Knowledge (XXG)

Programmable matter

Source 📝

330:
new possibilities. For example: 1. Most important is the incredible flexibility that comes from the ability to change the physical structure and behavior of a solution by changing the software that controls modules. 2. The ability to self-repair by automatically replacing a broken module will make SRCMR solution incredibly resilient. 3. Reducing the environmental footprint by reusing the same modules in many different solutions. Self-reconfiguring modular robotics enjoys a vibrant and active research community.
475: 489: 1796: 258:
of Wu et al. The piezoelectric elements are shunted to ground over synthetic inductors. Around the resonance frequency of the LC circuit formed by the piezoelectric and the inductors, the piezoelectric elements exhibit near zero stiffness, thus effectively disconnecting the stubs from the plate. This is considered an example of programmable mechanical metamaterial.
257:
A further example of programmable -mechanical- metamaterial is presented by Bergamini et al. Here, a pass band within the phononic bandgap is introduced, by exploiting variable stiffness of piezoelectric elements linking aluminum stubs to the aluminum plate to create a phononic crystal as in the work
261:
In 2021, Chen et al. demonstrated a mechanical metamaterial whose unit cells can each store a binary digit analogous to a bit inside a hard disk drive. Similarly, these mechanical unit cells are programmed through the interaction between two electromagnetic coils in the Maxwell configuration, and an
329:
Self-reconfiguring modular robotics involves a group of basic robot modules working together to dynamically form shapes and create behaviours suitable for many tasks, similar to programmable matter. SRCMR aims to offer significant improvement to many kinds of objects or systems by introducing many
309:
They allow creating controllable permanent magnets where the magnetic effect can be maintained without requiring a continuous supply of electrical energy. For these reasons, electropermanent magnets are essential components of the research studies aiming to build programmable magnets that can give
161:
There are many proposed implementations of programmable matter. Scale is one key differentiator between different forms of programmable matter. At one end of the spectrum, reconfigurable modular robotics pursues a form of programmable matter where the individual units are in the centimeter size
305:
produced by the electromagnet is used to change the magnetization of the permanent magnet. The permanent magnet consists of magnetically hard and soft materials, of which only the soft material can have its magnetization changed. When the magnetically soft and hard materials have opposite
157:
is a form of programmable matter. A second school of thought is that the individual units of the ensemble can compute and the result of their computation is a change in the ensemble's physical properties. An example of this more ambitious form of programmable matter is claytronics.
88:, and self-replicating machine technology have advanced, the use of the term programmable matter has changed to reflect the fact that it is possible to build an ensemble of elements which can be "programmed" to change their physical properties in reality, not just in 137: 113:
Information Science and Technology group (ISAT) examined the potential of programmable matter. This resulted in the 2005–2006 study "Realizing Programmable Matter", which laid out a multi-year program for the research and development of programmable matter.
41:, conductivity, optical properties, etc.) in a programmable fashion, based upon user input or autonomous sensing. Programmable matter is thus linked to the concept of a material which inherently has the ability to perform information processing. 459:, to change their color, shape, etc. Such bioinspired approaches to materials production has been demonstrated, using self-assembling bacterial biofilm materials that can be programmed for specific functions, such as substrate adhesion, 270:
An active area of research is in molecules that can change their shape, as well as other properties, in response to external stimuli. These molecules can be used individually or en masse to form new kinds of materials. For example,
201:
Shape-changing and locomotion of solid objects are possible with solid-liquid phase change pumping. This approach allows deforming objects into any intended shape with sub-millimetre resolution and freely changing their topology.
185:, which combine the structural aspects of a composite with the affordances offered by tight integration of sensors, actuators, computation, and communication, while foregoing reconfiguration by particle motion. 61:
that is composed of fine-grained compute nodes distributed throughout space which communicate using only nearest neighbor interactions. In this context, programmable matter refers to compute models similar to
141: 139: 145:
A 'simple' programmable matter where the programmable element is external to the material itself. Magnetized non-Newtonian fluid, forming support columns which resist impacts and sudden pressure.
99:
and G. Snyder coined the term "quantum wellstone" (or simply "wellstone") to describe this hypothetical but plausible form of programmable matter. McCarthy has used the term in his fiction.
