Knowledge (XXG)

Cloud physics

Source 📝

29: 875: 1440:, so the extra water vapor will condense into ice on the surface of the particle. These ice particles end up as the nuclei of larger ice crystals. This process only happens at temperatures between 0 °C (32 °F) and −40 °C (−40 °F). Below −40 °C (−40 °F), liquid water will spontaneously nucleate, and freeze. The surface tension of the water allows the droplet to stay liquid well below its normal freezing point. When this happens, it is now 1992:. This leads to at least some degree of adiabatic warming of the air which can result in the cloud droplets or crystals turning back into invisible water vapor. Stronger forces such as wind shear and downdrafts can impact a cloud, but these are largely confined to the troposphere where nearly all the Earth's weather takes place. A typical cumulus cloud weighs about 500 metric tons, or 1.1 million pounds, the weight of 100 elephants. 1988:
together may act to keep the cloud from breaking up. However, this speculation has a logical flaw in that the water droplets in the cloud are not in contact with each other and therefore not satisfying the condition required for the intermolecular forces of cohesion to act. Dissolution of the cloud can occur when the process of adiabatic cooling ceases and upward lift of the air is replaced by
1298: 1409:
Eventually, the droplets become large enough that they fall to the earth as precipitation. The collision-coalescence process does not make up a significant part of cloud formation, as water droplets have a relatively high surface tension. In addition, the occurrence of collision-coalescence is closely related to entrainment-mixing processes.
1053: 1268:
convective lifting agents. As with non-frontal convective lift, increasing instability promotes upward vertical cloud growth and raises the potential for severe weather. On comparatively rare occasions, convective lift can be powerful enough to penetrate the tropopause and push the cloud top into the stratosphere.
1862:
The value of a certain parameter is more reliable the more satellites are measuring the said parameter. This is because the range of errors and neglected details varies from instrument to instrument. Thus, if the analysed parameter has similar values for different instruments, it is accepted that the
1448:
to form larger particles. If there are few ice nuclei compared to the amount of SLW, droplets will be unable to form. A process whereby scientists seed a cloud with artificial ice nuclei to encourage precipitation is known as cloud seeding. This can help cause precipitation in clouds that otherwise
1408:
One theory explaining how the behavior of individual droplets in a cloud leads to the formation of precipitation is the collision-coalescence process. Droplets suspended in the air will interact with each other, either by colliding and bouncing off each other or by combining to form a larger droplet.
1259:
Rain droplets that are carried well above the freezing level become supercooled at first then freeze into small hail. A frozen ice nucleus can pick up 0.5 inches (1.3 cm) in size traveling through one of these updrafts and can cycle through several updrafts and downdrafts before finally becoming
1226:
Another agent is the buoyant convective upward motion caused by significant daytime solar heating at surface level, or by relatively high absolute humidity. Incoming short-wave radiation generated by the sun is re-emitted as long-wave radiation when it reaches Earth's surface. This process warms the
1267:
Convective lift can occur in an unstable air mass well away from any fronts. However, very warm unstable air can also be present around fronts and low-pressure centers, often producing cumuliform and cumulonimbiform clouds in heavier and more active concentrations because of the combined frontal and
1083:
As water evaporates from an area of Earth's surface, the air over that area becomes moist. Moist air is lighter than the surrounding dry air, creating an unstable situation. When enough moist air has accumulated, all the moist air rises as a single packet, without mixing with the surrounding air.
943:
droplets of liquid water (warm clouds), tiny crystals of ice (cold clouds), or both (mixed phase clouds), along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the
1568:
may form anywhere from near the surface to intermediate heights of around 3 kilometres. Of the vertically developed clouds, the cumulonimbus type is the tallest and can virtually span the entire troposphere from a few hundred metres above the ground up to the tropopause. It is the cloud responsible
1344:
from plants is another typical source of water vapor. Lastly, cool or dry air moving over warmer water will become more humid. As with daytime heating, the addition of moisture to the air increases its heat content and instability and helps set into motion those processes that lead to the formation
1339:
There are five main ways water vapor can be added to the air. Increased vapor content can result from wind convergence over water or moist ground into areas of upward motion. Precipitation or virga falling from above also enhances moisture content. Daytime heating causes water to evaporate from the
1127:
of the air. The water droplets in a cloud have a normal radius of about 0.002 mm (0.00008 in). The droplets may collide to form larger droplets, which remain aloft as long as the velocity of the rising air within the cloud is equal to or greater than the terminal velocity of the droplets.
1255:
buffer the falling droplets, and can keep them aloft much longer than they would otherwise. Violent updrafts can reach speeds of up to 180 miles per hour (290 km/h). The longer the rain droplets remain aloft, the more time they have to grow into larger droplets that eventually fall as heavy
971:
In warm clouds, larger cloud droplets fall at a higher terminal velocity; because at a given velocity, the drag force per unit of droplet weight on smaller droplets is larger than on large droplets. The large droplets can then collide with small droplets and combine to form even larger drops. When
1559:
Cumuliform and cumulonimbiform heaps and deep stratiform layers often occupy at least two tropospheric levels, and the largest or deepest of these can occupy all three levels. They may be classified as low or mid-level, but are also commonly classified or characterized as vertical or multi-level.
1389:
Water droplets commonly remain as liquid water and do not freeze, even well below 0 °C (32 °F). Ice nuclei that may be present in an atmospheric droplet become active for ice formation at specific temperatures in between 0 °C (32 °F) and −38 °C (−36 °F), depending on
2000:
There are two main model schemes that can represent cloud physics, the most common is bulk microphysics models that uses mean values to describe the cloud properties (e.g. rain water content, ice content), the properties can represent only the first order (concentration) or also the second order
1961:
Another vital property is the icing characteristic of various cloud genus types at various altitudes, which can have great impact on the safety of flying. The methodologies used to determine these characteristics include using CloudSat data for the analysis and retrieval of icing conditions, the
1038: 1318:
Along with adiabatic cooling that requires a lifting agent, there are three other main mechanisms for lowering the temperature of the air to its dew point, all of which occur near surface level and do not require any lifting of the air. Conductive, radiational, and evaporative cooling can cause
1987:
There are forces throughout the homosphere (which includes the troposphere, stratosphere, and mesosphere) that can impact the structural integrity of a cloud. It has been speculated that as long as the air remains saturated, the natural force of cohesion that hold the molecules of a substance
1453:
adds excess artificial ice nuclei which shifts the balance so that there are many nuclei compared to the amount of super cooled liquid water. An over seeded cloud will form many particles, but each will be very small. This can be done as a preventative measure for areas that are at risk for
1431:
of water, or how much water vapor a given volume can contain, depends on what the vapor is interacting with. Specifically, the saturation vapor pressure with respect to ice is lower than the saturation vapor pressure with respect to water. Water vapor interacting with a water droplet may be
1155:
in the troposphere, the nuclei help transform the vapor into very small water droplets. Clouds that form just above the freezing level are composed mostly of supercooled liquid droplets, while those that condense out at higher altitudes where the air is much colder generally take the form of
1365:
Since the saturation vapor pressure is proportional to temperature, cold air has a lower saturation point than warm air. The difference between these values is the basis for the formation of clouds. When saturated air cools, it can no longer contain the same amount of water vapor. If the
1231:
from warm or hot at surface level to cold aloft. This causes it to rise and cool until temperature equilibrium is achieved with the surrounding air aloft. Moderate instability allows for the formation of cumuliform clouds of moderate size that can produce light showers if the airmass is
3030:
Stubenrauch, C. J; Rossow, W. B; Kinne, S; Ackerman, S; Cesana, G; Chepfer, H; Di Girolamo, L; Getzewich, B; Guignard, A; Heidinger, A; Maddux, B. C; Menzel, W. P; Minnis, P; Pearl, C; Platnick, S; Poulsen, C; Riedi, J; Sun-Mack, S; Walther, A; Winker, D; Zeng, S; Zhao, G (2013).
