Knowledge (XXG)

Insect flight

Source 📝

3580: 553:
rushes into the created gap and generates a strong leading edge vortex, and a second one developing at the wingtips. A third, weaker, vortex develops on the trailing edge. The strength of the developing vortices relies, in-part, on the initial gap of the inter-wing separation at the start of the flinging motion. With a decreased gap inter-wing gap indicating a larger lift generation, at the cost of larger drag forces. The implementation of a heaving motion during fling, flexible wings, and a delayed stall mechanism were found to reinforce vortex stability and attachment. Finally, to compensate the overall lower lift production during low Reynolds number flight (with
3498: 3305: 664: 392:
wing at the same angle of attack. By dividing the flapping wing into a large number of motionless positions and then analyzing each position, it would be possible to create a timeline of the instantaneous forces on the wing at every moment. The calculated lift was found to be too small by a factor of three, so researchers realized that there must be unsteady phenomena providing aerodynamic forces. There were several developing analytical models attempting to approximate flow close to a flapping wing. Some researchers predicted force peaks at supination. With a dynamically scaled model of a
3599:, in which a variation called "pod" (for podomeres, limb segments) displayed a mutation that transformed normal wings. The result was interpreted as a triple-jointed leg arrangement with some additional appendages but lacking the tarsus, where the wing's costal surface would normally be. This mutation was reinterpreted as strong evidence for a dorsal exite and endite fusion, rather than a leg, with the appendages fitting in much better with this hypothesis. The innervation, articulation and musculature required for the evolution of wings are already present in the limb segments. 1798:, or stay in one spot in the air, doing so by beating their wings rapidly. Doing so requires sideways stabilization as well as the production of lift. The lifting force is mainly produced by the downstroke. As the wings push down on the surrounding air, the resulting reaction force of the air on the wings pushes the insect up. The wings of most insects are evolved so that, during the upward stroke, the force on the wing is small. Since the downbeat and return stroke force the insect up and down respectively, the insect oscillates and winds up staying in the same position. 199: 479:
flight more efficient as this efficiency becomes more necessary. Additionally, by changing the geometric angle of attack on the downstroke, the insect is able to keep its flight at an optimal efficiency through as many manoeuvres as possible. The development of general thrust is relatively small compared with lift forces. Lift forces may be more than three times the insect's weight, while thrust at even the highest speeds may be as low as 20% of the weight. This force is developed primarily through the less powerful upstroke of the flapping motion.
623: 607: 1781: 652: 640: 3050: 429:. At high angles of attack, the flow separates over the leading edge, but reattaches before reaching the trailing edge. Within this bubble of separated flow is a vortex. Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift. Because the flow has separated, yet it still provides large amounts of lift, this phenomenon is called 187: 323:, use asynchronous muscle; this is a type of muscle that contracts more than once per nerve impulse. This is achieved by the muscle being stimulated to contract again by a release in tension in the muscle, which can happen more rapidly than through simple nerve stimulation alone. This allows the frequency of wing beats to exceed the rate at which the nervous system can send impulses. The asynchronous muscle is one of the final refinements that has appeared in some of the higher Neoptera ( 297: 595: 285: 3060:. When the wings begin to decelerate toward the end of the stroke, this energy must dissipate. During the downstroke, the kinetic energy is dissipated by the muscles themselves and is converted into heat (this heat is sometimes used to maintain core body temperature). Some insects are able to utilize the kinetic energy in the upward movement of the wings to aid in their flight. The wing joints of these insects contain a pad of elastic, rubber-like protein called 454: 513: 493: 3482:, the group of winged insects that includes grasshoppers, evolved from a terrestrial ancestor, making the evolution of wings from gills unlikely. Additional study of the jumping behavior of mayfly larvae has determined that tracheal gills play no role in guiding insect descent, providing further evidence against this evolutionary hypothesis. This leaves two major historic theories: that wings developed from paranotal lobes, extensions of the 3353:), there is no arrangement of frenulum and retinaculum to couple the wings. Instead, an enlarged humeral area of the hindwing is broadly overlapped by the forewing. Despite the absence of a specific mechanical connection, the wings overlap and operate in phase. The power stroke of the forewing pushes down the hindwing in unison. This type of coupling is a variation of frenate type but where the frenulum and retinaculum are completely lost. 466: 33: 425:(smooth) when the Reynolds number is low, and turbulent when it is high. The Wagner effect was ignored, consciously, in at least one model. One of the most important phenomena that occurs during insect flight is leading edge suction. This force is significant to the calculation of efficiency. The concept of leading edge suction first was put forth by D. G. Ellis and J. L. Stollery in 1988 to describe vortex lift on sharp-edged 1155: 1186:
around an airfoil and Stokes flow experienced by a swimming bacterium. For this reason, this intermediate range is not well understood. On the other hand, it is perhaps the most ubiquitous regime among the things we see. Falling leaves and seeds, fishes, and birds all encounter unsteady flows similar to that seen around an insect. The chordwise Reynolds number can be described by:
2177:, applied by the two wings during the downward stroke is two times the weight. Because the pressure applied by the wings is uniformly distributed over the total wing area, that means one can assume the force generated by each wing acts through a single point at the midsection of the wings. During the downward stroke, the center of the wings traverses a vertical distance 1596:(α). The typical angle of attack at 70% wingspan ranges from 25° to 45° in hovering insects (15° in hummingbirds). Despite the wealth of data available for many insects, relatively few experiments report the time variation of α during a stroke. Among these are wind tunnel experiments of a tethered locust and a tethered fly, and free hovering flight of a fruit fly. 3416: 975: 445:
to about 3 grams. As insect body mass increases, wing area increases and wing beat frequency decreases. For larger insects, the Reynolds number (Re) may be as high as 10000, where flow is starting to become turbulent. For smaller insects, it may be as low as 10. This means that viscous effects are much more important to the smaller insects.
3155:/cm. Typically in an insect the size of a bee, the volume of the resilin may be equivalent to a cylinder 2×10 cm long and 4×10 cm in area. In the example given, the length of the resilin rod is increased by 50% when stretched. That is, Δℓ is 10 cm. Therefore, in this case the potential energy stored in the resilin of each wing is: 69:, some 300 to 350 million years ago, making them the first animals to evolve flight. Wings may have evolved from appendages on the sides of existing limbs, which already had nerves, joints, and muscles used for other purposes. These may initially have been used for sailing on water, or to slow the rate of descent when gliding. 2025: 3462:
How and why insect wings developed is not well understood, largely due to the scarcity of appropriate fossils from the period of their development in the Lower Carboniferous. There have historically been three main theories on the origins of insect flight. The first was that they are modifications of
2160:
In the examples used the frequency used is 110 beats/s, which is the typical frequency found in insects. Butterflies have a much slower frequency with about 10 beats/s, which means that they can't hover. Other insects may be able to produce a frequency of 1000 beats/s. To restore the insect
1801:
The distance the insect falls between wingbeats depends on how rapidly its wings are beating: the slower it flaps, the longer the interval in which it falls, and the farther it falls between each wingbeat. One can calculate the wingbeat frequency necessary for the insect to maintain a given stability
1180:
and an airfoil: An insect wing is much smaller and it flaps. Using a dragonfly as an example, Its chord (c) is about 1 cm (0.39 in), its wing length (l) about 4 cm (1.6 in), and its wing frequency (f) about 40 Hz. The tip speed (u) is about 1 m/s (3.3 ft/s), and the
478:
Another interesting feature of insect flight is the body tilt. As flight speed increases, the insect body tends to tilt nose-down and become more horizontal. This reduces the frontal area and therefore, the body drag. Since drag also increases as forward velocity increases, the insect is making its
444:
All of the effects on a flapping wing may be reduced to three major sources of aerodynamic phenomena: the leading edge vortex, the steady-state aerodynamic forces on the wing, and the wing's contact with its wake from previous strokes. The size of flying insects ranges from about 20 micrograms
391:
Identification of major forces is critical to understanding insect flight. The first attempts to understand flapping wings assumed a quasi-steady state. This means that the air flow over the wing at any given time was assumed to be the same as how the flow would be over a non-flapping, steady-state
338:
Asynchronous muscle is, by definition, under relatively coarse control by the nervous system. To balance this evolutionary trade-off, insects that evolved indirect flight have also developed a separate neuromuscular system for fine-grained control of the wingstroke. Known as "direct muscles", these
3071:
Using a few simplifying assumptions, we can calculate the amount of energy stored in the stretched resilin. Although the resilin is bent into a complex shape, the example given shows the calculation as a straight rod of area A and length. Furthermore, we will assume that throughout the stretch the
2507:
In the calculation of the power used in hovering, the examples used neglected the kinetic energy of the moving wings. The wings of insects, light as they are, have a finite mass; therefore, as they move they possess kinetic energy. Because the wings are in rotary motion, the maximum kinetic energy
560:
The overall largest expected drag forces occur during the dorsal fling motion, as the wings need to separate and rotate. The attenuation of the large drag forces occurs through several mechanisms. Flexible wings were found to decrease the drag in flinging motion by up to 50% and further reduce the
3558:
and enable the insect to land more softly. The theory suggests that these lobes gradually grew larger and in a later stage developed a joint with the thorax. Even later would appear the muscles to move these crude wings. This model implies a progressive increase in the effectiveness of the wings,
1599:
Because they are relatively easy to measure, the wing-tip trajectories have been reported more frequently. For example, selecting only flight sequences that produced enough lift to support a weight, will show that the wing tip follows an elliptical shape. Noncrossing shapes were also reported for
412:
in 1925, says that circulation rises slowly to its steady-state due to viscosity when an inclined wing is accelerated from rest. This phenomenon would explain a lift value that is less than what is predicted. Typically, the case has been to find sources for the added lift. It has been argued that
1185:
has a wing length of about 0.5–0.7 mm (0.020–0.028 in) and beats its wing at about 400 Hz. Its Reynolds number is about 25. The range of Reynolds number in insect flight is about 10 to 10, which lies in between the two limits that are convenient for theories: inviscid steady flows
552:
Lift generation from the clap and fling mechanism occurs during several processes throughout the motion. First, the mechanism relies on a wing-wing interaction, as a single wing motion does not produce sufficient lift. As the wings rotate about the trailing edge in the flinging motion, air
179:
have fore and hind wings similar in shape and size. Each operates independently, which gives a degree of fine control and mobility in terms of the abruptness with which they can change direction and speed, not seen in other flying insects. Odonates are all aerial predators, and they have always
548:
and utilize the leading edge during an upstroke rowing motion. As the clap motion begins, the leading edges meet and rotate together until the gap vanishes. Initially, it was thought that the wings were touching, but several incidents indicate a gap between the wings and suggest it provides an
315:
Insects that beat their wings fewer than one hundred times a second use synchronous muscle. Synchronous muscle is a type of muscle that contracts once for every nerve impulse. This generally produces less power and is less efficient than asynchronous muscle, which accounts for the independent
3032: 567:, cause a porosity in the flow which augments and reduces the drag forces, at the cost of lower lift generation. Further, the inter-wing separation before fling plays an important role in the overall effect of drag. As the distance increases between the wings, the overall drag decreases. 1150:{\displaystyle {\begin{aligned}{\frac {\partial \mathbf {u} }{\partial t}}+\left(\mathbf {u} \cdot \nabla \right)\mathbf {u} &=-{\frac {\nabla p}{\rho }}+v\nabla ^{2}\mathbf {u} \\\nabla \cdot \mathbf {u} &=0\\\mathbf {u} _{\text{bd}}&=\mathbf {u} _{\text{s}}.\end{aligned}}} 2400:
of the air that is accelerated by the downward stroke of the wings. The power is the amount of work done in 1 s; in the insect used as an example, makes 110 downward strokes per second. Therefore, its power output P is, strokes per second, and that means its power output P is:
543:
become dominant and the efficacy of lift generation from an airfoil decreases drastically. Starting from the clap position, the two wings fling apart and rotate about the trailing edge. The wings then separate and sweep horizontally until the end of the downstroke. Next, the wings
845: 396:, these predicted forces later were confirmed. Others argued that the force peaks during supination and pronation are caused by an unknown rotational effect that fundamentally is different from the translational phenomena. There is some disagreement with this argument. Through 3532:
gills, which started their way as exits of the respiratory system and over time were modified into locomotive purposes, eventually developed into wings. The tracheal gills are equipped with little winglets that perpetually vibrate and have their own tiny straight muscles.
3284: 403:
Similar to the rotational effect mentioned above, the phenomena associated with flapping wings are not completely understood or agreed upon. Because every model is an approximation, different models leave out effects that are presumed to be negligible. For example, the
3571:. Still, lack of substantial fossil evidence of the development of the wing joints and muscles poses a major difficulty to the theory, as does the seemingly spontaneous development of articulation and venation, and it has been largely rejected by experts in the field. 2497: 433:, first noticed on aircraft propellers by H. Himmelskamp in 1945. This effect was observed in flapping insect flight and it was proven to be capable of providing enough lift to account for the deficiency in the quasi-steady-state models. This effect is used by 251:; it corresponds, probably not coincidentally, with the appearance of a wing-folding mechanism, which allows Neopteran insects to fold the wings back over the abdomen when at rest (though this ability has been lost secondarily in some groups, such as in the 339:
muscles attach directly to the sclerites that make up the wing hinge and are contract with 1:1 impulses from motor neurons. Recent work has begun to address the complex non-linear muscular dynamics at the wing hinge and its effects on the wingtip path.
1870:
The upward stroke then restores the insect to its original position. Typically, it may be required that the vertical position of the insect changes by no more than 0.1 mm (i.e., h = 0.1 mm). The maximum allowable time for free fall is then
3289:
The stored energy in the two wings for a bee-sized insect is 36 erg, which is comparable to the kinetic energy in the upstroke of the wings. Experiments show that as much as 80% of the kinetic energy of the wing may be stored in the resilin.