246:
that can be controlled to react in ways that do not occur in nature. One example developed by David Smith and then by John Pendry and David Schuri is of a material that can have its
140: 149:
In one school of thought, the programming could be external to the material and might be achieved by the "application of light, voltage, electric or magnetic fields, etc." (
193:
There are many conceptions of programmable matter, and thus many discrete avenues of research using the name. Below are some specific examples of programmable matter.
361:
or mechanisms. The catoms will be sub-millimeter computers that will eventually have the ability to move around, communicate with other computers, change color, and
1385: 162:
range. At the nanoscale end of the spectrum, there are a tremendous number of different bases for programmable matter, ranging from shape changing molecules to
880:
Bergamini, Andrea; Delpero, Tommaso; De Simoni, Luca; Di Lillo, Luigi; Ruzzene, Massimo; Ermanni, Paolo (2014). "Phononic Crystal with Adaptive Connectivity".
70:. The CAM-8 architecture is an example hardware realization of this model. This function is also known as "digital referenced areas" (DRA) in some forms of 1041: 138: 210:
These include materials that can change their properties based on some input, but do not have the ability to do complex computation by themselves.
77:
In the early 1990s, there was a significant amount of work in reconfigurable modular robotics with a philosophy similar to programmable matter.
1650: 1239: 688: 416: 379:
Cellular automata are a useful concept to abstract some of the concepts of discrete units interacting to give a desired overall behavior.
250:
tuned so that it can have a different index of refraction at different points in the material. If tuned properly, this could result in an
1739: 1378: 1498: 668: 262:
embedded magnetorheological elastomer. Different binary states are associated with different stress-strain response of the material.
615: 1610: 324: 121: 166:. Quantum dots are in fact often referred to as artificial atoms. In the micrometer to sub-millimeter range examples include 92:. Thus, programmable matter has come to mean "any bulk substance which can be programmed to change its physical properties." 1371: 167: 733: 1800: 1766: 58: 848:
Kaya, Kerem; Kravchenko, Alexander; Scarpellini, Claudia; Iseri, Emre; Kragic, Danica; van der Wijngaart, Wouter (2023).
224:
The physical properties of several complex fluids can be modified by applying a current or voltage, as is the case with
1042:"Electropermanent Magnets: Programmable Magnets with Zero Static Power Consumption Enable Smallest Modular Robots Yet" 456: 1832: 1771: 1707: 656: 103: 1754: 1714: 57:
to refer to an ensemble of fine-grained computing elements arranged in space. Their paper describes a computing
1288:"Engineering efficient and massively parallel 3D self-reconfiguration using sandboxing, scaffolding and coating" 1822: 1545: 1530: 1508: 978:
Chen, Tian; Pauly, Mark; Reis M., Pedro (2021). "A reprogrammable mechanical metamaterial with stable memory".
532: 71: 306:
magnetizations the magnet has no net field, and when they are aligned the magnet displays magnetic behaviour.
1719: 1692: 766: 284: 401:, but these are extremely weak. Because of their larger sizes, other properties are also widely different. 1729: 1724: 1697: 1344: 1314: 154: 128:, which is taking the lead in the Claytronics project initiated by Intel and Carnegie Mellon University. 106:
to investigate the underlying hardware and software mechanisms necessary to realize programmable matter.
1655: 1518: 1394: 1250: 272: 117:
In 2007, programmable matter was the subject of a DARPA research solicitation and subsequent program.