1361:
is 100%. At this equilibrium there are equal numbers of molecules evaporating from the water as there are condensing back into the water. If the relative humidity becomes greater than 100%, it is called supersaturated. Supersaturation occurs in the absence of condensation nuclei.
1206:
associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer.
1327:, either by the air or by the surface underneath. This type of cooling is common during the night when the sky is clear. Evaporative cooling happens when moisture is added to the air through evaporation, which forces the air temperature to cool to its 1814:
Satellites are used to gather data about cloud properties and other information such as Cloud Amount, height, IR emissivity, visible optical depth, icing, effective particle size for both liquid and ice, and cloud top temperature and pressure.
2001:(mass). The second option is to use bin microphysics scheme that keep the moments (mass or concentration) in different for different size of particles. The bulk microphysics models are much faster than the bin models but are less accurate. 1366:
conditions are right, the excess water will condense out of the air until the lower saturation point is reached. Another possibility is that the water stays in vapor form, even though it is beyond the saturation point, resulting in
1488:
clouds are non-convective and appear as extensive sheet-like layers, ranging from thin to very thick with considerable vertical development. They are mostly the product of large-scale lifting of stable air. Unstable free-convective
1373:
Supersaturation of more than 1–2% relative to water is rarely seen in the atmosphere, since cloud condensation nuclei are usually present. Much higher degrees of supersaturation are possible in clean air, and are the basis of the
1323:. Conductive cooling takes place when air from a relatively mild source area comes into contact with a colder surface, as when mild marine air moves across a colder land area. Radiational cooling occurs due to the emission of 1043: 1042: 1039: 1512:
types which can be subdivided into species and lesser types. High-level clouds form at altitudes of 5 to 12 kilometers. All cirriform clouds are classified as high-level and therefore constitute a single cloud genus
1044: 3094: 960:, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. 1962:
location of clouds using cloud geometric and reflectivity data, the identification of cloud types using cloud classification data, and finding vertical temperature distribution along the CloudSat track (GFS).
1211:
are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
988:
of how a cloud forms and grows is not completely understood, but scientists have developed theories explaining the structure of clouds by studying the microphysics of individual droplets. Advances in
1041: 972:
the drops become large enough that their downward velocity (relative to the surrounding air) is greater than the upward velocity (relative to the ground) of the surrounding air, the drops can fall as
1850:
The method of detection is based on the fact that the clouds tend to appear brighter and colder than the land surface. Because of this, difficulties rise in detecting clouds above bright (highly
1805:
Homospheric types include the ten tropospheric genera and several additional major types above the troposphere. The cumulus genus includes four species that indicate vertical size and structure.
1353:
The amount of water that can exist as vapor in a given volume increases with the temperature. When the amount of water vapor is in equilibrium above a flat surface of water the level of
1160:. An absence of sufficient condensation particles at and above the condensation level causes the rising air to become supersaturated and the formation of cloud tends to be inhibited. 1436:, when interacting with a water droplet, but the same amount of water vapor would be supersaturated when interacting with an ice particle. The water vapor will attempt to return to 2559: 1260:
so heavy that it falls to the ground as large hail. Cutting a hailstone in half shows onion-like layers of ice, indicating distinct times when it passed through a layer of
3282:
Khain, A. P; Beheng, K. D; Heymsfield, A; Korolev, A; Krichak, S. O; Levin, Z; Pinsky, M; Phillips, V; Prabhakaran, T; Teller, A; Van Den Heever, S. C; Yano, J.-I (2015).
1870:
uses the following quantities in order to compare data quality from different satellites in order to establish a reliable quantification of the properties of the clouds:
1580:
clouds occasionally form at high latitudes at an altitude range of 76 to 85 kilometers. These polar clouds show some of the same forms as seen lower in the troposphere.
2496: 1290:). If the air is generally stable, nothing more than lenticular cap clouds will form. However, if the air becomes sufficiently moist and unstable, orographic showers or 2682: 2239: 1243:
If air near the surface becomes extremely warm and unstable, its upward motion can become quite explosive, resulting in towering cumulonimbiform clouds that can cause
3037: 2661: 2325: 3572: 228: 1040: 3342: 1824: 2477: 2177:"Why do clouds always appear to form in distinct clumps? Why isn't there a uniform fog of condensation, especially on windy days when one would expect mixing?" 2409: 3661: 968:
in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.
1476:, the atmospheric layer closest to Earth, are classified according to the height at which they are found, and their shape or appearance. There are five 814: 2010: 1497:
clouds of limited convection show a mix of cumuliform and stratiform characteristics which appear in the form of rolls or ripples. Highly convective
1394:
droplets (as well as any extremely pure liquid water) can exist down to about −38 °C (−36 °F), at which point spontaneous freezing occurs.
1867: 919:
is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the
1544:
Low level clouds have no height-related prefixes, so stratiform and stratocumuliform clouds based around 2 kilometres or lower are known simply as
3245:
Khain, A; Ovtchinnikov, M; Pinsky, M; Pokrovsky, A; Krugliak, H (2000). "Notes on the state-of-the-art numerical modeling of cloud microphysics".
1978:
High-level cirrus, cirrocumulus, and cirrostratus generally cause no icing because they are made mostly of ice crystals colder than -25 °C.
3540: 28: 1084:
As more moist air forms along the surface, the process repeats, resulting in a series of discrete packets of moist air rising to form clouds.