1877: 2816: 219: 3652:
with both tergal and pleural structures, potentially resolving the centuries-old debate. Jakub Prokop and colleagues have in 2017 found palaeontological evidence from Paleozoic nymphal wing pads that wings indeed had such a dual origin.
3553:
that would have assisted stabilization while hopping or falling. In favor of this hypothesis is the tendency of most insects, when startled while climbing on branches, to escape by dropping to the ground. Such lobes would have served as
663: 2395:
This is a negligible fraction of the total energy expended which clearly, most of the energy is expended in other processes. A more detailed analysis of the problem shows that the work done by the wings is converted primarily into
2390: 952: 1802:
in its amplitude. To simplify the calculations, one must assume that the lifting force is at a finite constant value while the wings are moving down and that it is zero while the wings are moving up. During the time interval Δ
2309: 2888: 225: 224: 221: 220: 1368: 2243: 226: 2709: 3142: 242:
Other than the two orders with direct flight muscles, all other living winged insects fly using a different mechanism, involving indirect flight muscles. This mechanism evolved once and is the defining feature
2248:
If the wings swing through the beat at an angle of 70°, then in the case presented for the insect with 1 cm long wings, d is 0.57 cm. Therefore, the work done during each stroke by the two wings is:
384:(Hz). In those with asynchronous flight muscles, wing beat frequency may exceed 1000 Hz. When the insect is hovering, the two strokes take the same amount of time. A slower downstroke, however, provides 2821:
The velocity of the wings is zero both at the beginning and at the end of the wing stroke, meaning the maximum linear velocity is higher than the average velocity. If we assume that the velocity oscillates
719: 5069:
Dickerson, Bradley H., Alysha M. de Souza, Ainul Huda, and Michael H. Dickinson. "Flies regulate wing motion via active control of a dual-function gyroscope." Current Biology 29, no. 20 (2019): 3517-3524.
2877: 2155: 80:, have flight muscles attached directly to the wings. In other winged insects, flight muscles attach to the thorax, which make it oscillate in order to induce the wings to beat. Of these insects, some ( 2563: 2165:, must be equal to twice the weight of the insect. Note that since the upward force on the insect body is applied only for half the time, the average upward force on the insect is simply its weight. 2095: 3161: 3528:
in 1905 have suggested that a possible origin for insect wings might have been movable abdominal gills found in many aquatic insects, such as on naiads of mayflies. According to this theory these
223: 5783:
Niwa, Nao; Akimoto-Kato, Ai; Niimi, Teruyuki; Tojo, Koji; Machida, Ryuichiro; Hayashi, Shigeo (2010-03-17). "Evolutionary origin of the insect wing via integration of two developmental modules".
266:, the deformations of the thorax cause the wings to move as well. A set of longitudinal muscles along the back compresses the thorax from front to back, causing the dorsal surface of the thorax ( 2407: 980: 5078:
Wolf, Harald. "The locust tegula: significance for flight rhythm generation, wing movement control and aerodynamic force production." Journal of Experimental Biology 182, no. 1 (1993): 229-253.
198: 3545:
in 1875 and reworked by G. Crampton in 1916, Jarmila Kukalova-Peck in 1978 and Alexander P. Rasnitsyn in 1981 among others, suggests that the insect's wings developed from paranotal lobes, a
1865: 5182: 1236: 2634: 875:
of a 2D airfoil further assumes that the flow leaves the sharp trailing edge smoothly, and this determines the total circulation around an airfoil. The corresponding lift is given by
1534:
In addition to the Reynolds number, there are at least two other relevant dimensionless parameters. A wing has three velocity scales: the flapping velocity with respect to the body (
296: 4130: 5088:
Misof, B.; Liu, S.; Meusemann, K.; Peters, R. S.; Donath, A.; Mayer, C.; Frandsen, P.; et al. (2014). "Phylogenomics resolves the timing and pattern of insect evolution".
3704: 1279: 606: 138:, generating large lift forces at the expense of wear and tear on the wings. Many insects can hover, maintaining height and controlling their position. Some insects such as 5060:
Sane, Sanjay P., Alexandre Dieudonné, Mark A. Willis, and Thomas L. Daniel. "Antennal mechanosensors mediate flight control in moths." science 315, no. 5813 (2007): 863-866.
2020:{\displaystyle \Delta t=\left({\frac {2h}{g}}\right)^{1/2}={\sqrt {\frac {2\times 10^{-2}{\text{ cm}}}{980{\text{ cm}}/{\text{s}}^{2}}}}\approx 4.5\times 10^{-3}{\text{ s}}} 167:(dragonflies and damselflies) insert directly at the wing bases, which are hinged so that a small downward movement of the wing base lifts the wing itself upward, much like 1402: 368:. These flapping wings move through two basic half-strokes. The downstroke starts up and back and is plunged downward and forward. Then the wing is quickly flipped over ( 88:) achieve very high wingbeat frequencies through the evolution of an "asynchronous" nervous system, in which the thorax oscillates faster than the rate of nerve impulses. 622: 1172:
the velocity of the solid. By choosing a length scale, L, and velocity scale, U, the equation can be expressed in nondimensional form containing the Reynolds number, R
1442: 2731: 1600:
other insects. Regardless of their exact shapes, the plugging-down motion indicates that insects may use aerodynamic drag in addition to lift to support its weight.
400:, some researchers argue that there is no rotational effect. They claim that the high forces are caused by an interaction with the wake shed by the previous stroke. 1489: 651: 2725:
traversed by the center of the wing divided by the duration Δt of the wing stroke. From our previous example, d = 0.57 cm and Δt = 4.5×10 s. Therefore:
1592:ψ(t), about the axis connecting the root and the tip. To estimate the aerodynamic forces based on blade-element analysis, it is also necessary to determine the 1529: 1509: 1462: 1422: 186: 2324: 6454: 639: 6431: 965:, or velocity relative to the speed of sound in air, is typically 1/300 and the wing frequency is about 10–103 Hz. Using the governing equation as the 889: 284: 2255: 3439:, some 350 to 300 million years ago, when there were only two major land masses, insects began flying. Among the oldest winged insect fossils is 3027:{\displaystyle KE={\frac {1}{2}}I\omega _{max}^{2}=\left(10^{-3}{\frac {\ell ^{2}}{3}}\right)\left({\frac {254}{\ell /2}}\right)^{2}=43{\text{ erg}}} 222: 3632:
Stephen P. Yanoviak and colleagues proposed in 2009 that the wing derives from directed aerial gliding descent—a preflight phenomenon found in some
3068:
in the stretched resilin, which stores the energy much like a spring. When the wing moves down, this energy is released and aids in the downstroke.
687:, which follows the conventions found in aerodynamics. The force component normal to the direction of the flow relative to the wing is called lift ( 3579: 5502:
Kukalova-Peck, Jarmila (1978). "Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record".
2030:
Since the up movements and the down movements of the wings are about equal in duration, the period T for a complete up-and-down wing is twice Δ
1284: 4978: 4292: 3718: 3710: 2588:
for the wing, we will assume that the wing can be approximated by a thin rod pivoted at one end. The moment of inertia for the wing is then:
2187: 695:). At the Reynolds numbers considered here, an appropriate force unit is 1/2(ρUS), where ρ is the density of the fluid, S the wing area, and 585:(a fly), exploit a partial clap and fling, using the mechanism only on the outer part of the wing to increase lift by some 7% when hovering. 2657: 262:
work: these muscles, rather than attaching to the wings, attach to the thorax and deform it; since the wings are extensions of the thoracic
2639:
Where l is the length of the wing (1 cm) and m is the mass of two wings, which may be typically 10 g. The maximum angular velocity, ω
3086: 3037:
Since there are two wing strokes (the upstroke and downstroke) in each cycle of the wing movement, the kinetic energy is 2×43 = 86 
3304: 840:{\displaystyle C_{\text{L}}(\alpha )={\frac {2L}{\rho U^{2}S}}\quad {\text{and}}\quad C_{\text{D}}(\alpha )={\frac {2D}{\rho U^{2}S}}.} 372:) so that the leading edge is pointed backward. The upstroke then pushes the wing upward and backward. Then the wing is flipped again ( 5958:
Prokop, Jakub; PecharovĂĄ, Martina; Nel, AndrĂ©; Hörnschemeyer, Thomas; KrzemiƄska, Ewa; KrzemiƄski, WiesƂaw; Engel, Michael S. (2017).
3497: 3790:
Josephson, Robert K.; Malamud, Jean G.; Stokes, Darrell R. (2001). "The efficiency of an asynchronous flight muscle from a beetle".
2173:
One can now compute the power required to maintain hovering by, considering again an insect with mass m 0.1 g, average force, F
2826:) along the wing path, the maximum velocity is twice as high as the average velocity. Therefore, the maximum angular velocity is: 4801: 4019: 2832: 2106: 3279:{\displaystyle U={\frac {1}{2}}{\frac {1.8\times 10^{7}\times 4\times 10^{-4}\times 10^{-4}}{2\times 10^{-2}}}=18\ {\text{erg}}} 2514: 594: 5034: 4832: 4636: 4585: 4495: 4380: 4076: 3839: 3792: 3517: 3331:
The more primitive groups have an enlarged lobe-like area near the basal posterior margin, i.e. at the base of the forewing, a
2040: 1584:
wing is approximately so, its motion relative to a fixed body can be described by three variables: the position of the tip in
4970: 3644:
Biologists including Averof, Niwa, Elias-Neto and their colleagues have begun to explore the origin of the insect wing using
335:). The overall effect is that many higher Neoptera can beat their wings much faster than insects with direct flight muscles. 3625:
and Åke Norberg suggested in 2003 that wings may have evolved initially for sailing on the surface of water as seen in some
2492:{\displaystyle {\text{P}}=112{\text{erg}}\times 110{\text{/s}}=1.23\times 10^{4}{\text{erg/s}}=1.23\times 10^{-3}{\text{W}}} 557:), tiny insects often have a higher stroke frequency to generate wing-tip velocities that are comparable to larger insects. 6153:
Lewin, G. C.; Haj-Hariri, H. (2003). "Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow".
880: 669:
Fling 3: new vortex forms at leading edge, trailing edge vortices cancel each other, perhaps helping flow to grow faster (
5415:
Crampton, G. (1916). "The Phylogenetic Origin and the Nature of the Wings of Insects According to the Paranotal Theory".
3724: 397: 6463: 5018:
Woiwod, I.P.; Reynolds, D.R.; Thomas, C.D. (Eds) 2001. Insect Movement: Mechanisms and Consequences. CAB International.
5398: 1585: 275: 5180:
Tillyard, R. J. (2009). "Some remarks on the Devonian fossil insects from the Rhynie chert beds, Old Red Sandstone".
1816: 6488: 5452: 4925: 4221: 3667: 545: 353:
There are two basic aerodynamic models of insect flight: creating a leading edge vortex, and using clap and fling.
6451: 6446: 6379:
Zbikowski, R. (2002). "On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles".
6021:
Dickinson, M. H.; Lehmann, F. O.; Sane, S. P. (1999). "Wing rotation and the aerodynamic basis of insect flight".
4068: 6051: 5608: 3622: 3076:. This is not strictly true as the resilin is stretched by a considerable amount and therefore both the area and 1191: 561:
overall drag through the entire wing stroke when compared to rigid wings. Bristles on the wing edges, as seen in
4378:(1973). "Quick estimates of flight fitness in hovering animals, including novel mechanisms of lift production". 871:
around an airfoil can be approximated by a potential flow satisfying the no-penetration boundary condition. The
2594: 2181:. The total work done by the insect during each downward stroke is the product of force and distance; that is, 1786: 539:, is a lift generation method utilized during small insect flight. As insect sizes become less than 1 mm, 3064:. During the upstroke of the wing, the resilin is stretched. The kinetic energy of the wing is converted into 876: 5153:[A Lower Carboniferous insect from the Bitterfeld/Delitzsch area (Pterygota, Arnsbergian, Germany)]. 127:
before shedding their wings after mating, while the members of other castes are wingless their entire lives.
872: 393: 259: 2100:
The frequency of the beats, f, meaning the number of wingbeats per second, is represented by the equation:
6493: 3324:
which render these taxa functionally two-winged. All but the most basal forms exhibit this wing-coupling.
966: 5272:"Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects" 1564:, the former is often referred to as the advance ratio, and it is also related to the reduced frequency, 5724:
Averof, Michalis; Cohen, Stephen M. (1997). "Evolutionary origin of insect wings from ancestral gills".
5557: 5504: 4632:"The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings" 1780: 1752: 867:
may reach a steady state when it slices through the fluid at a small angle of attack. In this case, the
100: 5836:"Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches" 5151:"Ein unter-karbonisches Insekt aus dem Raum Bitterfeld/Delitzsch (Pterygota, Arnsbergium, Deutschland)" 3583:
Generalized arthropod biramous limb. Trueman proposed that an endite and an exite fused to form a wing.
3049: 6436: 1242: 6388: 6316: 6162: 6100: 6091:
Ellington, C. P. (1984). "The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis".
6063: 5973: 5847: 5733: 5620: 5350: 5283: 5099: 4766: 4701: 4467: 4349: 4139: 4028: 3835: 3756: 3608: 3529: 3436: 1795: 1648: 1589: 438: 4745:
Kasoju, V.; Santhanakrishnan, A. (2021). "Aerodynamic interaction of bristled wing pairs in fling".
4805: 4410:
Santhanakrishnan, A.; Robinson, A.; Jones, S.; Low, A.; Gadi, S.; Hendrick, T.; Miller, L. (2014).