1702: 1665: 1645: 1110: 987: 944: 576: 527: 67: 1230:
Hacking Matter: Levitating Chairs, Quantum Mirages, and the Infinite Weirdness of Programmable Atoms
1759: 1734: 1605: 1440: 1435: 1415: 685: 247: 1063: 443:
Synthetic biology is a field that aims to engineer cells with "novel biological functions." Such
1776: 1478: 1322: 1274: 1254: 1214: 1171: 1019: 913: 830: 424: 243: 125: 1249:
Yim, Mark; Shen, Wei-Min; Salemi, Behnam; Rus, Daniela; Moll, Mark; Lipson, Hod; Klavins, Eric;
124:
has funded several research programs coordinated by Julien Bourgeois and Benoit Piranda at the
1827: 1577: 1473: 1455: 1235: 1206: 1128: 1011: 1003: 960: 905: 897: 822: 814: 611: 494: 410: 374: 182: 171: 63: 1744: 1660: 1620: 1299: 1266: 1196: 1163: 1118: 995: 952: 889: 857: 804: 672: 584: 432: 428: 343: 298: 275:'s group at UCLA has been developing molecules that can change their electrical properties. 38: 1595: 1540: 1483: 1468: 692: 560: 556: 394: 251: 225: 54: 50: 1315:"Datom: A Deformable modular robot for building self-reconfigurable programmable matter" 1114: 991: 948: 632:"CAM8: a Parallel, Uniform, Scalable Architecture for Cellular Automata Experimentation" 580: 1749: 1615: 1557: 1535: 933:"Evidence of complete band gap and resonances in a plate with periodic stubbed surface" 604: 517: 507: 480: 444: 398: 302: 219: 85: 564: 1816: 1781: 1550: 1503: 1425: 1023: 834: 588: 512: 452: 362: 294: 237: 81: 1278: 1175: 917: 95:
In the summer of 1998, in a discussion on artificial atoms and programmable matter,
1685: 1600: 1513: 1218: 932: 502: 474: 460: 415: 388: 96: 1228: 850:"Programmable Matter with Free and High-Resolution Transfiguration and Locomotion" 1680: 1675: 1567: 1445: 1430: 1420: 1304: 1287: 1184: 1151: 741: 721: 657:
http://www.geocities.com/charles_c_22191/temporarypreviewfile.html?1205202563050
537: 339: 175: 163: 999: 1640: 1525: 488: 470: 89: 1007: 964: 901: 818: 705:"Hardware and software for creating programmable matter – ProgrammableMatter" 1670: 1488: 1270: 809: 792: 522: 1210: 1132: 1015: 909: 893: 862: 826: 17: 793:"Materials that couple sensing, actuation, computation, and communication" 704: 631: 393:
Quantum wells can hold one or more electrons. Those electrons behave like
102:
In 2002, Seth Goldstein and Todd Mowry started the claytronics project at
1587: 1572: 1493: 849: 448: 436: 420: 358: 37:
which has the ability to change its physical properties (shape, density,
27:
Matter which can change its physical properties in a programmable fashion
1363: 1167: 1463: 1356: 1123: 1099:"Programmable biofilm-based materials from engineered curli nanofibres" 1098: 931:
Wu, Tsung-Tsong; Huang, Zi-Gui; Tsai, Tzu-Chin; Wu, Tzung-Chen (2008).
1319:
15th International Symposium on Distributed Autonomous Robotic Systems
956: 1286:
Thalamy, Pierre; Piranda, Benoit; Bourgeois, Julien (December 2021).
1201: 290: 34: 1150:
Goldstein, Seth Copen; Campbell, Jason; Mowry, Todd C. (June 2005).
803:(6228). American Association for the Advancement of Science (AAAS). 1327: 350: 346: 135: 110: 770: 1367: 875: 873: 1087:, pp. 43–52) An overview of recent work and challenges 49:
Programmable matter is a term originally coined in 1991 by