984:, when a supercooled liquid drop collides with a solid snowflake, and aggregation, when two solid snowflakes collide and combine. The precise 2740: 2637: 2379: 2159: 2089: 1564:
clouds are stratiform layers with sufficient vertical extent to produce significant precipitation. Towering cumulus (species congestus), and
2757: 2590: 2697: 2820: 2567: 1247:. As tiny water particles that make up the cloud group together to form droplets of rain, they are pulled down to earth by the force of 804: 2294: 2798: 2321: 861: 809: 221: 192: 3335: 2972: 2054: 1836: 903: 2976: 2525: 791: 3284:"Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization" 2563: 2234: 1115:
and causes the air to cool, which makes water vapor condense into cloud. Water vapor in saturated air is normally attracted to
2500: 3682: 3488: 2447: 134: 60: 1135:(LCL), which roughly determines the height of the cloud base. Free convective clouds generally form at the altitude of the 1965:
The range of temperatures that can give rise to icing conditions is defined according to cloud types and altitude levels:
1484:
clouds are high, thin and wispy, and are seen most extensively along the leading edges of organized weather disturbances.
1136: 689: 214: 48: 1437: 3328: 2859:"A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds" 3625: 973: 1572:
Some clouds can form at very high to extreme levels above the troposphere, mostly above the polar regions of Earth.
3206:"A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description" 3003: 2481: 3456: 3429: 851: 202: 102: 43: 3033:"Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel" 1677: 1666: 1655: 1573: 1428: 1403: 1140: 1132: 1116: 953: 856: 197: 2842: 2815: 3562: 2863: 2761: 2653: 2213: 1989: 1975:
Vertical or multi-level cumulus, cumulonimbus, and nimbostatus, create icing at a range of 0 to -25 °C.
1625: 1191: 1148: 1124: 846: 187: 144: 2346: 3646: 3508: 1221: 1009: 715: 1236:
upcurrents may allow the droplets to grow to a radius of about 0.015 millimetres (0.0006 in) before
3651: 3620: 3483: 3404: 3288: 1169: 896: 710: 468: 392: 149: 55: 2176: 1087:
This process occurs when one or more of three possible lifting agents—cyclonic/frontal, convective, or
3610: 3434: 3394: 3297: 3256: 3247: 3217: 3046: 2872: 2829: 2418: 2114: 1851: 1556:
clouds with little vertical development (species humilis) are also commonly classified as low level.
1501:
clouds have complex structures often including cirriform tops and stratocumuliform accessory clouds.
1328: 1108: 1104: 828: 426: 3585: 3444: 3439: 3424: 3399: 3376: 3352: 2181: 1743: 1549: 1467: 1017: 874: 823: 720: 659: 485: 38: 20: 2405:"Linear relation between convective cloud drop number concentration and depth for rain initiation" 1843:
of the clouds, from which the relevant parameters can be retrieved. This is usually done by using
3641: 3518: 3513: 3466: 3177: 3128: 3118: 3072: 2765: 2130: 1796: 1764: 1701: 1691: 1565: 1561: 1526: 1522: 1441: 1240:
as showers. The equivalent diameter of these droplets is about 0.03 millimetres (0.001 in).
495: 473: 380: 341: 2601: 2704: 2203: 1969:
Low-level stratocumulus and stratus can cause icing at a temperature range of 0 to -10 °C.
1529:. Similar clouds found in the middle level (altitude range 2 to 7 kilometers) carry the prefix 1517:. Stratiform and stratocumuliform clouds in the high level of the troposphere have the prefix 3656: 3605: 3550: 3530: 3416: 2906: 2794: 2793:. International Series in Natural Philosophy. Vol. 113 (3rd ed.). Elsevier Science. 2736: 2676: 2633: 2385: 2375: 2369: 2155: 2085: 2060: 2050: 1791: 1773: 1722: 1715: 1629: 1538: 1534: 1433: 1358: 1324: 1199: 1078: 1005: 1004:
The modern cloud physics began in the 19th century and was described in several publications.
993: 725: 2730: 2627: 3595: 3535: 3461: 3305: 3264: 3225: 3062: 3054: 2880: 2837: 2426: 2298: 2122: 1671: 1418: 1131:
For non-convective cloud, the altitude at which condensation begins to happen is called the
977: 949: 889: 603: 490: 402: 245: 127: 97: 85: 1227:
air closest to ground and increases air mass instability by creating a steeper temperature
3615: 3525: 3471: 3371: 3155: 3140: 2529: 1844: 1367: 1287: 1277: 1021: 945: 796: 571: 274: 3032: 1282:
A third source of lift is wind circulation forcing air over a physical barrier such as a
961: 3301: 3260: 3221: 3050: 2980: 2876: 2833: 2522: 2422: 2118: 1444:
water. The Bergeron process relies on super cooled liquid water (SLW) interacting with
3545: 3500: 3478: 3366: 2657: 2029: 1354: 1244: 1195: 1152: 879: 786: 620: 139: 90: 3268: 2455: 3676: 2267: 2134: 1934: 1748: 1736: 1553: 1545: 1450: 1375: 1341: 1237: 1181: 989: 957: 696: 642: 591: 478: 3076: 2244: 1928:, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5 1576:
are seen but rarely in winter at altitudes of 18 to 30 kilometers, while in summer,
976:. The collision and coalescence is not as important in mixed phase clouds where the 3580: 3182: 2208: 1696: 1660: 1514: 1424: 1391: 1291: 1261: 1157: 1065: 924: 632: 556: 387: 2923: 1251:. The droplets would normally evaporate below the condensation level, but strong 1194:
air, which has been subjected to little or no surface heating, is forced aloft at
2942: 2788: 2149: 2079: 2044: 1264:
water. Hailstones have been found with diameters of up to 7 inches (18 cm).
2901: 1876: 1648: 1577: 1473: 1100: 1092: 940: 920: 781: 669: 664: 627: 576: 507: 453: 409: 397: 346: 113: 71: 1016:
to examine droplets under the microscope. These observations were confirmed by
3600: 3590: 3058: 2885: 2858: 1917: 1445: 1297: 1233: 1208: 1203: 1177: 1173: 1103:
at which the air becomes saturated. The main mechanism behind this process is
1013: 932: 928: 776: 759: 701: 649: 512: 448: 443: 436: 363: 358: 316: 304: 1111:
decreases with altitude, so the rising air expands in a process that expends
3451: 3320: 3067: 3008: 2389: 2105:
Pouncy, Frances J. (February 2003). "A history of cloud codes and symbols".
2064: 1887: 1823:
Data sets regarding cloud properties are gathered using satellites, such as
1381:
There are no instruments to take measurements of supersaturation in clouds.
1096: 1088: 1057: 985: 981: 771: 766: 561: 551: 463: 431: 414: 375: 353: 309: 2371:
A World of Weather: Fundamentals of Meteorology: A Text / Laboratory Manual
996:
technology have also allowed the precise study of clouds on a large scale.
3310: 3283: 2431: 2404: 1972:
For mid-level altocumulus and altostratus, the range is 0 to -20 °C.