4353: 3747: 3649: 958: 6381:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4869: 1375: 1164:(x, t) is the flow field, p the pressure, ρ the density of the fluid, Μ the kinematic viscosity, u 6468: 6412: 6291: 6224: 6178: 6079: 5816: 5765: 5590: 5537: 5460: 5424: 5376: 5131: 4929: 4782: 4756: 4663: 4612: 4558: 4103: 4011: 3898: 3395:
to maintain and control flight. Research has demonstrated the role of sensory structures such as
3362:
The biochemistry of insect flight has been a focus of considerable study. While many insects use
4165: 3080:
change in the process of stretching. The potential energy U stored in the stretched resilin is:
3077: 4456:"Two- and three- dimensional numerical simulations of the clap-fling-sweep of hovering insects" 4188: 2811:{\displaystyle v_{av}={\frac {d}{\Delta t}}={\frac {0.57}{4.5\times 10^{-3}}}=127{\text{cm/s}}} 6404: 6367: 6347: 6216: 6141: 6121: 6038: 5999: 5991: 5940: 5922: 5881: 5863: 5808: 5800: 5757: 5749: 5706: 5636: 5582: 5574: 5529: 5521: 5396:
Trueman, J. W. H. (1990), Comment: evolution of insect wings: a limb exite plus endite model.
5368: 5319: 5301: 5252: 5199: 5123: 5115: 5090: 4974: 4851: 4747: 4727: 4655: 4604: 4550: 4433: 4331: 4288: 4121: 4095: 3962: 3890: 3882: 3817: 3809: 3772: 3714: 3446: 3424: 3396: 2585: 581: 575: 524: 409: 1427: 6396: 6359: 6332: 6324: 6283: 6249: 6208: 6170: 6133: 6108: 6071: 6030: 5981: 5930: 5912: 5871: 5855: 5792: 5741: 5696: 5688: 5654:
Marden, James (2003). "The Surface-Skimming Hypothesis for the Evolution of Insect Flight".
5628: 5566: 5513: 5358: 5309: 5291: 5242: 5232: 5191: 5162: 5107: 5043: 4841: 4774: 4717: 4709: 4645: 4594: 4540: 4504: 4475: 4423: 4389: 4375: 4321: 4147: 4085: 4036: 3952: 3944: 3872: 3801: 3764: 3677: 3338:
Other groups have a frenulum on the hindwing that hooks under a retinaculum on the forewing.
3065: 2581: 670: 634:
Black (curved) arrows: flow; Blue arrows: induced velocity; Orange arrows: net force on wing
563: 536: 365: 38: 4040: 1467: 512: 492: 32: 6458: 6237: 5964: 5679: 5472: 4895: 3595:, also called the pleural hypothesis. This was based on a study by Goldschmidt in 1945 on 3513: 3489:; or that they arose from modifications of leg segments, which already contained muscles. 3471: 3327:
The mechanisms are of three different types – jugal, frenulo-retinacular and amplexiform:
1593: 519: 453: 414: 96: 5485: 3542: 3377:
as their energy source. Some species also use a combination of sources and moths such as
2161:
to its original vertical position, the average upward force during the downward stroke, F
6441: 6392: 6320: 6166: 6104: 6067: 5977: 5851: 5737: 5624: 5354: 5339:"Jumping and the aerial behavior of aquatic mayfly larvae (Myobaetis ellenae, Baetidae)" 5287: 5103: 4770: 4705: 4479: 4471: 4143: 4032: 3957: 3760: 2385:{\displaystyle {\text{E}}={\text{mgh}}=0.1\times 980\times 10^{-2}=0.98{\text{erg}}\,\!} 6337: 6304: 5935: 5900: 5876: 5835: 5701: 5674: 5314: 5271: 5247: 5218: 5195: 4722: 4689: 4284: 3525: 3456: 3073: 2397: 1514: 1494: 1447: 1407: 684: 540: 503: 465: 124: 6473: 6238:"The role of vortices and unsteady effects during the hovering flight of dragon flies" 3768: 3316:
Some four-winged insect orders, such as the Lepidoptera, have developed morphological
6482: 6182: 5796: 5632: 5611:; Norberg, R. Åke (1996). "Skimming the surface — the origin of flight in insects?". 5555:
Rasnitsyn, Alexander P. (1981). "A modified paranotal theory of insect wing origin".
5380: 5166: 5150: 4786: 3902: 3592: 3588: 3546: 3420: 3379: 3363: 3317: 3309: 3299: 947:{\displaystyle C_{\text{L}}=2\pi \sin \alpha \quad {\text{and}}\quad C_{\text{D}}=0.} 868: 405: 143: 66: 6228: 5820: 5594: 5541: 5135: 4667: 4562: 4220:
Himmelskamp, H. (1945) "Profile investigations on a rotating airscrew". PhD thesis,
4107: 6416: 6083: 5917: 5769: 4690:"Wing-kinematics measurement and aerodynamics in a small insect in hovering flight" 4616: 4007: 3521: 3509: 3479: 3451: 3441: 1182: 613: 554: 422: 362: 348: 244: 131: 54: 6034: 2304:{\displaystyle {\text{Work}}=2\times 0.1\times 980\times 0.57=112{\text{erg}}\,\!} 6271: 4964: 4278: 2714:
During each stroke the center of the wings moves with an average linear velocity
6272:"Recordings of high wing-stroke and thoracic vibration frequency in some midges" 3672: 3662: 3560: 3428: 3346: 3342: 2318:
required to raise the mass of the insect 0.1 mm during each downstroke is:
1739: 1177: 962: 430: 332: 307: 263: 252: 176: 172: 108: 58: 4493:
Bennett, L. (1977). "Clap and fling aerodynamics- an experimental evaluation".
3936: 535:
Clap and fling, or the Weis-Fogh mechanism, discovered by the Danish zoologist
6174: 5986: 5959: 5363: 5338: 3948: 3633: 3371: 3350: 3151:
is the Young's modulus for resilin, which has been measured to be 1.8×10 
3057: 2823: 1580: 426: 418: 369: 324: 104: 17: 6122:"The novel aerodynamics of insect flight: Applications to micro-air vehicles" 5995: 5926: 5867: 5804: 5753: 5578: 5525: 5305: 5203: 5119: 4412:"Clap and fling mechanism with interacting porous wing in tiny insect flight" 4335: 4326: 4309: 4151: 3886: 3813: 863:
are constants only if the flow is steady. A special class of objects such as
270:) to bow upward, making the wings flip down. Another set of muscles from the 6363: 6137: 5570: 5517: 5296: 5111: 5000:(pp. 631-664) in Resh, & Cardé (Eds). "Encyclopedia of Insects". 2003. 3805: 3555: 3464: 1726: 1687: 1661: 1622: 434: 380:
range in insects with synchronous flight muscles typically is 5 to 200 
377: 373: 320: 316:
evolution of asynchronous flight muscles in several separate insect clades.
43: 6442:
The Novel Aerodynamics Of Insect Flight: Applications To Micro-Air Vehicles
6408: 6400: 6371: 6328: 6220: 6145: 6112: 6042: 6003: 5944: 5899:
Tomoyasu, Yoshinori; Ohde, Takahiro; Clark-Hachtel, Courtney (2017-03-14).
5885: 5812: 5710: 5692: 5640: 5586: 5533: 5372: 5323: 5256: 5127: 4933: 4855: 4731: 4659: 4608: 4581:"The aerodynamic effects of wing-wing interaction in flapping insect wings" 4554: 4437: 4099: 3966: 3894: 3821: 3776: 3407:
in controlling flight posture, wingbeat amplitude, and wingbeat frequency.
5761: 5047: 4310:"Investigation into Reynolds number effects on a biomimetic flapping wing" 3415: 691:), and the force component in the opposite direction of the flow is drag ( 4508: 4393: 3937:"Machine learning reveals the control mechanics of the insect wing hinge" 3645: 3626: 3616: 3483: 3475: 3400: 3392: 2644: 1713: 1700: 1674: 303: 248: 77: 6253: 5859: 5428: 3591:, appendages on the respective inner and outer aspects of the primitive 3541:
The paranotal lobe or tergal (dorsal body wall) hypothesis, proposed by
1363:{\displaystyle r_{g}={\sqrt {{\frac {1}{s}}\int _{0}^{R}{r^{2}c(R)dr}}}} 6295: 5960:"Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins" 5237: 4846: 4827: 4545: 4528: 4428: 4411: 3877: 3860: 3648:
in addition to palaeontological evidence. This suggests that wings are
3564: 3374: 3061: 2573: 2238:{\displaystyle {\text{Work}}=F_{av}\times d={\text{2W}}_{\text{d}}\,\!} 1181:
corresponding Reynolds number about 103. At the smaller end, a typical
864: 571: 328: 205: 164: 116: 73: 6309:
Philosophical Transactions of the Royal Society B: Biological Sciences
6212: 6093:
Philosophical Transactions of the Royal Society B: Biological Sciences
4778: 4713: 4650: 4631: 4599: 4580: 4090: 3916:
Heide, G.G. (1983). "Neural mechanisms of flight control in Diptera".
2704:{\displaystyle \omega _{\text{max}}={\frac {v_{\text{max}}}{\ell /2}}} 628:
Clap 3: trailing edges close, vortices shed, wings close giving thrust
417:
that is typical of insect flight. The Reynolds number is a measure of
6075: 5745: 4125: 3612: 3568: 3550: 3501: 3367: 3056:
Insects gain kinetic energy, provided by the muscles, when the wings
1765: 1635: 499: 385: 271: 209: 168: 160: 92: 85: 62: 50: 6287: 208:(dragonflies and damselflies) have direct flight musculature, as do 6050:
Ellington, Charles P.; Van Den Berg, Coen; Willmott, Alexander P.;
5901:"What serial homologs can tell us about the origin of insect wings" 4761: 3137:{\displaystyle U={\frac {1}{2}}{\frac {EA\Delta \ell ^{2}}{\ell }}} 2314:
The energy is used to raise the insect against gravity. The energy
6261:
Smyth, T. Jr. (1985). "Muscle systems". In Blum, M.S. Blum (ed.).
5223: 4455: 3836:"Definition of Asynchronous muscle in the Entomologists' glossary" 3587:
In 1990, J. W. H. Trueman proposed that the wing was adapted from
3578: 3496: 3486: 3414: 3321: 3048: 3041:. This is about as much energy as is consumed in hovering itself. 1779: 969:
being subject to the no-slip boundary condition, the equation is:
579:, a sea butterfly. Some insects, such as the vegetable leaf miner 381: 278:
pulls the notum downward again, causing the wings to flip upward.
267: 120: 81: 5009:
Gorb, S. (2001) Ch 4.1.5 "Inter-locking of body parts". pp 46–50.
4308:
Hope, Daniel K; DeLuca, Anthony M.; O'Hara, Ryan P (2018-01-03).
3370:
as the energy source for flight, many beetles and flies use the
4126:"Über die Entstehung des dynamischen Auftriebes von TragflĂŒgeln" 3467: 3459:, but it is uncertain if it had wings, or indeed was an insect. 3404: 3152: 657:
Fling 2: leading edge moves away, air rushes in, increasing lift
258:
What all Neoptera share, however, is the way the muscles in the
139: 4454:
Kolomenskiy, D; Moffatt, H.; Farge, M.; Schneider, K. (2011).
3859:
Deora, Tanvi; Gundiah, Namrata; Sane, Sanjay P. (2017-04-15).
3038: 290:
Indirect flight: muscles make thorax oscillate in most insects
112: 5675:"Gliding hexapods and the origins of insect aerial behaviour" 6348:"Rotational lift: something difference or more of the same?" 5219:"The presumed oldest flying insect: more likely a myriapod?" 5028:
Joos, B. (1987). "Carbohydrate use in the flight muscles of
4922:
The Biomechanics of Insect Flight: Form, Function, Evolution
4189:"The Behaviour and Performance of Leading-Edge Vortex Flaps" 570:
The clap and fling mechanism is also employed by the marine
192:
Direct flight: muscles attached to wings. Large insects only
5155:
Neues Jahrbuch fĂŒr Geologie und PalĂ€ontologie - Monatshefte
2872:{\displaystyle \omega _{\text{max}}={\frac {254}{\ell /2}}} 2150:{\displaystyle f={\frac {1}{T}}\approx 110{\text{ s}}^{-1}} 502:
are unsuitable for leading edge vortex flight, but support
5732:(6617). Springer Science and Business Media LLC: 627–630. 2558:{\displaystyle KE={\frac {1}{2}}I\omega _{\text{max}}^{2}} 699:
the wing speed. The dimensionless forces are called lift (
6432:
An Insect's Role In The Development Of Micro Air Vehicles
6199:
Sane, S. P. (2003). "The aerodynamics of insect flight".
5183:
Transactions of the Royal Entomological Society of London
4202:. International Council of Aeronautical Sciences: 758–765 4128:[On the origin of the dynamic lift of airfoils]. 645:
Fling 1: wings rotate around trailing edge to fling apart
4802:"Swim Like a Butterfly? Sea Snail 'Flies' Through Water" 2090:{\displaystyle T=2\,\Delta t=9\times 10^{-3}{\text{ s}}} 1549:). The ratios of them form two dimensionless variables, 319:
Insects that beat their wings more rapidly, such as the
310:
and most other insects, have indirect flight musculature
4953:
in Capinera (Ed) (2008) "Encyc. Entom.", Vol 4. p. 4266
4826:
Murphy, D.; Adhikari, D.; Webster, D.; Yen, J. (2016).
6464:
Flow visualization of butterfly aerodynamic mechanisms
5673:
Yanoviak, Stephen P.; Kaspari, M.; Dudley, R. (2009).
3935:
Melis, Johan M.; Dickinson, Michael H. (2023-06-30).