761: 759: 1633: 1586: 1454: 1408: 1401: 1227: 603: 365:connect to other catoms to form different shapes. 181:An important sub-group of programmable matter are 447:are usually used to create larger systems (e.g., 1345:"DARPA (US Military) Programmable Matter Thrust" 1084: 451:) which can be "programmed" utilizing synthetic 565:"Programmable matter: concepts and realization" 1379: 8: 686:DARPA Strategic Thrusts: Programmable Matter 1313:Piranda, Benoit; Bourgeois, Julien (2021). 1255:"Modular Self-Reconfigurable Robot Systems" 1795: 1405: 1386: 1372: 1364: 1326: 1303: 1200: 1122: 861: 808: 791:McEvoy, M. A.; Correll, N. (2015-03-20). 769:. Stoddart.chem.ucla.edu. Archived from 463:templating, and protein immobilization. 414: 289:An electropermanent magnet is a type of 150: 1259:IEEE Robotics & Automation Magazine 548: 1651:Differential technological development 1035: 1033: 652: 650: 648: 357:) designed to form much larger scale 7: 1357:"The Programmable Matter Consortium" 602:Rothman, D.H.; Zaleski, S. (2004) . 338:Claytronics is an emerging field of 1740:Future-oriented technology analysis 319:Self-reconfiguring modular robotics 197:"Solid-liquid phase-change pumping" 1499:High-temperature superconductivity 310:rise to self-building structures. 170:-based units, cells created using 25: 767:"UCLA Chemistry and Biochemistry" 397:which, like real atoms, can form 1794: 1611:Self-reconfiguring modular robot 487: 473: 325:Self-reconfiguring modular robot 1292:Robotics and Autonomous Systems 1504:High-temperature superfluidity 1097:Nguyen, Peter (Sep 17, 2014). 610:. Cambridge University Press. 1: 1767:Technology in science fiction 854:Advanced Functional Materials 734:"Mark Yim - GRASP Lab @ Penn" 669:"DARPA research solicitation" 606:Lattice Gas Cellular Automata 242:Metamaterials are artificial 589:10.1016/0167-2789(91)90296-L 1305:10.1016/j.robot.2021.103875 1849: 1772:Technology readiness level 1708:Technological unemployment 1000:10.1038/s41586-020-03123-5 691:December 12, 2010, at the 408: 386: 372: 342:concerning reconfigurable 322: 293:which consists of both an 282: 235: 217: 104:Carnegie Mellon University 1790: 1755:Technological singularity 1715:Technological convergence 1531:Multi-function structures 1234:. New York: Basic Books. 1185:"Programmable Matter FAQ" 314:Robotics-based approaches 1546:Molecular nanotechnology 1509:Linear acetylenic carbon 1062:Hardesty, Larry (2012). 533:Universal Turing machine 279:Electropermanent magnets 266:Shape-changing molecules 72:self-replicating machine 1720:Technological evolution 1693:Exploratory engineering 1271:10.1109/MRA.2007.339623 937:Applied Physics Letters 810:10.1126/science.1261689 457:genetic toggle switches 285:Electropermanent magnet 120:From 2016 to 2022, the 1730:Technology forecasting 1725:Technological paradigm 1698:Proactionary principle 1226:McCarthy, Wil (2003). 1183:McCarthy, Wil (2006). 1040:Deyle, Travis (2010). 894:10.1002/adma.201305280 863:10.1002/adfm.202307105 738:www.robotics.upenn.edu 440: 155:liquid crystal display 146: 1656:Disruptive innovation 1519:Metamaterial cloaking 1395:Emerging technologies 1152:"Programmable Matter" 1103:Nature Communications 1064:"Self-sculpting sand" 418: 144: 1703:Technological change 1646:Collingridge dilemma 528:Ubiquitous computing 297:and a dual material 68:lattice gas automata 1760:Technology scouting 1735:Accelerating change 1606:Powered exoskeleton 1563:Programmable matter 1441:Smart manufacturing 1436:Molecular assembler 1416:3D microfabrication 1349:Afcea International 1251:Chirikjian, Gregory 1168:10.1109/MC.2005.198 1115:2014NatCo...5.4945N 992:2021Natur.589..386C 949:2008ApPhL..93k1902W 744:on 16 November 2005 581:1991PhyD...47..263T 248:index of refraction 31:Programmable matter 1777:Technology roadmap 1479:Conductive polymer 1124:10.1038/ncomms5945 882:Advanced Materials 441: 425:biological machine 252:invisibility cloak 153:). For example, a 147: 126:FEMTO-ST Institute 1833:Synthetic biology 1810: 1809: 1629: 1628: 1578:Synthetic diamond 1474:Artificial muscle 1456:Materials science 1241:978-0-465-04428-3 986:(7842): 386–390. 