971: 1968: 1965: 1962: 1959: 1924: 1921: 1915: 1914: 1905: 1903: 1890: 1884: 1874: 1867: 1856: 1849: 1837: 1801: 1798: 1784: 1781: 1768: 1765: 1658: 1604: 1552: 1544: 1518: 1517: 1508: 1506: 1490: 1487: 1479: 1473: 1452: 1451: 1442: 1440: 1419: 1412: 1401: 1394: 1382: 1361: 1360: 1351: 1349: 1333: 1324: 1317: 1306: 1299: 1286: 1283: 1274: 1234: 1231: 1226: 1223: 1164: 1161: 1158: 1155: 1142: 1139: 1118: 1115: 1112: 1109: 1096:is called the 1085: 1065: 1048: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1015: 1012: 978: 975: 972: 969: 966: 960: 957: 933: 932: 921: 917: 910: 907: 906: 900: 897: 892: 889: 883: 882: 876: 873: 868: 865: 859: 858: 852: 849: 844: 841: 835: 834: 831: 827: 821: 818: 813: 810: 804: 798: 795: 778: 777: 765: 758: 755: 754: 751: 748: 745: 742: 739: 738: 735: 732: 729: 726: 723: 722: 719: 716: 713: 710: 707: 706: 703: 699: 696: 693: 690: 687: 661: 658: 655: 652: 649: 646: 643: 640: 637: 608: 572: 536: 517:represent the 500:carbon dioxide 481: 442: 398: 362: 343: 342: 333: 331: 310: 302: 298: 290: 282: 273: 272: 260: 251: 248: 244: 236: 228: 219: 210: 205: 204: 170:) comprises a 163: 160: 131: 130: 127: 120: 66: 63: 33:is an area of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3086: 3075: 3072: 3071: 3069: 3060: 3057: 3056: 3052: 3044: 3038: 3036: 3032: 3028: 3022: 3019: 3013: 3010: 3004: 3001: 2997: 2991: 2988: 2984: 2981:(Chemistry) 2980: 2974: 2971: 2967: 2964: 2960: 2956: 2950: 2947: 2943: 2940: 2936: 2930: 2927: 2923: 2919: 2913: 2910: 2907::81–94, 2012. 2906: 2902: 2901: 2894: 2891: 2887: 2883: 2879: 2875: 2871: 2866: 2863: 2859: 2855: 2854: 2847: 2844: 2840: 2836: 2830: 2827: 2823: 2819: 2817: 2812: 2810: 2803: 2800: 2797: 2793: 2789: 2786: 2780: 2777: 2773: 2769: 2763: 2760: 2756: 2752: 2746: 2743: 2739: 2738: 2731: 2728: 2722: 2719: 2713: 2710: 2706: 2702: 2701: 2694: 2691: 2687: 2683: 2677: 2674: 2668: 2665: 2659: 2656: 2652: 2646: 2643: 2640: 2634: 2631: 2628: 2622: 2619: 2615: 2609: 2606: 2599: 2597: 2595: 2591: 2583: 2582:limiting step 2579: 2575: 2572: 2571: 2570: 2563: 2561: 2559: 2555: 2536: 2528: 2524: 2508: 2500: 2496: 2467: 2459: 2454: 2450: 2446: 2440: 2432: 2427: 2423: 2412: 2408: 2402: 2398: 2390: 2388: 2371: 2368: 2363: 2359: 2333: 2328: 2324: 2318: 2314: 2308: 2304: 2300: 2294: 2288: 2266: 2263: 2259: 2238: 2235: 2230: 2226: 2217: 2199: 2195: 2186: 2170: 2167: 2164: 2142: 2138: 2132: 2129: 2125: 2119: 2115: 2106: 2102: 2096: 2092: 2083: 2065: 2061: 2039: 2035: 2032: 2025: 2020: 2016: 2010: 2006: 2000: 1997: 1993: 1987: 1983: 1977: 1973: 1969: 1963: 1957: 1949: 1944: 1942: 1938: 1934: 1929: 1922: 1920: 1913: 1906: 1904: 1865: 1854: 1835: 1822: 1821: 1818: 1816: 1812: 1808: 1807:quasiperiodic 1799: 1797: 1794: 1790: 1782: 1780: 1778: 1774: 1773:deterministic 1766: 1764: 1656: 1602: 1550: 1542: 1527: 1525: 1516: 1509: 1507: 