3164: 3089: 2891: 2835: 2734: 2660: 2597: 2517: 2410: 2327: 2258: 2190: 2109: 2043: 1880: 1819: 1517: 1497: 1470: 1450: 1430: 1410: 1378: 1287: 1245: 1194: 1176:=uL/Μ . There are two obvious differences between an 978: 957:
The flows around birds and insects can be considered
892: 722: 130:
Some very small insects make use not of steady-state
3706:
Numbers of living species in Australia and the World
1806:
of the upward wingbeat, the insect drops a distance
361:
Most insects use a method that creates a spiralling
5270:Wipfler, Benjamin; et al. (19 February 2019). 4828:"Underwater flight by the planktonic sea butterfly" 91:Not all insects are capable of flight. A number of 6236:Savage, S. B.; Newman, B.G.; Wong, D.T.M. (1979). 6054:(1996). "Leading-edge vortices in insect flight". 5337:Yanoviak, Stephen P.; Dudley, Robert (July 2018). 4131:Zeitschrift fĂŒr Angewandte Mathematik und Mechanik 3278: 3136: 3026: 2871: 2810: 2703: 2628: 2557: 2491: 2384: 2303: 2237: 2149: 2089: 2019: 1859: 1523: 1503: 1483: 1456: 1436: 1416: 1396: 1362: 1273: 1230: 1149: 946: 839: 46:has flight muscles attached directly to its wings. 4683: 4681: 4679: 4677: 3745:Smith, D.S. (1965). "Flight muscles of insects". 3636:, a wingless sister taxon to the winged insects. 2381: 2300: 2234: 612:Clap 2: leading edges touch, wing rotates around 6305:"The vortex wake of a 'hovering' model hawkmoth" 5410: 5408: 4579:Lehmann, F.-O.; Sane, S.; Dickinson, M. (2005). 5276:Proceedings of the National Academy of Sciences 4529:"Flexible clap and fling in tiny insect flight" 1531:is the length of wing, including the wing tip. 589:Clap and fling flight mechanism after Sane 2003 5149:Brauckmann, Carsten; Schneider, Joerg (1996). 4062: 4060: 4058: 4056: 4054: 4052: 4050: 1860:{\displaystyle h={\frac {g(\Delta t^{2})}{2}}} 159:Unlike other insects, the wing muscles of the 146:to the hindwings so these can work in unison. 97:secondarily lost their wings through evolution 5417:Journal of the New York Entomological Society 4966:The Lepidoptera: Form, Function and Diversity 4896:"Butterflies in the Pieridae family (whites)" 3611:'s 1973 suggestion that wings developed from 123:reproductive castes develop wings during the 8: 6437:Insect-like Flapping-Wing Micro Air Vehicles 4915: 4913: 2643:, can be calculated from the maximum linear 6303:Van Den Berg, C.; Ellington, C. P. (1997). 5834:Elias-Neto, MoysĂ©s; Belles, Xavier (2016). 5447:Grimaldi, David; Engel, Michael S. (2005). 5442: 5440: 5438: 4992: 4990: 4314:International Journal of Micro Air Vehicles 4272: 4270: 4268: 4266: 4264: 4262: 4260: 4258: 4256: 4254: 4252: 4250: 1578:If an insect wing is rigid, for example, a 1231:{\displaystyle Re={\frac {{\bar {c}}U}{v}}} 5392: 5390: 4248: 4246: 4244: 4242: 4240: 4238: 4236: 4234: 4232: 4230: 4002: 3478:. Phylogenomic analysis suggests that the 3383:use carbohydrates for pre-flight warm-up. 3335:, that folds under the hindwing in flight. 1607: 413:this effect is negligible for flow with a 6336: 5985: 5934: 5916: 5875: 5700: 5362: 5313: 5295: 5246: 5236: 4945: 4943: 4845: 4760: 4721: 4649: 4598: 4544: 4427: 4325: 4089: 4000: 3998: 3996: 3994: 3992: 3990: 3988: 3986: 3984: 3982: 3956: 3876: 3698: 3696: 3694: 3692: 3271: 3250: 3229: 3213: 3194: 3181: 3171: 3163: 3122: 3106: 3096: 3088: 3019: 3007: 2992: 2983: 2962: 2956: 2947: 2929: 2918: 2901: 2890: 2858: 2849: 2840: 2834: 2803: 2785: 2769: 2751: 2739: 2733: 2690: 2680: 2674: 2665: 2659: 2629:{\displaystyle I={\frac {m\ell ^{2}}{3}}} 2614: 2604: 2596: 2549: 2544: 2527: 2516: 2484: 2475: 2457: 2451: 2433: 2422: 2411: 2409: 2380: 2375: 2360: 2336: 2328: 2326: 2299: 2294: 2259: 2257: 2233: 2227: 2222: 2203: 2191: 2189: 2138: 2133: 2116: 2108: 2082: 2073: 2053: 2042: 2012: 2003: 1980: 1975: 1969: 1964: 1954: 1945: 1931: 1918: 1914: 1895: 1879: 1842: 1826: 1818: 1516: 1496: 1475: 1469: 1449: 1429: 1409: 1380: 1379: 1377: 1333: 1328: 1322: 1317: 1303: 1301: 1292: 1286: 1265: 1244: 1208: 1207: 1204: 1193: 1134: 1129: 1115: 1110: 1090: 1075: 1069: 1044: 1029: 1013: 989: 983: 979: 977: 932: 922: 897: 891: 822: 804: 786: 776: 763: 745: 727: 721: 27:Mechanisms and evolution of insect flight 6265:. John Wiley and Sons. pp. 227–286. 5217:Carolin Haug & Joachim Haug (2017). 3941:BioRxiv: The Preprint Server for Biology 3303: 376:) and another downstroke can occur. The 31: 6194:. Oxford Biology Readers. Vol. 52. 3688: 632: 587: 280: 182: 5468: 5458: 4800:Weisberger, Mindy (19 February 2016). 4187:Ellis, D. G.; Stollery, J. L. (1988). 4041:10.1146/annurev.fluid.36.050802.121940 2584:during the wing stroke. To obtain the 683:A wing moving in fluids experiences a 5343:Arthropod Structure & Development 4574: 4572: 4522: 4520: 4518: 4449: 4447: 4405: 4403: 3711:Australian Biological Resources Study 2882:And the kinetic energy therefore is: 1538:), the forward velocity of the body ( 7: 3493:Epicoxal (abdominal gill) hypothesis 6352:The Journal of Experimental Biology 6242:The Journal of Experimental Biology 6201:The Journal of Experimental Biology 6126:The Journal of Experimental Biology 4688:Cheng, Xin; Sun, Mao (2016-05-11). 4533:The Journal of Experimental Biology 4480:10.1016/j.jfluidstructs.2011.05.002 4069:"The aerodynamics of insect flight" 1168:the velocity at the boundary, and u 135: 5196:10.1111/j.1365-2311.1928.tb01188.x 3861:"Mechanics of the thorax in flies" 3115: 2757: 2054: 1881: 1835: 1790:) has indirect flight musculature. 1431: 1255: 1084: 1066: 1047: 1021: 996: 986: 136:Weis-Fogh clap and fling mechanism 25: 6447:The aerodynamics of insect flight 6263:Fundamentals of insect physiology 5613:Trends in Ecology & Evolution 5490:Jena. Zeitung Naturwissenschaften 4630:Lehmann, F.-O.; Pick, S. (2007). 3769:10.1038/scientificamerican0665-76 3575:Endite-exite (pleural) hypothesis 3504:nymph with paired abdominal gills 6346:Walker, J. A. (September 2002). 5846:(8). The Royal Society: 160347. 5797:10.1111/j.1525-142x.2010.00402.x 4460:Journal of Fluids and Structures 4020:Annual Review of Fluid Mechanics 1810:under the influence of gravity. 1274:{\displaystyle U=2\Theta fr_{g}} 1130: 1111: 1091: 1076: 1030: 1014: 990: 662: 650: 638: 621: 605: 593: 511: 491: 464: 452: 295: 283: 217: 197: 185: 5035:Journal of Experimental Biology 4833:Journal of Experimental Biology 4637:Journal of Experimental Biology 4586:Journal of Experimental Biology 4527:Miller, L.; Peskin, S. (2009). 4496:Journal of Experimental Biology 4416:Journal of Experimental Biology 4381:Journal of Experimental Biology 4280:Physics in Biology and Medicine 4077:Journal of Experimental Biology 3865:Journal of Experimental Biology 3840:North Carolina State University 3793:Journal of Experimental Biology 1545:), and the pitching velocity (Ω 927: 921: 781: 775: 232:Slow motion flight of dragonfly 180:hunted other airborne insects. 5918:10.12688/f1000research.10285.1 3449:from the Lower Carboniferous; 1848: 1832: 1424:is the speed of the wing tip, 1385: 1348: 1342: 1213: 798: 792: 739: 733: 1: 6035:10.1126/science.284.5422.1954 3537:Paranotal (tergal) hypothesis 2651:, at the center of the wing: 1404:is the average chord length, 600:Clap 1: wings close over back 107:never evolved wings. In some 5633:10.1016/0169-5347(96)30022-0 5032:during pre-flight warm-up". 3838:. Department of Entomology, 2508:during each wing stroke is: 1397:{\displaystyle {\bar {c}}\ } 398:computational fluid dynamics 65:. Insects first flew in the 6469:The Flight Of The Bumblebee 5785:Evolution & Development 5656:Acta Zoologica Cracoviensia 5399:Canadian Journal of Zoology 4963:Scoble, Malcolm J. (1995). 4166:"Transition and Turbulence" 1491:is the radius of gyration, 528:to "fly" through the water. 6510: 6190:Pringle, J. W. S. (1975). 6155:Journal of Fluid Mechanics 5840:Royal Society Open Science 5453:Cambridge University Press 5167:10.1127/njgpm/1996/1996/17 4926:Princeton University Press 4876:. Cislunar Aerospace. 1997 4012:"Dissecting Insect Flight" 3668:Flying and gliding animals 3297: 518:Clap and fling is used in 346: 6175:10.1017/S0022112003005743 6120:Ellington, C. P. (1999). 5987:10.1016/j.cub.2016.11.021 5449:Insects take to the skies 5364:10.1016/j.asd.2017.06.005 4949:Stocks, Ian. (2008). Sec. 4924:. Princeton, New Jersey: 4870:"Insect Wings in General" 4277:Davidovits, Paul (2008). 3949:10.1101/2023.06.29.547116 3607:Other hypotheses include 1764: 1751: 1738: 1725: 1712: 1699: 1686: 1673: 1660: 1647: 1634: 1621: 1616: 1613: 1610: 1444:is the stroke amplitude, 713:) coefficients, that is: 4327:10.1177/1756829317745319 4152:10.1002/zamm.19250050103 4067:Sane, Sanjay P. (2003). 3411:Evolution and adaptation 3312:in male and female moths 498:The feathery wings of a 161:Ephemeroptera (mayflies) 6364:10.1242/jeb.205.24.3783 6138:10.1242/jeb.202.23.3439 5571:10.1002/jmor.1051680309 5518:10.1002/jmor.1051560104 5297:10.1073/pnas.1817794116 5112:10.1126/science.1257570 4920:Dudley, Robert (2000). 4874:Aerodynamics of Insects 4222:University of Göttingen 3806:10.1242/jeb.204.23.4125 3703:Chapman, A. D. (2006). 3597:Drosophila melanogaster 1588:, (Θ(t),Ί(t)), and the 1511:is the wing area, and 1464:is the beat frequency, 1437:{\displaystyle \Theta } 873:Kutta-Joukowski theorem 72:Two insect groups, the 6401:10.1098/rsta.2001.0930 6329:10.1098/rstb.1997.0023 6276:Biol. Bull. Woods Hole 6270:Sotavalta, O. (1953). 