Knowledge (XXG)

Chiral polytope

Source đź“ť

24: 146: 116:
In three dimensions, it is not possible for a geometrically chiral polytope to have finitely many finite faces. For instance, the snub cube is vertex-transitive, but its flags have more than two orbits, and it is neither edge-transitive nor face-transitive, so it is not symmetric enough to meet the
129:, provide another interesting type of near-miss: they have two orbits of flags, but are mirror-symmetric, and not every adjacent pair of flags belongs to different orbits. However, despite the nonexistence of finite chiral three-dimensional polyhedra, there exist infinite three-dimensional chiral 103:
Geometrically chiral polytopes are relatively exotic compared to the more ordinary regular polytopes. It is not possible for a geometrically chiral polytope to be convex, and many geometrically chiral polytopes of note are
86:
For the purposes of this definition, the symmetry group of a polytope may be defined in either of two different ways: it can refer to the symmetries of a polytope as a geometric object (in which case the polytope is called
83:, as each vertex, edge, or face must be represented by flags in both orbits; however, it cannot be mirror-symmetric, as every mirror symmetry of the polytope would exchange some pair of adjacent flags. 454: 212:, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, Providence, RI: American Mathematical Society, pp. 493–516, 95:). Chirality is meaningful for either type of symmetry but the two definitions classify different polytopes as being chiral or nonchiral. 239: 414: 365: 497: 286: 44: 130: 16:
This article is about polytopes with full rotational symmetry. For polytopes lacking mirror symmetry see, see
118: 91:) or it can refer to the symmetries of the polytope as a combinatorial structure (the automorphisms of an 43:
is a polytope that is as symmetric as possible without being mirror-symmetric, formalized in terms of the
176:
In four dimensions, there are a geometrically chiral finite polytopes. One example is Roli's cube, a
126: 542: 537: 479: 400: 374: 336: 266: 449: 360: 92: 72: 36: 506: 463: 423: 384: 295: 248: 23: 520: 475: 437: 396: 262: 217: 516: 471: 433: 392: 258: 213: 205: 80: 76: 64: 52: 313:
Bracho, Javier; Hubard, Isabel; Pellicer, Daniel (2014), "A Finite Chiral 4-polytope in
63:
The more technical definition of a chiral polytope is a polytope that has two orbits of
445: 68: 48: 145: 531: 177: 122: 105: 483: 404: 270: 492: 234: 201: 363:; Schulte, Egon; Weiss, Asia Ivić (2007), "Semisymmetric graphs from polytopes", 28: 428: 388: 299: 284:
Pellicer, Daniel (2012). "Developments and open problems on chiral polytopes".
31:
under its automorphism group form two orbits, colored here in black and yellow.
511: 253: 412:
Hubard, Isabel; Weiss, Asia Ivić (2005), "Self-duality of chiral polytopes",
17: 467: 71:, with adjacent flags in different orbits. This implies that it must be 210:
Applied Geometry and Discrete Mathematics (The Victor Klee Festschrift)
379: 181: 341: 22: 204:; Weiss, Asia Ivić (1991), "Chiral polytopes", in Gritzmann, P.; 140: 157: 237:(2004), "Chiral polyhedra in ordinary space. I", 452:(2008), "Constructions for chiral polytopes", 8: 229: 227: 455:Journal of the London Mathematical Society 510: 493:"Cayley graphs and symmetric 4-polytopes" 427: 378: 340: 252: 491:Monson, Barry; Ivić Weiss, Asia (2008), 193: 319:Discrete & Computational Geometry 7: 117:formal definition of chirality. The 240:Discrete and Computational Geometry 133:of types {4,6}, {6,4}, and {6,6}. 