1488: 1485: 1471: 1458: 1457: 1450: 1443: 1441: 1410: 1399: 1380: 1367: 1366: 1359: 1352: 1350: 1331: 1315: 1304: 1284: 1281: 1272: 1258: 1257: 1254: 1252: 1251:autocatalysis 1248: 1243: 1241: 1232: 1230: 1224: 1222: 1220: 1216: 1212: 1208: 1203: 1201: 1197: 1193: 1189: 1188:autocatalysis 1185: 1180: 1178: 1159: 1153: 1140: 1138: 1136: 1132: 1113: 1107: 1099: 1056: 1053: 1031: 1025: 1019: 1013: 1010: 1000: 999: 998: 996: 992: 991:stoichiometry 973: 967: 964: 958: 955: 944: 941: 938: 919: 915: 908: 898: 895: 890: 887: 874: 871: 866: 863: 850: 847: 842: 839: 829: 825: 819: 816: 811: 808: 802: 796: 793: 783: 782: 781: 763: 756: 746: 740: 730: 724: 714: 708: 701: 697: 691: 685: 678: 677: 676: 673: 656: 650: 647: 641: 635: 606: 570: 534: 520: 519:concentration 511: 509: 505: 501: 479: 465: 440: 426: 418: 396: 382: 360: 341: 334: 332: 308: 288: 280: 258: 249: 234: 226: 217: 208: 195: 194: 191: 189: 185: 181: 177: 173: 169: 161: 159: 156: 154: 150: 146: 145: 140: 136: 128: 125: 121: 118: 115: 114: 113: 111: 107: 103: 99: 94: 92: 89:reactions by 88: 84: 80: 76: 72: 64: 62: 60: 56: 52: 48: 44: 40: 36: 32: 19: 3041:A.N.Gorban, 3021: 3012: 3003: 2990: 2982: 2978: 2973: 2965: 2962: 2949: 2941: 2938: 2929: 2921: 2917: 2912: 2904: 2898: 2893: 2885: 2881: 2870:A. N. Gorban 2865: 2857: 2851: 2846: 2838: 2834: 2829: 2821: 2814: 2808: 2802: 2795: 2779: 2771: 2767: 2762: 2754: 2750: 2745: 2735: 2730: 2721: 2712: 2704: 2698: 2693: 2685: 2681: 2676: 2667: 2658: 2645: 2633: 2621: 2608: 2587: 2567: 2557: 2553: 2386: 2215: 2184: 2081: 1945: 1940: 1936: 1930: 1926: 1918: 1907: 1803: 1786: 1779:may appear. 1770: 1528: 1521: 1510: 1444: 1353: 1244: 1236: 1228: 1207:mass balance 1204: 1181: 1144: 1097: 1049: 994: 934: 779: 674: 512: 504:irreversible 346: 335: 180:intersecting 167: 165: 157: 142: 132: 95: 68: 47:biochemistry 30: 29: 2351:(where all 1948:free energy 1783:Persistence 1213:, constant 1211:temperature 1209:, constant 1192:mass action 106:Hinshelwood 98:van 't Hoff 2955:Yablonskii 2935:Yablonskii 2872:and G. S. 2688::81, 1972. 2600:References 1910:reaction 5 1777:attractors 1513:reaction 4 1447:reaction 3 1356:reaction 2 1240:biological 940:autonomous 937:continuous 338:reaction 1 190:reactions 188:combustion 117:van’t Hoff 61:involved. 2874:Yablonsky 2841::1, 2008. 2447:− 2399:∑ 2305:∑ 2260:β 2236:≥ 2168:≤ 2126:β 2116:∑ 2112:→ 2033:− 2026:∗ 2001:⁡ 1974:∑ 1873:⇀ 1866:− 1855:− 1848:↽ 1478:⟶ 1418:⇀ 1411:− 1400:− 1393:↽ 1323:⇀ 1316:− 1305:− 1298:↽ 1184:catalysis 1084:Γ 1064:Γ 1023:Γ 1014:˙ 959:˙ 909:⋮ 803:≡ 797:˙ 757:⋮ 301:⟶ 247:⟶ 184:reactions 176:reactants 87:catalytic 3068:Category 2918:PLoS ONE 2788:Archived 2389:distance 2183:, where 2053:, where 1939:and the 1805:exhibit 1215:pressure 1135:kinetics 1052:constant 508:disjoint 381:hydrogen 162:Overview 43:chemical 2740:, 1989. 