6113:10.1098/rstb.1984.0049 5693:10.1098/rsbl.2009.0029 4971:Natural History Museum 4168:. Princeton University 3584: 3505: 3470:, as found on aquatic 3432: 3313: 3280: 3138: 3053: 3028: 2873: 2812: 2721:given by the distance 2705: 2630: 2559: 2493: 2386: 2305: 2239: 2151: 2091: 2021: 1861: 1791: 1787:Philhelius pedissequum 1525: 1505: 1485: 1458: 1438: 1418: 1398: 1364: 1275: 1232: 1151: 967:Navier-Stokes equation 948: 841: 53:are the only group of 47: 5558:Journal of Morphology 5505:Journal of Morphology 5048:10.1242/jeb.133.1.317 4996:Powell, Jerry A. Ch. 3582: 3500: 3418: 3307: 3281: 3139: 3052: 3029: 2874: 2813: 2706: 2631: 2560: 2494: 2387: 2306: 2240: 2152: 2092: 2022: 1862: 1783: 1753:Large white butterfly 1586:spherical coordinates 1526: 1506: 1486: 1484:{\displaystyle r_{g}} 1459: 1439: 1419: 1399: 1365: 1276: 1233: 1152: 949: 877:Bernoulli's principle 842: 549:aerodynamic benefit. 347:Further information: 247:) for the infraclass 35: 6358:(Pt 24): 3783–3792. 6132:(Pt 23): 3439–3448. 6052:Thomas, Adrian L. R. 5609:Thomas, Adrian L. R. 5512:(1). Wiley: 53–125. 4593:(Pt 16): 3075–3092. 4509:10.1242/jeb.69.1.261 4422:(Pt 21): 3898–4709. 4394:10.1242/jeb.59.1.169 3615:protrusions used as 3609:Vincent Wigglesworth 3437:Carboniferous Period 3419:Reconstruction of a 3308:Frenulo-retinacular 3162: 3087: 2889: 2833: 2732: 2658: 2595: 2515: 2408: 2325: 2256: 2188: 2107: 2041: 1878: 1817: 1649:Hummingbird hawkmoth 1515: 1495: 1468: 1448: 1428: 1408: 1376: 1285: 1243: 1192: 976: 890: 720: 439:sculling draw stroke 6393:2002RSPTA.360..273Z 6321:1997RSPTB.352..317V 6254:10.1242/jeb.83.1.59 6207:(Pt 23): 4191–208. 6167:2003JFM...492..339L 6105:1984RSPTB.305....1E 6068:1996Natur.384..626E 5978:2017CBio...27..263P 5860:10.1098/rsos.160347 5852:2016RSOS....360347E 5738:1997Natur.385..627A 5625:1996TEcoE..11..187T 5455:. pp. 155–159. 5355:2018ArtSD..47..370Y 5288:2019PNAS..116.3024W 5104:2014Sci...346..763M 4806:Scientific American 4771:2021PhFl...33c1901K 4706:2016NatSR...625706C 4644:(Pt 8): 1362–1377. 4472:2011JFS....27..784K 4354:Scientific American 4350:"Catching the Wake" 4196:ICAS 1988 Jerusalem 4144:1925ZaMM....5...17W 4033:2005AnRFM..37..183W 3761:1965SciAm.212f..76S 3748:Scientific American 3650:serially homologous 3567:and finally active 3455:is older, from the 2934: 2554: 1327: 679:Governing equations 357:Leading edge vortex 142:have the forewings 99:, while other more 6457:2004-08-22 at the 5238:10.7717/peerj.3402 4973:. pp. 56–60. 4847:10.1242/jeb.129205 4694:Scientific Reports 4546:10.1242/jeb.028662 4429:10.1242/jeb.084897 4287:. pp. 78–79. 3878:10.1242/jeb.128363 3589:endites and exites 3585: 3506: 3447:Palaeodictyopteran 3433: 3425:palaeodictyopteran 3320:mechanisms in the 3314: 3276: 3134: 3054: 3024: 2914: 2869: 2808: 2701: 2626: 2555: 2540: 2489: 2382: 2301: 2235: 2147: 2087: 2017: 1857: 1792: 1611:Flight parameters 1521: 1501: 1481: 1454: 1434: 1414: 1394: 1360: 1313: 1271: 1228: 1147: 1145: 944: 837: 57:that have evolved 48: 6489:Insect physiology 6387:(1791): 273–290. 6315:(1351): 317–328. 6213:10.1242/jeb.00663 6062:(6610): 626–630. 6029:(5422): 1954–60. 5098:(6210): 763–767. 4980:978-0-19-854952-9 4779:10.1063/5.0036018 4748:Physics of Fluids 4714:10.1038/srep25706 4651:10.1242/jeb.02746 4600:10.1242/jeb.01744 4539:(19): 3076–3090. 4376:Weis-Fogh, Torkel 4294:978-0-12-369411-9 4091:10.1242/jeb.00663 4084:(23): 4191–4208. 3800:(23): 4125–4139. 3720:978-0-642-56850-2 3713:. pp. 60pp. 3274: 3270: 3260: 3179: 3132: 3104: 3022: 3001: 2971: 2909: 2867: 2843: 2806: 2795: 2764: 2699: 2683: 2668: 2624: 2586:moment of inertia 2576:of the wing and ω 2572:is the moment of 2547: 2535: 2487: 2460: 2436: 2425: 2414: 2378: 2339: 2331: 2297: 2262: 2230: 2225: 2194: 2136: 2124: 2085: 2015: 1988: 1987: 1978: 1967: 1957: 1908: 1855: 1794:Many insects can 1778: 1777: 1768:(clap and fling) 1623:Aeshnid dragonfly 1524:{\displaystyle R} 1504:{\displaystyle s} 1457:{\displaystyle f} 1417:{\displaystyle U} 1393: 1388: 1358: 1311: 1226: 1216: 1137: 1118: 1057: 1003: 935: 925: 900: 832: 789: 779: 773: 730: 582:Liriomyza sativae 576:Limacina helicina 525:Limacina helicina 410:Herbert A. Wagner 408:, as proposed by 227: 171:through the air. 16:(Redirected from 6501: 6420: 6375: 6342: 6340: 6299: 6266: 6257: 6232: 6195: 6186: 6149: 6116: 6087: 6076:10.1038/384626a0 6046: 6008: 6007: 5989: 5955: 5949: 5948: 5938: 5920: 5896: 5890: 5889: 5879: 5831: 5825: 5824: 5780: 5774: 5773: 5746:10.1038/385627a0 5721: 5715: 5714: 5704: 5670: 5664: 5663: 5651: 5645: 5644: 5605: 5599: 5598: 5552: 5546: 5545: 5499: 5493: 5483: 5477: 5476: 5470: 5466: 5464: 5456: 5444: 5433: 5432: 5412: 5403: 5394: 5385: 5384: 5366: 5334: 5328: 5327: 5317: 5299: 5282:(8): 3024–3029. 5267: 5261: 5260: 5250: 5240: 5214: 5208: 5207: 5177: 5171: 5170: 5146: 5140: 5139: 5085: 5079: 5076: 5070: 5067: 5061: 5058: 5052: 5051: 5025: 5019: 5016: 5010: 5007: 5001: 4994: 4985: 4984: 4960: 4954: 4947: 4938: 4937: 4917: 4908: 4907: 4905: 4903: 4892: 4886: 4885: 4883: 4881: 4866: 4860: 4859: 4849: 4823: 4817: 4816: 4814: 4812: 4797: 4791: 4790: 4764: 4742: 4736: 4735: 4725: 4685: 4672: 4671: 4653: 4627: 4621: 4620: 4602: 4576: 4567: 4566: 4548: 4524: 4513: 4512: 4490: 4484: 4483: 4451: 4442: 4441: 4431: 4407: 4398: 4397: 4372: 4366: 4365: 4363: 4361: 4346: 4340: 4339: 4329: 4305: 4299: 4298: 4274: 4225: 4218: 4212: 4211: 4209: 4207: 4193: 4184: 4178: 4177: 4175: 4173: 4162: 4156: 4155: 4118: 4112: 4111: 4093: 4073: 4064: 4045: 4044: 4016: 4004: 3977: 3976: 3974: 3973: 3960: 3932: 3926: 3925: 3913: 3907: 3906: 3880: 3871:(8): 1382–1395. 3856: 3850: 3849: 3847: 3846: 3832: 3826: 3825: 3787: 3781: 3780: 3742: 3736: 3735: 3733: 3732: 3723:. Archived from 3700: 3678:Insect migration 3603:Other hypotheses 3549:found in insect 3435:Sometime in the 3393:sensory feedback 3387:Sensory feedback 3285: 3283: 3282: 3277: 3275: 3272: 3268: 3261: 3259: 3258: 3257: 3238: 3237: 3236: 3221: 3220: 3199: 3198: 3182: 3180: 3172: 3143: 3141: 3140: 3135: 3133: 3128: 3127: 3126: 3107: 3105: 3097: 3066:potential energy 3033: 3031: 3030: 3025: 3023: 3020: 3012: 3011: 3006: 3002: 3000: 2996: 2984: 2977: 2973: 2972: 2967: 2966: 2957: 2955: 2954: 2933: 2928: 2910: 2902: 2878: 2876: 2875: 2870: 2868: 2866: 2862: 2850: 2845: 2844: 2841: 2817: 2815: 2814: 2809: 2807: 2804: 2796: 2794: 2793: 2792: 2770: 2765: 2763: 2752: 2747: 2746: 2710: 2708: 2707: 2702: 2700: 2698: 2694: 2685: 2684: 2681: 2675: 2670: 2669: 2666: 2635: 2633: 2632: 2627: 2625: 2620: 2619: 2618: 2605: 2582:angular velocity 2564: 2562: 2561: 2556: 2553: 2548: 2545: 2536: 2528: 2498: 2496: 2495: 2490: 2488: 2485: 2483: 2482: 2461: 2458: 2456: 2455: 2437: 2434: 2426: 2423: 2415: 2412: 2391: 2389: 2388: 2383: 2379: 2376: 2368: 2367: 2340: 2337: 2332: 2329: 2310: 2308: 2307: 2302: 2298: 2295: 2263: 2260: 2244: 2242: 2241: 2236: 2232: 2231: 2228: 2226: 2223: 2211: 2210: 2195: 2192: 2156: 2154: 2153: 2148: 2146: 2145: 2137: 2134: 2125: 2117: 2096: 2094: 2093: 2088: 2086: 2083: 2081: 2080: 2026: 2024: 2023: 2018: 2016: 2013: 2011: 2010: 1989: 1986: 1985: 1984: 1979: 1976: 1973: 1968: 1965: 1959: 1958: 1955: 1953: 1952: 1933: 1932: 1927: 1926: 1922: 1913: 1909: 1904: 1896: 1866: 1864: 1863: 1858: 1856: 1851: 1847: 1846: 1827: 1608: 1530: 1528: 1527: 1522: 1510: 1508: 1507: 1502: 1490: 1488: 1487: 1482: 1480: 1479: 1463: 1461: 1460: 1455: 1443: 1441: 1440: 1435: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1391: 1390: 1389: 1381: 1369: 1367: 1366: 1361: 1359: 1357: 1338: 1337: 1326: 1321: 1312: 1304: 1302: 1297: 1296: 1280: 1278: 1277: 1272: 1270: 1269: 1237: 1235: 1234: 1229: 1227: 1222: 1218: 1217: 1209: 1205: 1156: 1154: 1153: 1148: 1146: 1139: 1138: 1135: 1133: 1120: 1119: 1116: 1114: 1094: 1079: 1074: 1073: 1058: 1053: 1045: 1033: 1028: 1024: 1017: 1004: 1002: 994: 993: 984: 953: 951: 950: 945: 937: 936: 933: 926: 923: 902: 901: 898: 846: 844: 843: 838: 833: 831: 827: 826: 813: 805: 791: 790: 787: 780: 777: 774: 772: 768: 767: 754: 746: 732: 731: 728: 666: 654: 642: 625: 609: 597: 564:Encarsia formosa 537:Torkel Weis-Fogh 515: 495: 468: 456: 299: 287: 229: 228: 201: 189: 39:Hemicordulia tau 21: 6509: 6508: 6504: 6503: 6502: 6500: 6499: 6498: 6479: 6478: 6459:Wayback Machine 6428: 6423: 6378: 6345: 6302: 6288:10.2307/1538496 6269: 6260: 6235: 6198: 6189: 6152: 6119: 6090: 6049: 6020: 6016: 6014:Further reading 6011: 5965:Current Biology 5957: 5956: 5952: 5898: 5897: 5893: 5833: 5832: 5828: 5782: 5781: 5777: 5723: 5722: 5718: 5680:Biology Letters 5672: 5671: 5667: 5653: 5652: 5648: 5607: 5606: 5602: 5554: 5553: 5549: 5501: 5500: 5496: 5484: 5480: 5467: 5457: 5446: 5445: 5436: 5414: 5413: 5406: 5395: 5388: 5336: 5335: 5331: 5269: 5268: 5264: 5216: 5215: 5211: 5179: 5178: 5174: 5148: 5147: 5143: 5087: 5086: 5082: 5077: 5073: 5068: 5064: 5059: 5055: 5027: 5026: 5022: 5017: 5013: 5008: 5004: 4995: 4988: 4981: 4962: 4961: 4957: 4948: 4941: 4919: 4918: 4911: 4901: 4899: 4898:. Bumblebee.org 4894: 4893: 4889: 4879: 4877: 4868: 4867: 4863: 4825: 4824: 4820: 4810: 4808: 4799: 4798: 4794: 4744: 4743: 4739: 4687: 4686: 4675: 4629: 4628: 4624: 4578: 4577: 4570: 4526: 4525: 4516: 4492: 4491: 4487: 4453: 4452: 4445: 4409: 4408: 4401: 4374: 4373: 4369: 4359: 4357: 4356:. June 28, 1999 4348: 4347: 4343: 4307: 4306: 4302: 4295: 4276: 4275: 4228: 4219: 4215: 4205: 4203: 4191: 4186: 4185: 4181: 4171: 4169: 4164: 4163: 4159: 4122:Wagner, Herbert 4120: 4119: 4115: 4071: 4066: 4065: 4048: 4014: 4006: 4005: 3980: 3971: 3969: 3934: 3933: 3929: 3915: 