957:10.1063/1.2970992 675:on July 15, 2009. 495:Technology portal 411:Synthetic biology 405:Synthetic biology 375:Cellular automata 369:Cellular automata 363:electrostatically 273:J Fraser Stoddart 183:robotic materials 172:synthetic biology 142: 64:cellular automata 16:(Redirected from 1840: 1798: 1797: 1745:Horizon scanning 1661:Ephemeralization 1621:Uncrewed vehicle 1541:Carbon nanotubes 1406: 1388: 1381: 1374: 1365: 1360: 1359:. 20 April 2022. 1352: 1332: 1330: 1309: 1307: 1282: 1245: 1233: 1222: 1204: 1202:10.1038/35036656 1179: 1137: 1136: 1126: 1094: 1088: 1081: 1075: 1074: 1072: 1071: 1059: 1053: 1052: 1050: 1049: 1037: 1028: 1027: 975: 969: 968: 928: 922: 921: 888:(9): 1343–1347. 877: 868: 867: 865: 845: 839: 838: 812: 788: 782: 781: 779: 778: 763: 754: 753: 751: 749: 740:. Archived from 730: 724: 719: 713: 712: 701: 695: 683: 677: 676: 671:. Archived from 665: 659: 654: 643: 642: 640: 639: 628: 622: 621: 609: 599: 593: 592: 575:(1–2): 263–272. 561:Margolus, Norman 557:Toffoli, Tommaso 553: 497: 492: 491: 483: 478: 477: 429:protein dynamics 395:artificial atoms 299:permanent magnet 143: 21: 1848: 1847: 1843: 1842: 1841: 1839: 1838: 1837: 1823:Smart materials 1813: 1812: 1811: 1806: 1786: 1625: 1582: 1484:Femtotechnology 1469:Amorphous metal 1450: 1397: 1392: 1355: 1343: 1340: 1335: 1312: 1285: 1248: 1242: 1225: 1182: 1149: 1145: 1143:Further reading 1140: 1096: 1095: 1091: 1085:Yim et al. 2007 1082: 1078: 1069: 1067: 1061: 1060: 1056: 1047: 1045: 1039: 1038: 1031: 977: 976: 972: 930: 929: 925: 879: 878: 871: 847: 846: 842: 790: 789: 785: 776: 774: 765: 764: 757: 747: 745: 732: 731: 727: 720: 716: 703: 702: 698: 693:Wayback Machine 684: 680: 667: 666: 662: 655: 646: 637: 635: 630: 629: 625: 618: 601: 600: 596: 555: 554: 550: 546: 493: 486: 479: 472: 469: 413: 407: 391: 385: 377: 371: 336: 327: 321: 316: 301:, in which the 287: 281: 268: 240: 234: 226:liquid crystals 222: 216: 208: 199: 191: 136: 134: 47: 28: 23: 22: 15: 12: 11: 5: 1846: 1844: 1836: 1835: 1830: 1825: 1815: 1814: 1808: 1807: 1805: 1804: 1791: 1788: 1787: 1785: 1784: 1779: 1774: 1769: 1764: 1763: 1762: 1757: 1752: 1747: 1742: 1737: 1727: 1722: 1717: 1712: 1711: 1710: 1700: 1695: 1690: 1689: 1688: 1683: 1678: 1673: 1663: 1658: 1653: 1648: 1643: 1637: 1635: 1631: 1630: 1627: 1626: 1624: 1623: 1618: 1616:Swarm robotics 1613: 1608: 1603: 1598: 1592: 1590: 1584: 1583: 1581: 1580: 1575: 1570: 1565: 1560: 1558:Picotechnology 1555: 1554: 1553: 1548: 1543: 1536:Nanotechnology 1533: 1528: 1523: 1522: 1521: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1460: 1458: 1452: 1451: 1449: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1412: 1410: 1403: 1399: 1398: 1393: 1391: 1390: 1383: 1376: 1368: 1362: 1361: 1353: 1351:. 26 May 2009. 1339: 1338:External links 1336: 1334: 1333: 1310: 1298:(18): 103875. 1283: 1253:(March 2007). 1246: 1240: 1223: 1180: 1146: 1144: 1141: 1139: 1138: 1089: 1076: 1054: 1029: 970: 943:(11): 111902. 