1811:chaotic 1793:species 672:, etc. 102:Semenov 65:History 2811:matrix 2251:, and 1529:Here, 1055:matrix 466:) and 425:carbon 419:) and 417:oxygen 2338:const 2157:(for 1950:form 1129:is a 464:water 39:model 2816:SIAM 2580:The 2369:> 1741:and 1643:and 1567:and 1200:Hill 1198:and 110:Aris 49:and 2983:242 2942:226 2905:736 2518:and 1809:or 1719:), 1675:), 1186:or 1175:is 521:of 383:), 174:of 172:set 168:CRN 3070:: 3034:^ 2961:, 2957:, 2886:66 2884:, 2880:, 2876:, 2858:59 2856:, 2839:44 2837:, 2822:67 2820:, 2794:, 2772:42 2770:, 2755:31 2753:, 2705:49 2703:, 2686:47 2684:, 1998:ln 1943:. 1886:BZ 1750:BZ 1728:AZ 1706:Pt 1653:CO 1630:CO 1621:, 1576:AB 1482:AB 1475:BZ 1468:AZ 1427:BZ 1336:AZ 1217:, 1194:, 1179:. 1137:. 1100:. 589:, 510:. 476:CO 305:CO 151:, 2966:4 2922:7 2920:, 2809:P 2558:c 2556:( 2554:M 2540:) 2537:t 2534:( 2529:2 2525:c 2512:) 2509:t 2506:( 2501:1 2497:c 2475:| 2471:) 2468:t 2465:( 2460:2 2455:i 2451:c 2444:) 2441:t 2438:( 2433:1 2428:i 2424:c 2419:| 2413:i 2409:m 2403:i 2387:L 2372:0 2364:i 2360:m 2334:= 2329:i 2325:c 2319:i 2315:m 2309:i 2301:= 2298:) 2295:c 2292:( 2289:M 2267:j 2264:k 2239:1 2231:k 2227:n 2216:i 2200:i 2196:A 2185:r 2171:r 2165:k 2143:j 2139:A 2133:j 2130:k 2120:j 2107:i 2103:A 2097:k 2093:n 2082:i 2066:i 2062:c 2040:) 2036:1 2021:i 2017:c 2011:i 2007:c 1994:( 1988:i 1984:c 1978:i 1970:= 1967:) 1964:c 1961:( 1958:G 1912:) 1908:( 1889:) 1883:( 1839:Z 1836:+ 1832:B 1684:Z 1657:2 1603:2 1599:O 1554:B 1551:, 1543:2 1539:A 1515:) 1511:( 1493:Z 1489:2 1486:+ 1472:+ 1449:) 1445:( 1384:Z 1381:+ 1377:B 1358:) 1354:( 1332:2 1289:Z 1285:2 1282:+ 1273:2 1269:A 1163:) 1160:x 1157:( 1154:V 1117:) 1114:x 1111:( 1108:V 1035:) 1032:x 1029:( 1026:V 1020:= 1011:x 977:) 974:x 971:( 968:f 965:= 956:x 920:. 916:) 899:t 896:d 891:c 888:d 875:t 872:d 867:b 864:d 851:t 848:d 843:a 840:d 830:( 826:= 820:t 817:d 812:x 809:d 794:x 764:) 750:) 747:t 744:( 741:c 734:) 731:t 728:( 725:b 718:) 715:t 712:( 709:a 702:( 698:= 695:) 692:t 689:( 686:x 660:) 657:t 654:( 651:b 648:, 645:) 642:t 639:( 636:a 615:O 607:2 603:H 591:c 571:2 567:O 555:b 535:2 531:H 515:a 498:( 480:2 462:( 449:O 441:2 437:H 423:( 421:C 415:( 397:2 393:O 379:( 361:2 357:H 340:) 336:( 309:2 289:2 285:O 281:+ 277:C 267:O 259:2 255:H 250:2 235:2 231:O 227:+ 218:2 214:H 209:2 104:– 20:)

Index

Chemical reaction network
applied mathematics
model
chemical
biochemistry
theoretical chemistry
pure mathematicians
mathematical structures
law of mass action
detailed balance
Rudolf Wegscheider
Nikolay Semyonov
catalytic
Cyril Norman Hinshelwood
van 't Hoff
Semenov
Hinshelwood
Aris
van’t Hoff
chain reactions
Rutherford Aris
Clifford Truesdell
Archive for Rational Mechanics and Analysis
Friedrich Josef Maria Horn
Martin Feinberg
set
reactants
intersecting
reactions
combustion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