3914: 3910: 3858: 3857: 3853: 3844: 3842: 3834: 3833: 3829: 3789: 3788: 3784: 3744: 3743: 3739: 3730: 3728: 3721: 3702: 3701: 3690: 3686: 3659: 3642: 3605: 3577: 3539: 3495: 3413: 3389: 3360: 3302: 3296: 3246: 3239: 3225: 3209: 3190: 3183: 3160: 3159: 3118: 3108: 3085: 3084: 3078:Young's modulus 3047: 2988: 2979: 2978: 2958: 2943: 2942: 2938: 2887: 2886: 2854: 2836: 2831: 2830: 2781: 2774: 2756: 2735: 2730: 2729: 2720: 2686: 2676: 2661: 2656: 2655: 2650: 2642: 2610: 2606: 2593: 2592: 2580:is the maximum 2579: 2513: 2512: 2505: 2471: 2447: 2406: 2405: 2356: 2323: 2322: 2254: 2253: 2221: 2199: 2186: 2185: 2176: 2171: 2164: 2132: 2105: 2104: 2069: 2039: 2038: 1999: 1974: 1960: 1941: 1934: 1897: 1891: 1890: 1876: 1875: 1838: 1828: 1815: 1814: 1606: 1594:angle of attack 1574: 1555: 1544: 1513: 1512: 1493: 1492: 1471: 1466: 1465: 1446: 1445: 1426: 1425: 1406: 1405: 1374: 1373: 1329: 1288: 1283: 1282: 1261: 1241: 1240: 1206: 1190: 1189: 1183:chalcidoid wasp 1175: 1171: 1167: 1144: 1143: 1128: 1121: 1109: 1106: 1105: 1095: 1081: 1080: 1065: 1046: 1034: 1012: 1008: 995: 985: 974: 973: 928: 893: 888: 887: 881:Blasius theorem 861: 854: 818: 814: 806: 782: 759: 755: 747: 723: 718: 717: 711: 704: 681: 674: 667: 658: 655: 646: 643: 629: 626: 617: 616:, vortices form 610: 601: 598: 533: 532: 531: 530: 529: 520:sea butterflies 516: 508: 507: 496: 485: 476: 475: 474: 473: 472: 469: 461: 460: 457: 423:flow is laminar 415:Reynolds number 359: 351: 345: 311: 300: 291: 288: 240: 238:Indirect flight 233: 230: 218: 213: 202: 193: 190: 157: 152: 36:A tau emerald ( 28: 23: 22: 15: 12: 11: 5: 6507: 6505: 6497: 6496: 6491: 6481: 6480: 6477: 6476: 6471: 6466: 6461: 6452:Flight muscles 6449: 6444: 6439: 6434: 6427: 6426:External links 6424: 6422: 6421: 6376: 6343: 6300: 6282:(3): 439–444. 6267: 6258: 6233: 6196: 6187: 6150: 6117: 6099:(1122): 1–15. 6088: 6047: 6017: 6015: 6012: 6010: 6009: 5972:(2): 263–269. 5950: 5891: 5826: 5791:(2): 168–176. 5775: 5716: 5665: 5646: 5619:(5): 187–188. 5600: 5565:(3): 331–338. 5547: 5494: 5478: 5434: 5404: 5386: 5349:(4): 370–374. 5329: 5262: 5209: 5172: 5141: 5080: 5071: 5062: 5053: 5020: 5011: 5002: 4986: 4979: 4955: 4939: 4928:. p. 69. 4909: 4887: 4861: 4840:(4): 535–543. 4818: 4792: 4737: 4673: 4622: 4568: 4514: 4485: 4443: 4399: 4367: 4341: 4320:(1): 106–122. 4300: 4293: 4285:Academic Press 4226: 4213: 4179: 4157: 4113: 4046: 4027:(1): 183–210. 3978: 3927: 3908: 3851: 3827: 3782: 3737: 3719: 3687: 3685: 3682: 3681: 3680: 3675: 3670: 3665: 3658: 3655: 3641: 3638: 3604: 3601: 3593:arthropod limb 3576: 3573: 3559:starting with 3538: 3535: 3494: 3491: 3457:Early Devonian 3412: 3409: 3388: 3385: 3359: 3356: 3355: 3354: 3341:In almost all 3339: 3336: 3298:Main article: 3295: 3292: 3287: 3286: 3267: 3264: 3256: 3253: 3249: 3245: 3242: 3235: 3232: 3228: 3224: 3219: 3216: 3212: 3208: 3205: 3202: 3197: 3193: 3189: 3186: 3178: 3175: 3170: 3167: 3145: 3144: 3131: 3125: 3121: 3117: 3114: 3111: 3103: 3100: 3095: 3092: 3072:resilin obeys 3046: 3043: 3035: 3034: 3018: 3015: 3010: 3005: 2999: 2995: 2991: 2987: 2982: 2976: 2970: 2965: 2961: 2953: 2950: 2946: 2941: 2937: 2932: 2927: 2924: 2921: 2917: 2913: 2908: 2905: 2900: 2897: 2894: 2880: 2879: 2865: 2861: 2857: 2853: 2848: 2839: 2819: 2818: 2802: 2799: 2791: 2788: 2784: 2780: 2777: 2773: 2768: 2762: 2759: 2755: 2750: 2745: 2742: 2738: 2718: 2712: 2711: 2697: 2693: 2689: 2679: 2673: 2664: 2648: 2640: 2637: 2636: 2623: 2617: 2613: 2609: 2603: 2600: 2577: 2566: 2565: 2552: 2543: 2539: 2534: 2531: 2526: 2523: 2520: 2504: 2501: 2500: 2499: 2481: 2478: 2474: 2470: 2467: 2464: 2454: 2450: 2446: 2443: 2440: 2432: 2429: 2421: 2418: 2398:kinetic energy 2393: 2392: 2374: 2371: 2366: 2363: 2359: 2355: 2352: 2349: 2346: 2343: 2335: 2312: 2311: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2246: 2245: 2220: 2217: 2214: 2209: 2206: 2202: 2198: 2174: 2170: 2167: 2162: 2158: 2157: 2144: 2141: 2131: 2128: 2123: 2120: 2115: 2112: 2098: 2097: 2079: 2076: 2072: 2068: 2065: 2062: 2059: 2056: 2052: 2049: 2046: 2028: 2027: 2009: 2006: 2002: 1998: 1995: 1992: 1983: 1972: 1963: 1951: 1948: 1944: 1940: 1937: 1930: 1925: 1921: 1917: 1912: 1907: 1903: 1900: 1894: 1889: 1886: 1883: 1868: 1867: 1854: 1850: 1845: 1841: 1837: 1834: 1831: 1825: 1822: 1776: 1775: 1772: 1769: 1762: 1761: 1758: 1755: 1749: 1748: 1745: 1742: 1736: 1735: 1732: 1729: 1723: 1722: 1719: 1716: 1710: 1709: 1706: 1703: 1697: 1696: 1693: 1690: 1684: 1683: 1680: 1677: 1671: 1670: 1667: 1664: 1658: 1657: 1654: 1651: 1645: 1644: 1641: 1638: 1632: 1631: 1628: 1625: 1619: 1618: 1615: 1612: 1605: 1602: 1590:pitching angle 1572: 1553: 1542: 1520: 1500: 1478: 1474: 1453: 1433: 1413: 1387: 1384: 1356: 1353: 1350: 1347: 1344: 1341: 1336: 1332: 1325: 1320: 1316: 1310: 1307: 1300: 1295: 1291: 1268: 1264: 1260: 1257: 1254: 1251: 1248: 1225: 1221: 1215: 1212: 1203: 1200: 1197: 1173: 1169: 1165: 1158: 1157: 1142: 1132: 1127: 1124: 1122: 1113: 1108: 1107: 1104: 1101: 1098: 1096: 1093: 1089: 1086: 1083: 1082: 1078: 1072: 1068: 1064: 1061: 1056: 1052: 1049: 1043: 1040: 1037: 1035: 1032: 1027: 1023: 1020: 1016: 1011: 1007: 1001: 998: 992: 988: 982: 981: 959:incompressible 955: 954: 943: 940: 931: 920: 917: 914: 911: 908: 905: 896: 859: 852: 848: 847: 836: 830: 825: 821: 817: 812: 809: 803: 800: 797: 794: 785: 771: 766: 762: 758: 753: 750: 744: 741: 738: 735: 726: 709: 702: 680: 677: 676: 675: 668: 661: 659: 656: 649: 647: 644: 637: 635: 631: 630: 627: 620: 618: 611: 604: 602: 599: 592: 590: 541:viscous forces 517: 510: 509: 504:clap and fling 497: 490: 489: 488: 487: 486: 484: 483:Clap and fling 481: 470: 463: 462: 458: 451: 450: 449: 448: 447: 358: 355: 344: 341: 313: 312: 301: 294: 292: 289: 282: 239: 236: 235: 234: 231: 216: 214: 203: 196: 194: 191: 184: 156: 153: 151: 148: 26: 24: 18:Clap and fling 14: 13: 10: 9: 6: 4: 3: 2: 6506: 6495: 6494:Animal flight 6492: 6490: 6487: 6486: 6484: 6475: 6474:Insect Flight 6472: 6470: 6467: 6465: 6462: 6460: 6456: 6453: 6450: 6448: 6445: 6443: 6440: 6438: 6435: 6433: 6430: 6429: 6425: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6390: 6386: 6382: 6377: 6373: 6369: 6365: 6361: 6357: 6353: 6349: 6344: 6339: 6334: 6330: 6326: 6322: 6318: 6314: 6310: 6306: 6301: 6297: 6293: 6289: 6285: 6281: 6277: 6273: 6268: 6264: 6259: 6255: 6251: 6247: 6243: 6239: 6234: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6202: 6197: 6193: 6192:Insect flight 6188: 6184: 6180: 6176: 6172: 6168: 6164: 6160: 6156: 6151: 6147: 6143: 6139: 6135: 6131: 6127: 6123: 6118: 6114: 6110: 6106: 6102: 6098: 6094: 6089: 6085: 6081: 6077: 6073: 6069: 6065: 6061: 6057: 6053: 6048: 6044: 6040: 6036: 6032: 6028: 6024: 6019: 6018: 6013: 6005: 6001: 5997: 5993: 5988: 5983: 5979: 5975: 5971: 5967: 5966: 5961: 5954: 5951: 5946: 5942: 5937: 5932: 5928: 5924: 5919: 5914: 5910: 5906: 5905:F1000Research 5902: 5895: 5892: 5887: 5883: 5878: 5873: 5869: 5865: 5861: 5857: 5853: 5849: 5845: 5841: 5837: 5830: 5827: 5822: 5818: 5814: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5779: 5776: 5771: 5767: 5763: 5759: 5755: 5751: 5747: 5743: 5739: 5735: 5731: 5727: 5720: 5717: 5712: 5708: 5703: 5698: 5694: 5690: 5686: 5682: 5681: 5676: 5669: 5666: 5661: 5657: 5650: 5647: 5642: 5638: 5634: 5630: 5626: 5622: 5618: 5614: 5610: 5604: 5601: 5596: 5592: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5559: 5551: 5548: 5543: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5506: 5498: 5495: 5491: 5487: 5486:MĂŒller, Fritz 5482: 5479: 5474: 5462: 5454: 5450: 5443: 5441: 5439: 5435: 5430: 5426: 5422: 5418: 5411: 5409: 5405: 5401: 5400: 5393: 5391: 5387: 5382: 5378: 5374: 5370: 5365: 5360: 5356: 5352: 5348: 5344: 5340: 5333: 5330: 5325: 5321: 5316: 5311: 5307: 5303: 5298: 5293: 5289: 5285: 5281: 5277: 5273: 5266: 5263: 5258: 5254: 5249: 5244: 5239: 5234: 5230: 5226: 5225: 5220: 5213: 5210: 5205: 5201: 5197: 5193: 5189: 5185: 5184: 5176: 5173: 5168: 5164: 5160: 5157:(in German). 5156: 5152: 5145: 5142: 5137: 5133: 5129: 5125: 5121: 5117: 5113: 5109: 5105: 5101: 5097: 5093: 5092: 5084: 5081: 5075: 5072: 5066: 5063: 5057: 5054: 5049: 5045: 5041: 5037: 5036: 5031: 5030:Manduca sexta 5024: 5021: 5015: 5012: 5006: 5003: 4999: 4993: 4991: 4987: 4982: 4976: 4972: 4968: 4967: 4959: 4956: 4952: 4951:Wing Coupling 4946: 4944: 4940: 4935: 4931: 4927: 4923: 4916: 4914: 4910: 4897: 4891: 4888: 4875: 4871: 4865: 4862: 4857: 4853: 4848: 4843: 4839: 4835: 4834: 4829: 4822: 4819: 4807: 4803: 4796: 4793: 4788: 4784: 4780: 4776: 4772: 4768: 4763: 4758: 4755:(3): 031901. 4754: 4750: 4749: 4741: 4738: 4733: 4729: 4724: 4719: 4715: 4711: 4707: 4703: 4699: 4695: 4691: 4684: 4682: 4680: 4678: 4674: 4669: 4665: 4661: 4657: 4652: 4647: 4643: 4639: 4638: 4633: 4626: 4623: 4618: 4614: 4610: 4606: 4601: 4596: 4592: 4588: 4587: 4582: 4575: 4573: 4569: 4564: 4560: 4556: 4552: 4547: 4542: 4538: 4534: 4530: 4523: 4521: 4519: 4515: 4510: 4506: 4502: 4498: 4497: 4489: 4486: 4481: 4477: 4473: 4469: 4465: 4461: 4457: 4450: 4448: 4444: 4439: 4435: 4430: 4425: 4421: 4417: 4413: 4406: 4404: 4400: 4395: 4391: 4387: 4383: 4382: 4377: 4371: 4368: 4355: 4351: 4345: 4342: 4337: 4333: 4328: 4323: 4319: 4315: 4311: 4304: 4301: 4296: 4290: 4286: 4282: 4281: 4273: 4271: 4269: 4267: 4265: 4263: 4261: 4259: 4257: 4255: 4253: 4251: 4249: 4247: 4245: 4243: 4241: 4239: 4237: 4235: 4233: 4231: 4227: 4223: 4217: 4214: 4201: 4197: 4190: 4183: 4180: 4167: 4161: 4158: 4153: 4149: 4145: 4141: 4137: 4134:(in German). 