14: 144: 415:Journal of Combinatorial Theory 366:Journal of Combinatorial Theory 99:Geometrically chiral polytopes 1: 498:Ars Mathematica Contemporanea 287:Ars Mathematica Contemporanea 121:and their duals, such as the 559: 429:10.1016/j.jcta.2004.11.012 389:10.1016/j.jcta.2006.06.007 300:10.26493/1855-3974.183.8a2 15: 512:10.26493/1855-3974.79.919 254:10.1007/s00454-004-0843-x 180:on the skeleton of the 51:of the polytope on its 331:Monson, Barry (2021), 119:quasiregular polyhedra 32: 26: 127:rhombic dodecahedron 89:geometrically chiral 468:10.1112/jlms/jdm093 112:In three dimensions 69:group of symmetries 448:; Hubard, Isabel; 156:. You can help by 137:In four dimensions 37:abstract polytopes 33: 458:, Second Series, 174: 173: 93:abstract polytope 73:vertex-transitive 550: 523: 514: 486: 440: 431: 407: 382: 346: 345: 344: 328: 322: 321: 316: 310: 304: 303: 281: 275: 273: 256: 231: 222: 220: 198: 169: 166: 148: 141: 35:In the study of 558: 557: 553: 552: 551: 549: 548: 547: 528: 527: 490: 450:Pisanski, TomaĹľ 446:Conder, Marston 444: 411: 361:Pisanski, TomaĹľ 359:Monson, Barry; 358: 355: 353:Further reading 350: 349: 330: 329: 325: 314: 312: 311: 307: 283: 282: 278: 233: 232: 225: 200: 199: 195: 190: 170: 164: 161: 154:needs expansion 139: 114: 101: 81:face-transitive 77:edge-transitive 61: 41:chiral polytope 21: 12: 11: 5: 556: 554: 546: 545: 540: 530: 529: 526: 525: 505:(2): 185–205, 488: 462:(1): 115–129, 442: 422:(1): 128–136, 409: 373:(3): 421–435, 354: 351: 348: 347: 333:On Roli's Cube 323: 305: 294:(2): 333–354. 276: 223: 192: 191: 189: 186: 172: 171: 151: 149: 138: 135: 131:skew polyhedra 113: 110: 100: 97: 60: 57: 49:symmetry group 13: 10: 9: 6: 4: 3: 2: 555: 544: 541: 539: 536: 535: 533: 522: 518: 513: 508: 504: 500: 499: 494: 489: 485: 481: 477: 473: 469: 465: 461: 457: 456: 451: 447: 443: 439: 435: 430: 425: 421: 417: 416: 410: 406: 402: 398: 394: 390: 386: 381: 376: 372: 368: 367: 362: 357: 356: 352: 343: 338: 334: 327: 324: 320: 309: 306: 301: 297: 293: 289: 288: 280: 277: 272: 268: 264: 260: 255: 250: 246: 242: 241: 236: 235:Schulte, Egon 230: 228: 224: 219: 215: 211: 207: 206:Sturmfels, B. 203: 202:Schulte, Egon 197: 194: 187: 185: 183: 179: 178:skew polytope 168: 159: 155: 152:This section 150: 147: 143: 142: 136: 134: 132: 128: 124: 123:cuboctahedron 120: 111: 109: 107: 98: 96: 94: 90: 84: 82: 78: 74: 70: 66: 58: 56: 54: 50: 46: 42: 38: 30: 27:The flags of 25: 19: 502: 496: 459: 453: 419: 418:, Series A, 413: 380:math/0606469 370: 369:, Series A, 364: 332: 326: 318: 308: 291: 285: 279: 247:(1): 55–99, 244: 238: 209: 196: 175: 165:January 2024 162: 158:adding to it 153: 115: 102: 88: 85: 62: 40: 34: 29:Heawood map 532:Categories 342:2102.08796 188:References 67:under its 59:Definition 543:Polytopes 538:Chirality 18:Chirality 484:14658184 405:10203794 271:13098983 208:(eds.), 125:and the 521:2466196 476:2389920 438:2144859 397:2310743 263:2060817 218:1116373 47:of the 519:  482:  474:  436:  403:  395:  269:  261:  216:  182:4-cube 79:, and 45:action 480:S2CID 401:S2CID 375:arXiv 337:arXiv 267:S2CID 65:flags 53:flags 184:. 106:skew 39:, a 507:doi 464:doi 424:doi 420:111 385:doi 371:114 317:", 296:doi 249:doi 160:. 534:: 517:MR 515:, 501:, 495:, 478:, 472:MR 470:, 460:77 434:MR 432:, 399:, 393:MR 391:, 383:, 335:, 290:. 265:, 259:MR 257:, 245:32 243:, 226:^ 214:MR 108:. 75:, 55:. 524:. 509:: 503:1 487:. 466:: 441:. 426:: 408:. 387:: 377:: 339:: 315:â„ť 302:. 298:: 292:5 274:. 251:: 221:. 167:) 163:( 20:.

Index

Chirality

Heawood map
abstract polytopes
action
symmetry group
flags
flags
group of symmetries
vertex-transitive
edge-transitive
face-transitive
abstract polytope
skew
quasiregular polyhedra
cuboctahedron
rhombic dodecahedron
skew polyhedra

adding to it
skew polytope
4-cube
Schulte, Egon
Sturmfels, B.
MR
1116373


Schulte, Egon
Discrete and Computational Geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