1914: 1840: 1674: 1663: 1302: 1283: 1228: 1187: 1064:. Nearly black color of base indicates main cloud in foreground probably 566: 169: 160: 1584:
Homospheric types determined by cross-classification of forms and levels
1423:
The primary mechanism for the formation of ice clouds was discovered by
1008:
originated the idea that clouds were composed of water bubbles. In 1847
2126: 1832: 1752: 1306: 1252: 1248: 1061: 732: 610: 598: 546: 529: 500: 458: 421: 368: 297: 253: 122: 80: 3230: 3205: 2288: 2286: 2284: 3555: 1828: 1112: 965: 534: 522: 517: 284: 279: 269: 262: 2151:
From Raindrops to Volcanoes: Adventures with Sea Surface Meteorology
1052: 1863:
true value lies in the range given by the corresponding data sets.
2495:
Long, Michael J.; Hanks, Howard H.; Beebe, Robert G. (June 1965).
2046:
A history of the theories of rain and other forms of precipitation
1652: 1296: 1051: 936: 737: 674: 336: 329: 2374:(3 ed.). Kendall/Hunt Publishing Company. pp. 207–212. 980:
dominates. Other important processes that form precipitation are
2946: 2597: 1455: 1144: 1120: 754: 654: 637: 615: 541: 3324: 1921:, with values between 0 and 1, with a global average around 0.7 964:
describes how the vapor pressure is dependent on the amount of
2545: 1899: 1320: 749: 1139:(CCL). Water vapor in saturated air is normally attracted to 1945:
for the liquid and solid (ice) phases of the cloud particles
1319:
condensation at surface level resulting in the formation of
2843:
10.1175/1520-0469(2003)060<2957:sowvic>2.0.co;2
1147:
particles that are small enough to be held aloft by normal
1123:
particles that are small enough to be held aloft by normal
3004:"Strange clouds spotted at the edge of Earth's atmosphere" 956:
are necessary for cloud droplets formation because of the
2943:"The identification of cloud types in LANDSAT MSS images" 1151:
of the air. If the condensation process occurs below the
1908:, measured above sea level, ranging from 0 to 20 km 3088: 3086: 3204:
Morrison, H; Curry, J. A; Khvorostyanov, V. I (2005).
1504:
These forms are cross-classified by altitude range or
1480:
based on physical structure and process of formation.
1390:
nucleus geometry and composition. Without ice nuclei,
931:, which collectively make up the greatest part of the 16:
Study of the physical processes in atmospheric clouds
3093:
NOAA/ESRL/GSD Forecast Verification Section (2009).
3634: 3571: 3499: 3415: 3387: 3359: 3025: 3023: 3021: 3019: 2857:Lu, Chunsong; Liu, Yangang; Niu, Shengjie (2012). 2324:. Department of Atmospheric Sciences (DAS) at the 1305:enhanced by the Sun's angle, can visually mimic a 1952:for both liquid and ice, ranging from 0 to 200 μm 2497:"TROPOPAUSE PENETRATIONS BY CUMULONIMBUS CLOUDS" 2240:Penn State College of Earth and Mineral Sciences 3154:UCAR Center for Science Education, ed. (2011). 3038:Bulletin of the American Meteorological Society 2698:"Global maps of Local Land-Atmosphere coupling" 2662:National Oceanic and Atmospheric Administration 1493:clouds are formed mostly into localized heaps. 1190:lift occur in their purest manifestations when 3123:. Baldwin, Cradock, and Joy. 1841. p. 43. 2967: 2965: 2963: 1073:Adiabatic cooling: rising packets of moist air 1028:Cloud formation: how the air becomes saturated 3336: 2078:Pruppacher, Hans R.; Klett, James D. (1997). 1340:surface of oceans, water bodies or wet land. 948:of air exceeds a critical value according to 897: 222: 8: 2729:Reiley, H. Edward; Shry, Carroll L. (2002). 2681:: CS1 maint: multiple names: authors list ( 2410:Journal of Geophysical Research: Atmospheres 19: 1331:, or sometimes to the point of saturation. 3343: 3329: 3321: 2816:"Supersaturation of Water Vapor in Clouds" 2326:University of Illinois at Urbana–Champaign 904: 890: 240: 229: 215: 18: 3309: 3229: 3066: 2884: 2841: 2814:Korolev, Alexei V; Mazin, Ilia P (2003). 2696:Bart van den Hurk; Eleanor Blyth (2008). 2478:"Largest Hailstone in U.S. History Found" 2430: 2043:Middleton, William Edgar Knowles (1966). 2011:Hurricane dynamics and cloud microphysics 1521:added to their names yielding the genera 2977:"Definitions, International Cloud Atlas" 2081:Microphysics of clouds and precipitation 1868:Global Energy and Water Cycle Experiment 1588: 1036: 2598:University of California in Los Angeles 2021: 1427:. The Bergeron process notes that the 252: 177: 159: 112: 70: 3541:Atomic, molecular, and optical physics 3136: 3126: 2674: 2320:Elementary Meteorology Online (2013). 2293:Elementary Meteorology Online (2013). 3095:"Verification of WAFS Icing Products" 2902:"Cloud Physics: The Bergeron Process" 2295:"Humidity, Saturation, and Stability" 7: 2656:Office, Spokane, Washington (2009). 1854:) surfaces, such as oceans and ice. 3210:Journal of the Atmospheric Sciences 2821:Journal of the Atmospheric Sciences 2368:Lee M. Grenci; Jon M. Nese (2001). 2534:Fundamentals of Physical Geography 2322:"Lifting Along Frontal Boundaries" 1938:varies within a range of 4 and 10. 1048:Cloud evolution in under a minute. 