923: 869: 840: 783: 755: 725: 714: 696: 678: 660: 644: 623: 616: 594: 547: 545: 542: 541: 540: 535: 530: 525: 520: 518:Smart material 515: 510: 508:Nanotechnology 505: 499: 498: 484: 481:Science portal 468: 465: 435:to synthesize 427:that utilizes 409:Main article: 406: 403: 399:covalent bonds 387:Main article: 384: 381: 373:Main article: 370: 367: 335: 332: 323:Main article: 320: 317: 315: 312: 303:magnetic field 283:Main article: 280: 277: 267: 264: 236:Main article: 233: 230: 220:Complex fluids 218:Main article: 215: 214:Complex fluids 212: 207: 204: 198: 195: 190: 187: 133: 130: 86:nanotechnology 46: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1845: 1834: 1831: 1829: 1826: 1824: 1821: 1820: 1818: 1803: 1802: 1793: 1792: 1789: 1783: 1782:Transhumanism 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1732: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1709: 1706: 1705: 1704: 1701: 1699: 1696: 1694: 1691: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1668: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1636: 1632: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1593: 1591: 1589: 1585: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1552: 1551:Nanomaterials 1549: 1547: 1544: 1542: 1539: 1538: 1537: 1534: 1532: 1529: 1527: 1524: 1520: 1517: 1516: 1515: 1514:Metamaterials 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1461: 1459: 1457: 1453: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1426:3D publishing 1424: 1422: 1419: 1417: 1414: 1413: 1411: 1409:Manufacturing 1407: 1404: 1400: 1396: 1389: 1384: 1382: 1377: 1375: 1370: 1369: 1366: 1358: 1354: 1350: 1346: 1342: 1341: 1337: 1329: 1324: 1320: 1316: 1311: 1306: 1301: 1297: 1293: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1247: 1243: 1237: 1232: 1231: 1224: 1220: 1216: 1212: 1208: 1203: 1198: 1195:(6804): 569. 1194: 1190: 1186: 1181: 1177: 1173: 1169: 1165: 1162:(6): 99–101. 1161: 1157: 1156:IEEE Computer 1153: 1148: 1147: 1142: 1134: 1130: 1125: 1120: 1116: 1112: 1108: 1104: 1100: 1093: 1090: 1086: 1080: 1077: 1065: 1058: 1055: 1043: 1036: 1034: 1030: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 981: 974: 971: 966: 962: 958: 954: 950: 946: 942: 938: 934: 927: 924: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 876: 874: 870: 864: 859: 855: 851: 844: 841: 836: 832: 828: 824: 820: 816: 811: 806: 802: 798: 794: 787: 784: 773:on 2004-10-12 772: 768: 762: 760: 756: 743: 739: 735: 729: 726: 723: 718: 715: 710: 706: 700: 697: 694: 690: 687: 682: 679: 674: 670: 664: 661: 658: 653: 651: 649: 645: 633: 627: 624: 619: 617:9780521607605 613: 608: 607: 598: 595: 590: 586: 582: 578: 574: 570: 566: 562: 558: 552: 549: 543: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 513:Self-assembly 511: 509: 506: 504: 501: 500: 496: 490: 485: 482: 476: 471: 466: 464: 462: 458: 454: 453:gene networks 450: 446: 438: 434: 430: 426: 422: 417: 412: 404: 402: 400: 396: 390: 383:Quantum wells 382: 380: 376: 368: 366: 364: 360: 356: 352: 349:('claytronic 348: 345: 341: 333: 331: 326: 318: 313: 311: 307: 304: 300: 296: 295:electromagnet 292: 286: 278: 276: 274: 265: 263: 259: 255: 253: 249: 245: 239: 238:Metamaterials 232:Metamaterials 231: 229: 227: 221: 213: 211: 205: 203: 196: 194: 188: 186: 184: 179: 177: 173: 169: 165: 159: 156: 152: 151:McCarthy 2006 131: 129: 127: 123: 118: 115: 112: 109:In 2004, the 107: 105: 100: 98: 93: 91: 87: 83: 82:semiconductor 78: 75: 73: 69: 65: 60: 56: 52: 44: 42: 40: 36: 32: 19: 1799: 1686:Robot ethics 1601:Nanorobotics 1568:Quantum dots 1562: 1348: 1318: 1295: 1291: 1262: 1258: 1229: 1192: 1188: 1159: 