4133: 4132: 4127: 4123: 4117: 4114: 4109: 4105: 4101: 4097: 4092: 4087: 4083: 4079: 4078: 4070: 4063: 4061: 4059: 4057: 4055: 4053: 4051: 4047: 4042: 4038: 4034: 4030: 4026: 4022: 4021: 4013: 4009: 4008:Wang, Z. Jane 4003: 4001: 3999: 3997: 3995: 3993: 3991: 3989: 3987: 3985: 3983: 3979: 3968: 3964: 3959: 3954: 3950: 3946: 3942: 3938: 3931: 3928: 3923: 3919: 3912: 3909: 3904: 3900: 3896: 3892: 3888: 3884: 3879: 3874: 3870: 3866: 3862: 3855: 3852: 3841: 3837: 3831: 3828: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3794: 3786: 3783: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3750: 3749: 3741: 3738: 3727:on 2009-05-19 3726: 3722: 3716: 3712: 3708: 3707: 3699: 3697: 3695: 3693: 3689: 3683: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3660: 3656: 3654: 3651: 3647: 3639: 3637: 3635: 3630: 3628: 3624: 3623:Adrian Thomas 3620: 3618: 3614: 3610: 3602: 3600: 3598: 3594: 3590: 3581: 3574: 3572: 3570: 3566: 3562: 3557: 3552: 3548: 3547:preadaptation 3544: 3536: 3534: 3531: 3527: 3524:in 1877, and 3523: 3519: 3515: 3511: 3510:entomologists 3503: 3499: 3492: 3490: 3488: 3485: 3481: 3477: 3473: 3469: 3466: 3460: 3458: 3454: 3453: 3448: 3444: 3443: 3438: 3431: 3430: 3426: 3422: 3421:Carboniferous 3417: 3410: 3408: 3406: 3402: 3398: 3394: 3386: 3384: 3382: 3381: 3380:Manduca sexta 3376: 3373: 3369: 3365: 3364:carbohydrates 3357: 3352: 3348: 3344: 3340: 3337: 3334: 3330: 3329: 3328: 3325: 3323: 3319: 3318:wing coupling 3311: 3310:wing coupling 3306: 3301: 3300:Wing coupling 3294:Wing coupling 3293: 3291: 3265: 3262: 3254: 3251: 3247: 3243: 3240: 3233: 3230: 3226: 3222: 3217: 3214: 3210: 3206: 3203: 3200: 3195: 3191: 3187: 3184: 3176: 3173: 3168: 3165: 3158: 3157: 3156: 3154: 3150: 3129: 3123: 3119: 3112: 3109: 3101: 3098: 3093: 3090: 3083: 3082: 3081: 3079: 3075: 3069: 3067: 3063: 3059: 3051: 3044: 3042: 3040: 3016: 3013: 3008: 3003: 2997: 2993: 2989: 2985: 2980: 2974: 2968: 2963: 2959: 2951: 2948: 2944: 2939: 2935: 2930: 2925: 2922: 2919: 2915: 2911: 2906: 2903: 2898: 2895: 2892: 2885: 2884: 2883: 2863: 2859: 2855: 2851: 2846: 2837: 2829: 2828: 2827: 2825: 2800: 2797: 2789: 2786: 2782: 2778: 2775: 2771: 2766: 2760: 2753: 2748: 2743: 2740: 2736: 2728: 2727: 2726: 2724: 2717: 2695: 2691: 2687: 2677: 2671: 2662: 2654: 2653: 2652: 2646: 2621: 2615: 2611: 2607: 2601: 2598: 2591: 2590: 2589: 2587: 2583: 2575: 2571: 2550: 2541: 2537: 2532: 2529: 2524: 2521: 2518: 2511: 2510: 2509: 2502: 2479: 2476: 2472: 2468: 2465: 2462: 2452: 2448: 2444: 2441: 2438: 2430: 2427: 2419: 2416: 2404: 2403: 2402: 2399: 2372: 2369: 2364: 2361: 2357: 2353: 2350: 2347: 2344: 2341: 2333: 2321: 2320: 2319: 2317: 2291: 2288: 2285: 2282: 2279: 2276: 2273: 2270: 2267: 2264: 2252: 2251: 2250: 2218: 2215: 2212: 2207: 2204: 2200: 2196: 2184: 2183: 2182: 2180: 2168: 2166: 2142: 2139: 2129: 2126: 2121: 2118: 2113: 2110: 2103: 2102: 2101: 2077: 2074: 2070: 2066: 2063: 2060: 2057: 2050: 2047: 2044: 2037: 2036: 2035: 2033: 2007: 2004: 2000: 1996: 1993: 1990: 1981: 1970: 1961: 1949: 1946: 1942: 1938: 1935: 1928: 1923: 1919: 1915: 1910: 1905: 1901: 1898: 1892: 1887: 1884: 1874: 1873: 1872: 1852: 1843: 1839: 1829: 1823: 1820: 1813: 1812: 1811: 1809: 1805: 1799: 1797: 1789: 1788: 1782: 1773: 1770: 1767: 1763: 1759: 1756: 1754: 1750: 1746: 1743: 1741: 1737: 1733: 1730: 1728: 1724: 1720: 1717: 1715: 1711: 1707: 1704: 1702: 1698: 1694: 1691: 1689: 1685: 1681: 1678: 1676: 1672: 1668: 1665: 1663: 1659: 1655: 1652: 1650: 1646: 1642: 1639: 1637: 1633: 1629: 1626: 1624: 1620: 1609: 1603: 1601: 1597: 1595: 1591: 1587: 1583: 1582: 1576: 1571: 1567: 1563: 1559: 1552: 1548: 1541: 1537: 1532: 1518: 1498: 1476: 1472: 1451: 1411: 1382: 1370: 1354: 1351: 1345: 1339: 1334: 1330: 1323: 1318: 1314: 1308: 1305: 1298: 1293: 1289: 1266: 1262: 1258: 1252: 1249: 1246: 1238: 1223: 1219: 1210: 1201: 1198: 1195: 1187: 1184: 1179: 1163: 1140: 1125: 1123: 1102: 1099: 1097: 1087: 1070: 1062: 1059: 1054: 1050: 1041: 1038: 1036: 1025: 1018: 1009: 1005: 999: 972: 971: 970: 968: 964: 960: 941: 938: 929: 918: 915: 912: 909: 906: 903: 894: 886: 885: 884: 882: 878: 874: 870: 869:inviscid flow 866: 862: 855: 834: 828: 823: 819: 815: 810: 807: 801: 795: 783: 769: 764: 760: 756: 751: 748: 742: 736: 724: 716: 715: 714: 712: 705: 698: 694: 690: 686: 678: 672: 665: 660: 653: 648: 641: 636: 633: 624: 619: 615: 608: 603: 596: 591: 588: 586: 584: 583: 578: 577: 573: 568: 566: 565: 558: 556: 550: 547: 542: 538: 527: 526: 521: 514: 505: 501: 494: 482: 480: 467: 455: 446: 442: 440: 436: 432: 428: 424: 420: 416: 411: 407: 406:Wagner effect 401: 399: 395: 389: 387: 383: 379: 375: 371: 367: 364: 356: 354: 350: 342: 340: 336: 334: 330: 326: 322: 317: 309: 305: 298: 293: 286: 281: 279: 277: 273: 269: 265: 261: 256: 254: 250: 246: 237: 215: 211: 207: 200: 195: 188: 183: 181: 178: 174: 170: 166: 162: 155:Direct flight 154: 149: 147: 145: 141: 137: 134:, but of the 133: 128: 126: 125:mating season 122: 118: 114: 111:insects like 110: 106: 103:insects like 102: 98: 95:insects have 94: 89: 87: 83: 79: 75: 70: 68: 67:Carboniferous 64: 60: 56: 55:invertebrates 52: 45: 41: 40: 34: 30: 19: 6384: 6380: 6355: 6351: 6312: 6308: 6279: 6275: 6262: 6248:(1): 59–77. 6245: 6241: 6204: 6200: 6191: 6158: 6154: 6129: 6125: 6096: 6092: 6059: 6055: 6026: 6022: 5969: 5963: 5953: 5908: 5904: 5894: 5843: 5839: 5829: 5788: 5784: 5778: 5729: 5725: 5719: 5687:(4): 510–2. 5684: 5678: 5668: 5659: 5655: 5649: 5616: 5612: 5603: 5562: 5556: 5550: 5509: 5503: 5497: 5489: 5481: 5451:. New York: 5448: 5420: 5416: 5397: 5346: 5342: 5332: 5279: 5275: 5265: 5228: 5222: 5212: 5190:(1): 65–71. 5187: 5181: 5175: 5161:(1): 17–30. 5158: 5154: 5144: 5095: 5089: 5083: 5074: 5065: 5056: 5039: 5033: 5029: 5023: 5014: 5005: 4997: 4965: 4958: 4950: 4921: 4900:. Retrieved 4890: 4878:. Retrieved 4873: 4864: 4837: 4831: 4821: 4809:. Retrieved 4795: 4752: 4746: 4740: 4700:(1): 25706. 4697: 4693: 4641: 4635: 4625: 4590: 4584: 4536: 4532: 4500: 4494: 4488: 4463: 4459: 4419: 4415: 4385: 4379: 4370: 4358:. Retrieved 4344: 4317: 4313: 4303: 4279: 4216: 4204:. Retrieved 4199: 4195: 4182: 4170:. Retrieved 4160: 4138:(1): 17–35. 4135: 4129: 4116: 4081: 4075: 4024: 4018: 3970:. Retrieved 3940: 3930: 3921: 3918:BIONA Report 3917: 3911: 3868: 3864: 3854: 3843:. Retrieved 3830: 3797: 3791: 3785: 3755:(6): 76–88. 3752: 3746: 3740: 3729:. Retrieved 3725:the original 3709:. Canberra: 3705: 3643: 3631: 3621: 3606: 3596: 3586: 3543:Fritz MĂŒller 3540: 3507: 3480:Polyneoptera 3461: 3452:Rhyniognatha 3450: 3442:Delitzschala 3440: 3434: 3427: 3423:insect, the 3391:Insects use 3390: 3378: 3361: 3358:Biochemistry 3349:(except the 3332: 3326: 3315: 3288: 3148: 3146: 3070: 3055: 3036: 2881: 2824:sinusoidally 2820: 2722: 2715: 2713: 2638: 2569: 2567: 2506: 2503:Power output 2394: 2315: 2313: 2247: 2178: 2172: 2159: 2099: 2031: 2029: 1869: 1807: 1803: 1800: 1793: 1785: 1614:Speed (m/s) 1598: 1579: 1577: 1569: 1565: 1561: 1557: 1550: 1546: 1539: 1535: 1533: 1371: 1239: 1188: 1161: 1159: 956: 857: 850: 849: 707: 706:) and drag ( 700: 696: 692: 688: 682: 614:leading edge 580: 574: 569: 562: 559: 555:laminar flow 551: 534: 523: 477: 443: 402: 390: 363:leading edge 360: 352: 349:Aerodynamics 343:Aerodynamics 337: 318: 314: 306:, including 257: 245:synapomorphy 241: 158: 132:aerodynamics 129: 90: 71: 49: 37: 29: 6161:: 339–362. 5469:|work= 5423:(1): 1–39. 5042:: 317–327. 4998:Lepidoptera 4934:j.ctv301g2x 4811:20 February 4503:: 261–272. 4388:: 169–230. 3673:Gliding ant 3663:Bird flight 3640:Dual origin 3561:parachuting 3429:Mazothairos 3347:Bombycoidea 3345:and in the 3343:butterflies 3074:Hooke's law 2169:Power input 2034:, that is, 1740:Scorpionfly 1178:insect wing 963:Mach number 685:fluid force 431:stall delay 427:delta wings 333:Hymenoptera 308:butterflies 264:exoskeleton 253:butterflies 177:damselflies 173:Dragonflies 119:, only the 74:dragonflies 6483:Categories 4762:2011.00939 4466:(5): 784. 3972:2023-08-23 3845:2011-03-21 3731:2015-09-15 3684:References 3634:apterygota 3627:stoneflies 3556:parachutes 3512:including 3372:amino acid 3351:Sphingidae 3058:accelerate 3045:Elasticity 1784:Hoverfly ( 1581:Drosophila 459:downstroke 419:turbulence 370:supination 325:Coleoptera 150:Mechanisms 105:silverfish 6183:122077834 5996:0960-9822 5927:2046-1402 5868:2054-5703 5805:1520-541X 5754:0028-0836 5579:0362-2525 5526:0362-2525 5492:, 9, 241. 5471:ignored ( 5461:cite book 5381:205697025 5306:0027-8424 5231:: e3402. 5204:0035-8894 5120:0036-8075 4880:March 28, 4787:226227261 4360:March 31, 4336:1756-8293 3903:207172023 3887:1477-9145 3814:0022-0949 3617:radiators 3520:in 1873, 3516:in 1871, 3508:Numerous 3465:abdominal 3252:− 3244:× 3231:− 3223:× 3215:− 3207:× 3201:× 3188:× 3130:ℓ 3120:ℓ 3116:Δ 3021: erg 2990:ℓ 2960:ℓ 2949:− 2916:ω 2856:ℓ 2838:ω 2787:− 2779:× 2758:Δ 2688:ℓ 2663:ω 2612:ℓ 2542:ω 2477:− 2469:× 2445:× 2428:× 2362:− 2354:× 2348:× 2283:× 2277:× 2271:× 2213:× 2140:− 2127:≈ 2075:− 2067:× 2055:Δ 2005:− 1997:× 1991:≈ 1947:− 1939:× 1882:Δ 1836:Δ 1727:Damselfly 1688:Bumblebee 1432:Θ 1386:¯ 1315:∫ 1256:Θ 1214:¯ 1088:⋅ 1085:∇ 1067:∇ 1055:ρ 1048:∇ 1042:− 1022:∇ 1019:⋅ 997:∂ 987:∂ 919:α 916:⁡ 910:π 816:ρ 796:α 757:ρ 737:α 671:Weis-Fogh 435:canoeists 394:fruit fly 378:frequency 374:pronation 321:bumblebee 84:and some 44:dragonfly 6455:Archived 6409:16210181 6372:12432002 6229:17453426 6221:14581590 6146:10562527 6043:10373107 6004:28089512 5945:28357056 5886:27853616 5821:15838166 5813:20433457 5711:19324632 5662:: 73–84. 