193:Glossary of tropical cyclone terms 14: 2973:World Meteorological Organization 2941:E.C. Barrett; C.K. Grant (1976). 2175:Harvey Wichman (August 4, 1997). 1761:Multi-level or moderate vertical 1091:—causes air containing invisible 2924:"Cloud Physics: Types of Clouds" 2787:Rogers, R.R.; Yau, M.K. (1989). 2735:. Cengage Learning. p. 40. 2558:Glossary of Meteorology (2009). 873: 27: 3662:Timeline of physics discoveries 2790:A Short Course in Cloud Physics 2626:Pearce, Robert Penrose (2002). 2564:American Meteorological Society 2403:Freud, E; Rosenfeld, D (2012). 3178:"How Much Does a Cloud Weigh?" 3176:Soniak, Matt (April 4, 2013). 2632:. Academic Press. p. 66. 2446:O'Niell, Dan (9 August 1979). 1839:. The instruments measure the 1309:resulting from orographic lift 135:Climate variability and change 1: 3269:10.1016/S0169-8095(00)00064-8 2928:College of DuPage Weather Lab 2658:"Virga and Dry Thunderstorms" 2629:Meteorology at the Millennium 2148:Blanchard, Duncan C. (2004). 1950:cloud effective particle size 1533:resulting in the genus names 1357:is called saturation and the 1137:convective condensation level 3156:"The Troposphere – overview" 1635:Noctilucent billow or whirls 1232:sufficiently moist. Typical 1033:Cooling air to its dew point 3626:Quantum information science 2523:"Cloud Formation Processes" 1881:with values between 0 and 1 1810:Determination of properties 801:Severe weather terminology 263:Temperate and polar seasons 3699: 3457:Classical electromagnetism 3002:Hsu, Jeremy (2008-09-03). 2591:"Approaches to saturation" 2266:Horstmeyer, Steve (2008). 2084:(2nd ed.). Springer. 1574:Polar stratospheric clouds 1465: 1416: 1401: 1335:Adding moisture to the air 1275: 1219: 1167: 1076: 203:Glossary of climate change 3059:10.1175/BAMS-D-12-00117.1 2886:10.1007/s11434-012-5556-6 2732:Introductory horticulture 2297:. vsc.edu. Archived from 2268:"Cloud Drops, Rain Drops" 1891:ranging from 150 to 340 K 1429:saturation vapor pressure 1404:Coalescence (meteorology) 1164:Frontal and cyclonic lift 1133:lifted condensation level 954:Cloud condensation nuclei 198:Glossary of tornado terms 3563:Condensed matter physics 2864:Chinese Science Bulletin 2762:National Weather Service 2654:National Weather Service 2214:Georgia State University 1983:Cohesion and dissolution 1095:to rise and cool to its 1000:History of cloud physics 2589:Fovell, Robert (2004). 188:Glossary of meteorology 3647:Nobel Prize in Physics 3509:Relativistic mechanics 3120:Constitution of Matter 2703:. KNMI. Archived from 2480:. 2003. Archived from 1926:effective cloud amount 1310: 1222:Atmospheric convection 1198:and around centers of 1069: 1049: 862:Tropical cyclone terms 3683:Cloud and fog physics 3652:Philosophy of physics 3289:Reviews of Geophysics 2560:"Radiational cooling" 2521:Pidwirny, M. (2006). 2454:. 328. Archived from 1896:cloud pressure at top 1886:cloud temperature at 1602:mostly non-convective 1398:Collision-coalescence 1314:Non-adiabatic cooling 1300: 1170:Extratropical cyclone 1055: 1047: 469:Extratropical cyclone 393:Air-mass thunderstorm 56:Atmospheric chemistry 3611:Mathematical physics 3311:10.1002/2014RG000468 3248:Atmospheric Research 2452:Alaska Science Forum 2432:10.1029/2011JD016457 1462:Cloud classification 1329:wet-bulb temperature 1109:Atmospheric pressure 829:Weather modification 427:Anticyclonic tornado 44:Atmospheric dynamics 21:Atmospheric sciences 3586:Atmospheric physics 3425:Classical mechanics 3353:branches of physics 3302:2015RvGeo..53..247K 3261:2000AtmRe..55..159K 3222:2005JAtS...62.1665M 3051:2013BAMS...94.1031S 2877:2013ChSBu..58..545L 2834:2003JAtS...60.2957K 2768:on 24 December 2008 2710:on 25 February 2009 2607:on 25 February 2009 2423:2012JGRD..117.2207F 2204:"Adiabatic Process" 2182:Scientific American 2119:2003Wthr...58...69P 1569:for thunderstorms. 1468:List of cloud types 1432:saturated, at 100% 1141:condensation nuclei 1117:condensation nuclei 1018:William Henry Dines 824:Weather forecasting 660:Rain and snow mixed 486:Subtropical cyclone 39:Atmospheric physics 23: 3642:History of physics 2756:JetStream (2008). 2528:2008-12-20 at the 2484:on August 7, 2003. 2127:10.1256/wea.219.02 2030:"What Are Clouds?" 1782:Towering vertical 1617:strong-convective 1607:limited-convective 1442:supercooled liquid 1325:infrared radiation 1311: 1070: 1050: 880:Weather portal 496:Atlantic hurricane 474:European windstorm 381:Volcanic lightning 342:Cumulonimbus cloud 3670: 3669: 3657:Physics education 3606:Materials science 3573:Interdisciplinary 3531:Quantum mechanics 3231:10.1175/JAS3446.1 2907:College of DuPage 2742:978-0-7668-1567-4 2639:978-0-12-548035-2 2381:978-0-7872-7716-1 2247:on March 16, 2015 2202:Nave, R. (2013). 2161:978-0-486-43487-2 2154:. Courier Dover. 2091:978-0-7923-4211-3 1802: 1801: 1792:Cumulus congestus 1774:Cumulus mediocris 1638:Noctilucent bands 1605:Stratocumuliform 1434:relative humidity 1392:supercooled water 1359:relative humidity 1345:of cloud or fog. 1119:such as dust and 1105:adiabatic cooling 1079:Adiabatic process 1045: 1006:Otto von Guericke 914: 913: 239: 238: 3690: 3596:Chemical physics 3536:Particle physics 3462:Classical optics 3345: 3338: 3331: 3322: 3316: 3315: 3313: 3279: 3273: 3272: 3255:(3–4): 159–224. 