1155: 1106: 1102: 1092: 1079: 1068:. Retrieved 1057: 1046:. Retrieved 983: 979: 973: 940: 936: 926: 885: 881: 853: 843: 800: 796: 786: 775:. Retrieved 771:the original 746:. Retrieved 742:the original 737: 728: 717: 708: 699: 681: 673:the original 663: 636:. Retrieved 634:. Ai.mit.edu 626: 605: 597: 572: 568: 551: 503:Computronium 461:nanoparticle 442: 392: 389:Quantum well 378: 354: 337: 328: 308: 288: 269: 260: 256: 241: 223: 209: 200: 192: 180: 164:quantum dots 160: 148: 119: 116: 108: 101: 97:Wil McCarthy 94: 84:technology, 79: 76: 48: 30: 29: 1750:Moore's law 1681:Neuroethics 1676:Cyberethics 1446:Utility fog 1431:Claytronics 1421:3D printing 538:Utility fog 340:engineering 334:Claytronics 176:utility fog 18:Claytronics 1817:Categories 1641:Automation 1526:Metal foam 1328:2005.03402 1070:2012-04-06 1048:2012-04-06 777:2013-04-10 748:17 January 638:2013-04-10 544:References 433:nanoscales 244:composites 174:, and the 132:Approaches 90:simulation 1671:Bioethics 1489:Fullerene 1265:(1): 43. 1024:231665050 1008:1476-4687 965:0003-6951 902:0935-9648 835:206563151 819:0036-8075 569:Physica D 523:Smartdust 344:nanoscale 178:concept. 74:science. 59:substrate 1828:Robotics 1596:Domotics 1588:Robotics 1573:Silicene 1494:Graphene 1279:11100988 1211:11034188 1176:17346523 1133:25229329 1109:: 4945. 1044:. HiZook 1016:33473228 918:23402889 910:24734298 827:25792332 722:Research 689:Archived 563:(1991). 467:See also 455:such as 449:biofilms 437:proteins 421:ribosome 359:machines 206:"Simple" 189:Examples 55:Margolus 1464:Aerogel 1219:5242445 1111:Bibcode 988:Bibcode 945:Bibcode 797:Science 577:Bibcode 51:Toffoli 45:History 1666:Ethics 1634:Topics 1402:Fields 1277:  1238:  1217:  1209:  1189:Nature 1174:  1131:  1022:  1014:  1006:  980:Nature 963:  916:  908:  900:  833:  825:  817:  709:anr.fr 614:  355:catoms 353:', or 347:robots 291:magnet 39:moduli 35:matter 1323:arXiv 1275:S2CID 1215:S2CID 1172:S2CID 1066:. MIT 1020:S2CID 914:S2CID 831:S2CID 445:cells 423:is a 351:atoms 111:DARPA 1801:List 1236:ISBN 1207:PMID 1129:PMID 1012:PMID 1004:ISSN 961:ISSN 906:PMID 898:ISSN 823:PMID 815:ISSN 750:2022 612:ISBN 168:MEMS 66:and 53:and 1300:doi 1296:146 1267:doi 1197:doi 1193:407 1164:doi 1119:doi 996:doi 984:589 953:doi 890:doi 858:doi 805:doi 801:347 585:doi 431:on 122:ANR 80:As 33:is 1819:: 1347:. 1321:. 1317:. 1294:. 1290:. 1273:. 1263:14 1261:. 1257:. 1213:. 1205:. 1191:. 1187:. 1170:. 1160:38 1158:. 1154:. 1127:. 1117:. 1105:. 1101:. 1032:^ 1018:. 1010:. 1002:. 994:. 982:. 959:. 951:. 941:93 939:. 935:. 912:. 904:. 896:. 884:. 872:^ 856:. 852:. 829:. 821:. 813:. 799:. 795:. 758:^ 736:. 707:. 647:^ 583:. 573:47 571:. 567:. 559:; 419:A 254:. 228:. 1387:e 1380:t 1373:v 1331:. 1325:: 1308:. 1302:: 1281:. 1269:: 1244:. 1221:. 1199:: 1178:. 1166:: 1135:. 1121:: 1113:: 1107:5 1083:( 1073:. 1051:. 1026:. 998:: 990:: 967:. 955:: 947:: 920:. 892:: 886:2 866:. 860:: 837:. 807:: 780:. 752:. 711:. 641:. 620:. 591:. 587:: 579:: 439:. 20:)

Index

Claytronics
matter
moduli
Toffoli
Margolus
substrate
cellular automata
lattice gas automata
self-replicating machine
semiconductor
nanotechnology
simulation
Wil McCarthy
Carnegie Mellon University
DARPA
ANR
FEMTO-ST Institute
McCarthy 2006
liquid crystal display
quantum dots
MEMS
synthetic biology
utility fog
robotic materials
Complex fluids
liquid crystals
Metamaterials
composites
index of refraction
invisibility cloak

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.