5641:21237803 5595:52010764 5587:30110990 5542:52301138 5534:30231597 5429:25003692 5373:28684306 5324:30642969 5257:28584727 5136:36008925 5128:25378627 4902:18 March 4856:26889002 4732:27168523 4668:23330782 4660:17401119 4609:16081606 4563:29711043 4555:19749100 4438:25189374 4124:(1925). 4108:17453426 4100:14581590 4010:(2005). 3967:37425804 3958:10327165 3924:: 33–52. 3895:28424311 3822:11809787 3777:14327957 3657:See also 3646:evo-devo 3613:thoracic 3530:tracheal 3484:thoracic 3476:mayflies 3463:movable 3401:halteres 3397:antennae 2645:velocity 1966: cm 1956: cm 1714:Housefly 1701:Honeybee 1675:Hoverfly 1662:horsefly 1617:Beats/s 1604:Hovering 865:airfoils 471:upstroke 304:Neoptera 249:Neoptera 210:mayflies 117:termites 109:eusocial 93:apterous 78:mayflies 76:and the 6417:2430367 6389:Bibcode 6338:1691928 6317:Bibcode 6296:1538496 6163:Bibcode 6101:Bibcode 6084:4358428 6064:Bibcode 6023:Science 5974:Bibcode 5936:5357031 5911:: 268. 5877:5108966 5848:Bibcode 5770:4257270 5762:9024659 5734:Bibcode 5702:2781901 5621:Bibcode 5488:(1875) 5351:Bibcode 5315:6386694 5284:Bibcode 5248:5452959 5100:Bibcode 5091:Science 4767:Bibcode 4723:4863373 4702:Bibcode 4617:7750411 4468:Bibcode 4140:Bibcode 4029:Bibcode 3757:Bibcode 3565:gliding 3563:, then 3551:fossils 3518:Lubbock 3514:Landois 3375:proline 3062:resilin 2574:inertia 2135: s 2084: s 2014: s 1560:and Ωc/ 572:mollusc 546:pronate 329:Diptera 276:sternum 274:to the 206:Odonata 165:Odonata 144:coupled 86:beetles 51:Insects 6415:  6407:  6370:  6335:  6294:  6227:  6219:  6181:  6144:  6082:  6056:Nature 6041:  6002:  5994:  5943:  5933:  5925:  5884:  5874:  5866:  5819:  5811:  5803:  5768:  5760:  5752:  5726:Nature 5709:  5699:  5639:  5593:  5585:  5577:  5540:  5532:  5524:  5427:  5379:  5371:  5322:  5312:  5304:  5255:  5245:  5202:  5134:  5126:  5118:  4977:  4932:  4854:  4785:  4730:  4720:  4666:  4658:  4615:  4607:  4561:  4553:  4436:  4334:  4291:  4206:8 July 4172:8 July 4106:  4098:  3965:  3955:  3901:  3893:  3885:  3820:  3812:  3775:  3717:  3569:flight 3526:Osborn 3522:Graber 3502:Mayfly 3472:naiads 3368:lipids 3269:  1766:Thrips 1636:Hornet 1392:  1372:Where 1160:Where 961:: The 500:thrips 386:thrust 366:vortex 331:, and 272:tergum 260:thorax 169:rowing 63:flight 6413:S2CID 6292:JSTOR 6225:S2CID 6179:S2CID 6080:S2CID 5817:S2CID 5766:S2CID 5591:S2CID 5538:S2CID 5425:JSTOR 5377:S2CID 5224:PeerJ 5132:S2CID 4930:JSTOR 4783:S2CID 4757:arXiv 4664:S2CID 4613:S2CID 4559:S2CID 4192:(PDF) 4104:S2CID 4072:(PDF) 4015:(PDF) 3899:S2CID 3487:terga 3468:gills 3405:wings 3333:jugum 3322:imago 3147:Here 2568:Here 2459:erg/s 1796:hover 1744:0.49 673:1973) 522:like 437:in a 382:hertz 268:notum 140:moths 121:alate 101:basal 82:flies 59:wings 6405:PMID 6368:PMID 6217:PMID 6142:PMID 6039:PMID 6000:PMID 5992:ISSN 5941:PMID 5923:ISSN 5882:PMID 5864:ISSN 5809:PMID 5801:ISSN 5758:PMID 5750:ISSN 5707:PMID 5637:PMID 5583:PMID 5575:ISSN 5530:PMID 5522:ISSN 5473:help 5369:PMID 5320:PMID 5302:ISSN 5253:PMID 5200:ISSN 5159:1996 5124:PMID 5116:ISSN 4975:ISBN 4904:2018 4882:2011 4852:PMID 4813:2016 4728:PMID 4656:PMID 4605:PMID 4551:PMID 4434:PMID 4362:2011 4332:ISSN 4289:ISBN 4208:2021 4200:1988 4174:2021 4096:PMID 3963:PMID 3891:PMID 3883:ISSN 3818:PMID 3810:ISSN 3773:PMID 3715:ISBN 3445:, a 3403:and 3366:and 2805:cm/s 2772:0.57 2466:1.23 2442:1.23 2373:0.98 2286:0.57 2261:Work 2193:Work 1774:254 1771:0.3 1757:2.5 1731:1.5 1721:190 1718:2.0 1708:250 1705:2.5 1695:130 1692:2.9 1682:120 1679:3.5 1666:3.9 1653:5.0 1643:100 1640:5.7 1627:7.0 1281:and 856:and 302:The 204:The 175:and 163:and 115:and 113:ants 61:and 6397:doi 6385:360 6360:doi 6356:205 6333:PMC 6325:doi 6313:352 6284:doi 6280:104 6250:doi 6209:doi 6205:206 6171:doi 6159:492 6134:doi 6130:202 6109:doi 6097:305 6072:doi 6060:384 6031:doi 6027:284 5982:doi 5931:PMC 5913:doi 5872:PMC 5856:doi 5793:doi 5742:doi 5730:385 5697:PMC 5689:doi 5629:doi 5567:doi 5563:168 5514:doi 5510:156 5359:doi 5310:PMC 5292:doi 5280:116 5243:PMC 5233:doi 5192:doi 5163:doi 5108:doi 5096:346 5044:doi 5040:133 4842:doi 4838:219 4775:doi 4718:PMC 4710:doi 4646:doi 4642:210 4595:doi 4591:208 4541:doi 4537:212 4505:doi 4476:doi 4424:doi 4420:217 4390:doi 4322:doi 4148:doi 4086:doi 4082:206 4037:doi 3953:PMC 3945:doi 3873:doi 3869:220 3802:doi 3798:204 3765:doi 3753:212 3474:of 3273:erg 3185:1.8 3153:dyn 3039:erg 2986:254 2852:254 2842:max 2801:127 2776:4.5 2682:max 2667:max 2649:max 2647:, Îœ 2641:max 2578:max 2546:max 2431:110 2424:erg 2420:112 2377:erg 2351:980 2345:0.1 2338:mgh 2296:erg 2292:112 2280:980 2274:0.1 2130:110 1994:4.5 1962:980 1760:12 1747:28 1734:16 1669:96 1656:85 1630:38 924:and 913:sin 883:): 778:and 255:). 6485:: 6411:. 6403:. 6395:. 6383:. 6366:. 6354:. 6350:. 6331:. 6323:. 6311:. 6307:. 6290:. 6278:. 6274:. 6246:83 6244:. 6240:. 6223:. 6215:. 6203:. 6177:. 6169:. 6157:. 6140:. 6128:. 6124:. 6107:. 6095:. 6078:. 6070:. 6058:. 6037:. 6025:. 5998:. 5990:. 5980:. 5970:27 5968:. 5962:. 5939:. 5929:. 5921:. 5907:. 5903:. 5880:. 5870:. 5862:. 5854:. 5842:. 5838:. 5815:. 5807:. 5799:. 5789:12 5787:. 5764:. 5756:. 5748:. 5740:. 5728:. 5705:. 5695:. 5683:. 5677:. 5660:46 5658:. 5635:. 5627:. 5617:11 5615:. 5589:. 5581:. 5573:. 5561:. 5536:. 5528:. 5520:. 5508:. 5465:: 5463:}} 5459:{{ 5437:^ 5421:24 5419:. 5407:^ 5389:^ 5375:. 5367:. 5357:. 5347:47 5345:. 5341:. 5318:. 5308:. 5300:. 5290:. 5278:. 5274:. 5251:. 5241:. 5227:. 5221:. 5198:. 5188:76 5186:. 5130:. 5122:. 5114:. 5106:. 5094:. 5038:. 4989:^ 4969:. 4942:^ 4912:^ 4872:. 4850:. 4836:. 4830:. 4804:. 4781:. 4773:. 4765:. 4753:33 4751:. 4726:. 4716:. 4708:. 4696:. 4692:. 4676:^ 4662:. 4654:. 4640:. 4634:. 4611:. 4603:. 4589:. 4583:. 4571:^ 4557:. 4549:. 4535:. 4531:. 4517:^ 4501:69 4499:. 4474:. 4464:27 4462:. 4458:. 4446:^ 4432:. 4418:. 4414:. 4402:^ 4386:59 4384:. 4352:. 4330:. 4318:10 4316:. 4312:. 4283:. 4229:^ 4198:. 4194:. 4146:. 4102:. 4094:. 4080:. 4074:. 4049:^ 4035:. 4025:37 4023:. 4017:. 3981:^ 3961:. 3951:. 3943:. 3939:. 3920:. 3897:. 3889:. 3881:. 3867:. 3863:. 3816:. 3808:. 3796:. 3771:. 3763:. 3751:. 3691:^ 3629:. 3619:. 3399:, 3266:18 3248:10 3227:10 3211:10 3192:10 3017:43 2945:10 2783:10 2719:av 2473:10 2449:10 2435:/s 2358:10 2224:2W 2175:av 2163:av 2071:10 2001:10 1943:10 1575:. 1566:fc 1166:bd 1117:bd 942:0. 441:. 421:; 388:. 327:, 42:) 6419:. 6399:: 6391:: 6374:. 6362:: 6341:. 6327:: 6319:: 6298:. 6286:: 6256:. 6252:: 6231:. 6211:: 6185:. 6173:: 6165:: 6148:. 6136:: 6115:. 6111:: 6103:: 6086:. 6074:: 6066:: 6045:. 6033:: 6006:. 5984:: 5976:: 5947:. 5915:: 5909:6 5888:. 5858:: 5850:: 5844:3 5823:. 5795:: 5772:. 5744:: 5736:: 5713:. 5691:: 5685:5 5643:. 5631:: 5623:: 5597:. 5569:: 5544:. 5516:: 5475:) 5431:. 5402:. 5383:. 5361:: 5353:: 5326:. 5294:: 5286:: 5259:. 5235:: 5229:5 5206:. 5194:: 5169:. 5165:: 5138:. 5110:: 5102:: 5050:. 5046:: 4983:. 4936:. 4906:. 4884:. 4858:. 4844:: 4815:. 4789:. 4777:: 4769:: 4759:: 4734:. 4712:: 4704:: 4698:6 4670:. 4648:: 4619:. 4597:: 4565:. 4543:: 4511:. 4507:: 4482:. 4478:: 4470:: 4440:. 4426:: 4396:. 4392:: 4364:. 4338:. 4324:: 4297:. 4224:. 4210:. 4176:. 4154:. 4150:: 4142:: 4136:5 4110:. 4088:: 4043:. 4039:: 4031:: 3975:. 3947:: 3922:2 3905:. 3875:: 3848:. 3824:. 3804:: 3779:. 3767:: 3759:: 3734:. 3263:= 3255:2 3241:2 3234:4 3218:4 3204:4 3196:7 3177:2 3174:1 3169:= 3166:U 3149:E 3124:2 3113:A 3110:E 3102:2 3099:1 3094:= 3091:U 3014:= 3009:2 3004:) 2998:2 2994:/ 2981:( 2975:) 2969:3 2964:2 2952:3 2940:( 2936:= 2931:2 2926:x 2923:a 2920:m 2912:I 2907:2 2904:1 2899:= 2896:E 2893:K 2864:2 2860:/ 2847:= 2822:( 2798:= 2790:3 2767:= 2761:t 2754:d 2749:= 2744:v 2741:a 2737:v 2723:d 2716:Îœ 2696:2 2692:/ 2678:v 2672:= 2622:3 2616:2 2608:m 2602:= 2599:I 2570:I 2551:2 2538:I 2533:2 2530:1 2525:= 2522:E 2519:K 2486:W 2480:3 2463:= 2453:4 2439:= 2417:= 2413:P 2370:= 2365:2 2342:= 2334:= 2330:E 2316:E 2289:= 2268:2 2265:= 2229:d 2219:= 2216:d 2208:v 2205:a 2201:F 2197:= 2179:d 2143:1 2122:T 2119:1 2114:= 2111:f 2078:3 2064:9 2061:= 2058:t 2051:2 2048:= 2045:T 2032:r 2008:3 1982:2 1977:s 1971:/ 1950:2 1936:2 1929:= 1924:2 1920:/ 1916:1 1911:) 1906:g 1902:h 1899:2 1893:( 1888:= 1885:t 1853:2 1849:) 1844:2 1840:t 1833:( 1830:g 1824:= 1821:h 1808:h 1804:t 1573:0 1570:U 1568:/ 1562:u 1558:u 1556:/ 1554:0 1551:U 1547:c 1543:0 1540:U 1536:u 1519:R 1499:s 1477:g 1473:r 1452:f 1412:U 1383:c 1355:r 1352:d 1349:) 1346:R 1343:( 1340:c 1335:2 1331:r 1324:R 1319:0 1309:s 1306:1 1299:= 1294:g 1290:r 1267:g 1263:r 1259:f 1253:2 1250:= 1247:U 1224:v 1220:U 1211:c 1202:= 1199:e 1196:R 1174:e 1170:s 1162:u 1141:. 1136:s 1131:u 1126:= 1112:u 1103:0 1100:= 1092:u 1077:u 1071:2 1063:v 1060:+ 1051:p 1039:= 1031:u 1026:) 1015:u 1010:( 1006:+ 1000:t 991:u 939:= 934:D 930:C 907:2 904:= 899:L 895:C 879:( 860:D 858:C 853:L 851:C 835:. 829:S 824:2 820:U 811:D 808:2 802:= 799:) 793:( 788:D 784:C 770:S 765:2 761:U 752:L 749:2 743:= 740:) 734:( 729:L 725:C 710:D 708:C 703:L 701:C 697:U 693:D 689:L 506:. 243:( 212:. 20:)

Index

Clap and fling

Hemicordulia tau
dragonfly
Insects
invertebrates
wings
flight
Carboniferous
dragonflies
mayflies
flies
beetles
apterous
secondarily lost their wings through evolution
basal
silverfish
eusocial
ants
termites
alate
mating season
aerodynamics
Weis-Fogh clap and fling mechanism
moths
coupled
Ephemeroptera (mayflies)
Odonata
rowing
Dragonflies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