3242: 3236: 3235: 3233: 3201: 3195: 3194: 3192: 3190: 3173: 3167: 3166: 3164: 3162: 3151: 3145: 3144: 3138: 3134: 3132: 3124: 3115: 3109: 3108: 3106: 3104: 3099: 3090: 3081: 3080: 3070: 3068:2060/20120014334 3027: 3014: 3013: 2999: 2993: 2992: 2990: 2988: 2983:on 27 March 2017 2979:. Archived from 2969: 2958: 2957: 2955: 2953: 2938: 2932: 2931: 2919: 2913: 2912: 2897: 2891: 2890: 2888: 2854: 2848: 2847: 2845: 2811: 2805: 2804: 2784: 2778: 2777: 2775: 2773: 2764:. Archived from 2753: 2747: 2746: 2726: 2720: 2719: 2717: 2715: 2709: 2702: 2693: 2687: 2686: 2680: 2672: 2670: 2668: 2650: 2644: 2643: 2623: 2617: 2616: 2614: 2612: 2606: 2600:. Archived from 2595: 2586: 2580: 2579: 2577: 2575: 2566:. Archived from 2555: 2549: 2543: 2537: 2519: 2513: 2512: 2510: 2508: 2499:. Archived from 2492: 2486: 2485: 2474: 2468: 2467: 2465: 2463: 2448:"Hail Formation" 2443: 2437: 2436: 2434: 2400: 2394: 2393: 2365: 2359: 2358: 2356: 2354: 2349:. Weather Online 2343: 2337: 2336: 2334: 2332: 2317: 2311: 2310: 2308: 2306: 2290: 2279: 2278: 2276: 2274: 2263: 2257: 2256: 2254: 2252: 2243:. Archived from 2231: 2225: 2224: 2222: 2220: 2199: 2193: 2192: 2190: 2189: 2172: 2166: 2165: 2145: 2139: 2138: 2102: 2096: 2095: 2075: 2069: 2068: 2040: 2034: 2033: 2026: 1943:cloud water path 1933:cloud (visible) 1645:Very high level 1615:Cumulonimbiform 1592:Forms and levels 1589: 1495:Stratocumuliform 1419:Bergeron process 1413:Bergeron process 1046: 978:Bergeron process 906: 899: 892: 878: 877: 491:Tropical cyclone 403:Dry thunderstorm 298:Tropical seasons 241: 231: 224: 217: 98:Tropical cyclone 31: 24: 3698: 3697: 3693: 3692: 3691: 3689: 3688: 3687: 3673: 3672: 3671: 3666: 3630: 3616:Medical physics 3567: 3526:Nuclear physics 3495: 3489:Non-equilibrium 3411: 3383: 3355: 3349: 3319: 3281: 3280: 3276: 3244: 3243: 3239: 3203: 3202: 3198: 3188: 3186: 3175: 3174: 3170: 3160: 3158: 3153: 3152: 3148: 3135: 3125: 3117: 3116: 3112: 3102: 3100: 3097: 3092: 3091: 3084: 3029: 3028: 3017: 3001: 3000: 2996: 2986: 2984: 2971: 2970: 2961: 2951: 2949: 2940: 2939: 2935: 2921: 2920: 2916: 2899: 2898: 2894: 2871:(4–5): 545–51. 2856: 2855: 2851: 2828:(24): 2957–74. 2813: 2812: 2808: 2801: 2786: 2785: 2781: 2771: 2769: 2755: 2754: 2750: 2743: 2728: 2727: 2723: 2713: 2711: 2707: 2700: 2695: 2694: 2690: 2673: 2666: 2664: 2652: 2651: 2647: 2640: 2625: 2624: 2620: 2610: 2608: 2604: 2593: 2588: 2587: 2583: 2573: 2571: 2557: 2556: 2552: 2544: 2540: 2532:, chapter 8 in 2530:Wayback Machine 2520: 2516: 2506: 2504: 2503:on 3 March 2016 2494: 2493: 2489: 2476: 2475: 2471: 2461: 2459: 2458:on 11 June 2007 2445: 2444: 2440: 2402: 2401: 2397: 2382: 2367: 2366: 2362: 2352: 2350: 2345: 2344: 2340: 2330: 2328: 2319: 2318: 2314: 2304: 2302: 2292: 2291: 2282: 2272: 2270: 2265: 2264: 2260: 2250: 2248: 2233: 2232: 2228: 2218: 2216: 2201: 2200: 2196: 2187: 2185: 2174: 2173: 2169: 2162: 2147: 2146: 2142: 2104: 2103: 2099: 2092: 2077: 2076: 2072: 2057: 2042: 2041: 2037: 2032:. 2 March 2017. 2028: 2027: 2023: 2019: 2007: 1998: 1985: 1959: 1879:or cloud amount 1860: 1821: 1812: 1749:Cumulus humilis 1616: 1612:free-convective 1611: 1606: 1601: 1596: 1499:cumulonimbiform 1470: 1464: 1449:may not rain. 1421: 1415: 1406: 1400: 1387: 1368:supersaturation 1351: 1349:Supersaturation 1337: 1316: 1288:orographic lift 1280: 1278:Orographic lift 1274: 1272:Orographic lift 1224: 1218: 1216:Convective lift 1184: 1166: 1081: 1075: 1037: 1035: 1030: 1022:Richard Assmann 1010:Augustus Waller 1002: 946:supersaturation 910: 872: 867: 866: 842: 834: 833: 692: 682: 681: 594: 584: 583: 572:Ground blizzard 332: 322: 321: 300: 290: 289: 265: 235: 17: 12: 11: 5: 3696: 3694: 3686: 3685: 3675: 3674: 3668: 3667: 3665: 3664: 3659: 3654: 3649: 3644: 3638: 3636: 3632: 3631: 3629: 3628: 3623: 3618: 3613: 3608: 3603: 3598: 3593: 3588: 3583: 3577: 3575: 3569: 3568: 3566: 3565: 3560: 3559: 3558: 3553: 3548: 3538: 3533: 3528: 3523: 3522: 3521: 3516: 3505: 3503: 3497: 3496: 3494: 3493: 3492: 3491: 3486: 3479:Thermodynamics 3476: 3475: 3474: 3469: 3459: 3454: 3449: 3448: 3447: 3442: 3437: 3432: 3421: 3419: 3413: 3412: 3410: 3409: 3408: 3407: 3397: 3391: 3389: 3385: 3384: 3382: 3381: 3380: 3379: 3369: 3363: 3361: 3357: 3356: 3350: 3348: 3347: 3340: 3333: 3325: 3318: 3317: 3296:(2): 247–322. 3274: 3237: 3216:(6): 1665–77. 3196: 3168: 3146: 3110: 3082: 3045:(7): 1031–49. 3015: 2994: 2975:, ed. (2017). 2959: 2933: 2914: 2892: 2849: 2806: 2800:978-0750632157 2799: 2779: 2748: 2741: 2721: 2688: 2645: 2638: 2618: 2581: 2570:on 12 May 2011 2550: 2538: 2514: 2487: 2469: 2438: 2417:(D2): D02207. 2395: 2380: 2360: 2347:"Mackerel sky" 2338: 2312: 2280: 2258: 2226: 2194: 2167: 2160: 2140: 2097: 2090: 2070: 2055: 2035: 2020: 2018: 2015: 2014: 2013: 2006: 2003: 1997: 1994: 1984: 1981: 1980: 1979: 1976: 1973: 1970: 1958: 1955: 1954: 1953: 1946: 1939: 1929: 1922: 1909: 1902: 1892: 1882: 1859: 1856: 1845:inverse theory 1820: 1817: 1811: 1808: 1800: 1799: 1794: 1789: 1787: 1785: 1783: 1779: 1778: 1776: 1771: 1769: 1767: 1762: 1758: 1757: 1755: 1746: 1741: 1739: 1734: 1730: 1729: 1727: 1725: 1720: 1718: 1713: 1709: 1708: 1706: 1704: 1699: 1694: 1689: 1685: 1684: 1682: 1680: 1669: 1658: 1646: 1642: 1641: 1639: 1636: 1633: 1623: 1622:Extreme level 1619: 1618: 1613: 1608: 1603: 1598: 1597:non-convective 1593: 1472:Clouds in the 1466:Main article: 1463: 1460: 1417:Main article: 1414: 1411: 1402:Main article: 1399: 1396: 1386: 1383: 1355:vapor pressure 1350: 1347: 1336: 1333: 1315: 1312: 1301:Windy evening 1276:Main article: 1273: 1270: 1245:severe weather 1217: 1214: 1196:weather fronts 1165: 1162: 1153:freezing level 1074: 1071: 1034: 1031: 1029: 1026: 1001: 998: 912: 911: 909: 908: 901: 894: 886: 883: 882: 869: 868: 865: 864: 859: 854: 852:Climate change 849: 843: 840: 839: 836: 835: 832: 831: 826: 821: 820: 819: 818: 817: 812: 807: 799: 794: 787:Severe weather 784: 779: 774: 769: 764: 763: 762: 757: 747: 746: 745: 735: 730: 729: 728: 723: 718: 713: 705: 704: 699: 693: 688: 687: 684: 683: 680: 679: 678: 677: 672: 667: 662: 652: 647: 646: 645: 635: 630: 625: 624: 623: 621:Megacryometeor 613: 608: 607: 606: 595: 590: 589: 586: 585: 582: 581: 580: 579: 574: 569: 564: 554: 549: 544: 539: 538: 537: 527: 526: 525: 520: 510: 505: 504: 503: 498: 488: 483: 482: 481: 476: 466: 461: 456: 451: 446: 441: 440: 439: 434: 429: 419: 418: 417: 407: 406: 405: 400: 395: 385: 384: 383: 373: 372: 371: 366: 361: 351: 350: 349: 344: 333: 328: 327: 324: 323: 320: 319: 314: 313: 312: 301: 296: 295: 292: 291: 288: 287: 282: 277: 272: 266: 261: 260: 257: 256: 250: 249: 237: 236: 234: 233: 226: 219: 211: 208: 207: 206: 205: 200: 195: 190: 182: 181: 175: 174: 173: 172: 164: 163: 157: 156: 155: 154: 153: 152: 147: 140:Climate change 137: 132: 131: 130: 117: 116: 110: 109: 108: 107: 106: 105: 95: 94: 93: 88: 75: 74: 68: 67: 66: 65: 64: 63: 53: 52: 51: 41: 33: 32: 15: 13: 10: 9: 6: 4: 3: 2: 3695: 3684: 3681: 3680: 3678: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3639: 3637: 3633: 3627: 3624: 3622: 3621:Ocean physics 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3578: 3576: 3574: 3570: 3564: 3561: 3557: 3556:Modern optics 3554: 3552: 3549: 3547: 3544: 3543: 3542: 3539: 3537: 3534: 3532: 3529: 3527: 3524: 3520: 3517: 3515: 3512: 3511: 3510: 3507: 3506: 3504: 3502: 3498: 3490: 3487: 3485: 3482: 3481: 3480: 3477: 3473: 3470: 3468: 3465: 3464: 3463: 3460: 3458: 3455: 3453: 3450: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3427: 3426: 3423: 3422: 3420: 3418: 3414: 3406: 3405:Computational 3403: 3402: 3401: 3398: 3396: 3393: 3392: 3390: 3386: 3378: 3375: 3374: 3373: 3370: 3368: 3365: 3364: 3362: 3358: 3354: 3346: 3341: 3339: 3334: 3332: 3327: 3326: 3323: 3312: 3307: 3303: 3299: 3295: 3291: 3290: 3285: 3278: 3275: 3270: 3266: 3262: 3258: 3254: 3250: 3249: 3241: 3238: 3232: 3227: 3223: 3219: 3215: 3211: 3207: 3200: 3197: 3185: 3184: 3179: 3172: 3169: 3157: 3150: 3147: 3142: 3130: 3122: 3121: 3114: 3111: 3096: 3089: 3087: 3083: 3078: 3074: 3069: 3064: 3060: 3056: 3052: 3048: 3044: 3040: 3039: 3034: 3026: 3024: 3022: 3020: 3016: 3011: 3010: 3005: 2998: 2995: 2982: 2978: 2974: 2968: 2966: 2964: 2960: 2948: 2944: 2937: 2934: 2929: 2925: 2922:Sirvatka, P. 2918: 2915: 2910: 2908: 2903: 2900:Sirvatka, P. 2896: 2893: 2887: 2882: 2878: 2874: 2870: 2866: 2865: 2860: 2853: 2850: 2844: 2839: 2835: 2831: 2827: 2823: 2822: 2817: 2810: 2807: 2802: 2796: 2792: 2791: 2783: 2780: 2767: 2763: 2759: 2752: 2749: 2744: 2738: 2734: 2733: 2725: 2722: 2706: 2699: 2692: 2689: 2684: 2678: 2663: 2659: 2655: 2649: 2646: 2641: 2635: 2631: 2630: 2622: 2619: 2603: 2599: 2592: 2585: 2582: 2569: 2565: 2561: 2554: 2551: 2547: 2542: 2539: 2535: 2531: 2527: 2524: 2518: 2515: 2502: 2498: 2491: 2488: 2483: 2479: 2473: 2470: 2457: 2453: 2449: 2442: 2439: 2433: 2428: 2424: 2420: 2416: 2412: 2411: 2406: 2399: 2396: 2391: 2387: 2383: 2377: 2373: 2372: 2364: 2361: 2348: 2342: 2339: 2327: 2323: 2316: 2313: 2301:on 2 May 2014 2300: 2296: 2289: 2287: 2285: 2281: 2269: 2262: 2259: 2246: 2242: 2241: 2236: 2230: 2227: 2215: 2211: 2210: 2205: 2198: 2195: 2184: 2183: 2178: 2171: 2168: 2163: 2157: 2153: 2152: 2144: 2141: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2101: 2098: 2093: 2087: 2083: 2082: 2074: 2071: 2066: 2062: 2058: 2056:9780226524979 2052: 2049:. Oldbourne. 2048: 2047: 2039: 2036: 2031: 2025: 2022: 2016: 2012: 2009: 2008: 2004: 2002: 1995: 1993: 1991: 1982: 1977: 1974: 1971: 1968: 1967: 1966: 1963: 1956: 1951: 1947: 1944: 1940: 1937: 1936: 1935:optical depth 1930: 1927: 1923: 1920: 1919: 1916: 1910: 1907: 1903: 1901: 1897: 1893: 1890: 1889: 1883: 1880: 1878: 1873: 1872: 1871: 1869: 1864: 1857: 1855: 1853: 1848: 1846: 1842: 1838: 1834: 1830: 1826: 1818: 1816: 1809: 1807: 1806: 1798: 1795: 1793: 1790: 1788: 1786: 1784: 1781: 1780: 1777: 1775: 1772: 1770: 1768: 1766: 1763: 1760: 1759: 1756: 1754: 1750: 1747: 1745: 1744:Stratocumulus 1742: 1740: 1738: 1735: 1732: 1731: 1728: 1726: 1724: 1721: 1719: 1717: 1714: 1711: 1710: 1707: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1687: 1686: 1683: 1681: 1679: 1676: 1673: 1670: 1668: 1665: 1662: 1659: 1657: 1654: 1650: 1647: 1644: 1643: 1640: 1637: 1634: 1631: 1627: 1624: 1621: 1620: 1614: 1609: 1604: 1599: 1594: 1591: 1590: 1587: 1585: 1581: 1579: 1575: 1570: 1567: 1563: 1557: 1555: 1551: 1550:stratocumulus 1547: 1542: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1511: 1507: 1502: 1500: 1496: 1492: 1487: 1483: 1479: 1475: 1469: 1461: 1459: 1457: 1452: 1451:Cloud seeding 1447: 1443: 1439: 1435: 1430: 1426: 1420: 1412: 1410: 1405: 1397: 1395: 1393: 1384: 1382: 1379: 1377: 1376:cloud chamber 1371: 1369: 1363: 1360: 1356: 1348: 1346: 1343: 1342:Transpiration 1334: 1332: 1330: 1326: 1322: 1313: 1308: 1304: 1299: 1295: 1293: 1292:thunderstorms 1289: 1285: 1279: 1271: 1269: 1265: 1263: 1257: 1254: 1250: 1246: 1241: 1239: 1238:precipitating 1235: 1230: 1223: 1215: 1213: 1210: 1205: 1201: 1197: 1193: 1189: 1183: 1182:Precipitation 1179: 1175: 1171: 1163: 1161: 1159: 1154: 1150: 1146: 1142: 1138: 1134: 1129: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1085: 1080: 1072: 1067: 1063: 1059: 1054: 1032: 1027: 1025: 1023: 1019: 1015: 1011: 1007: 999: 997: 995: 991: 990:weather radar 987: 983: 979: 975: 974:precipitation 969: 967: 963: 959: 958:Kelvin effect 955: 951: 950:Köhler theory 947: 942: 938: 934: 930: 926: 922: 918: 917:Cloud physics 907: 902: 900: 895: 893: 888: 887: 885: 884: 881: 876: 871: 870: 863: 860: 858: 857:Tornado terms 855: 853: 850: 848: 845: 844: 838: 837: 830: 827: 825: 822: 816: 815:United States 813: 811: 808: 806: 803: 802: 800: 798: 795: 793: 790: 789: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 761: 758: 756: 753: 752: 751: 748: 744: 741: 740: 739: 736: 734: 731: 727: 724: 722: 719: 717: 714: 712: 709: 708: 707: 706: 703: 700: 698: 697:Air pollution 695: 694: 691: 686: 685: 676: 673: 671: 668: 666: 663: 661: 658: 657: 656: 653: 651: 648: 644: 641: 640: 639: 636: 634: 631: 629: 626: 622: 619: 618: 617: 614: 612: 609: 605: 602: 601: 600: 597: 596: 593: 592:Precipitation 588: 587: 578: 575: 573: 570: 568: 565: 563: 560: 559: 558: 555: 553: 550: 548: 545: 543: 540: 536: 533: 532: 531: 528: 524: 521: 519: 516: 515: 514: 511: 509: 506: 502: 499: 497: 494: 493: 492: 489: 487: 484: 480: 477: 475: 472: 471: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 438: 435: 433: 430: 428: 425: 424: 423: 420: 416: 413: 412: 411: 408: 404: 401: 399: 396: 394: 391: 390: 389: 386: 382: 379: 378: 377: 374: 370: 367: 365: 362: 360: 357: 356: 355: 352: 348: 345: 343: 340: 339: 338: 335: 334: 331: 326: 325: 318: 315: 311: 308: 307: 306: 303: 302: 299: 294: 293: 286: 283: 281: 278: 276: 273: 271: 268: 267: 264: 259: 258: 255: 251: 247: 243: 242: 232: 227: 225: 220: 218: 213: 212: 210: 209: 204: 201: 199: 196: 194: 191: 189: 186: 185: 184: 183: 180: 176: 171: 168: 167: 166: 165: 162: 158: 151: 148: 146: 143: 142: 141: 138: 136: 133: 129: 126: 125: 124: 121: 120: 119: 118: 115: 111: 104: 101: 100: 99: 96: 92: 89: 87: 84: 83: 82: 79: 78: 77: 76: 73: 69: 62: 59: 58: 57: 54: 50: 47: 46: 45: 42: 40: 37: 36: 35: 34: 30: 26: 25: 22: 3581:Astrophysics 3395:Experimental 3293: 3287: 3277: 3252: 3246: 3240: 3213: 3209: 3199: 3187:. Retrieved 3183:Mental Floss 3181: 3171: 3159:. Retrieved 3149: 3119: 3113: 3101:. Retrieved 3042: 3036: 3007: 2997: 2985:. Retrieved 2981:the original 2950:. Retrieved 2936: 2927: 2917: 2905: 2895: 2868: 2862: 2852: 2825: 2819: 2809: 2789: 2782: 2770:. Retrieved 2766:the original 2758:"Air Masses" 2751: 2731: 2724: 2712:. Retrieved 2705:the original 2691: 2665:. Retrieved 2648: 2628: 2621: 2609:. Retrieved 2602:the original 2584: 2572:. Retrieved 2568:the original 2553: 2541: 2533: 2517: 2505:. Retrieved 2501:the original 2490: 2482:the original 2472: 2460:. Retrieved 2456:the original 2451: 2441: 2414: 2408: 2398: 2370: 2363: 2351:. Retrieved 2341: 2329:. Retrieved 2315: 2303:. Retrieved 2299:the original 2271:. Retrieved 2261: 2249:. Retrieved 2245:the original 2238: 2235:"Bad Clouds" 2229: 2217:. Retrieved 2209:HyperPhysics 2207: 2197: 2186:. Retrieved 2180: 2170: 2150: 2143: 2113:(2): 69–80. 2110: 2106: 2100: 2080: 2073: 2045: 2038: 2024: 1999: 1986: 1964: 1960: 1949: 1942: 1932: 1925: 1912: 1906:cloud height 1905: 1895: 1885: 1875: 1865: 1861: 1849: 1822: 1813: 1804: 1803: 1797:Cumulonimbus 1765:Nimbostratus 1702:Cirrocumulus 1692:Cirrostratus 1583: 1582: 1571: 1566:cumulonimbus 1562:Nimbostratus 1558: 1543: 1530: 1527:cirrocumulus 1523:cirrostratus 1518: 1509: 1505: 1503: 1498: 1494: 1490: 1485: 1481: 1477: 1471: 1425:Tor Bergeron 1422: 1407: 1388: 1385:Supercooling 1380: 1372: 1364: 1352: 1338: 1317: 1294:may appear. 1281: 1266: 1262:super-cooled 1258: 1242: 1225: 1200:low pressure 1186:Frontal and 1185: 1158:ice crystals 1130: 1086: 1082: 1066:cumulonimbus 1056:Late-summer 1020:in 1880 and 1003: 970: 962:Raoult's law 925:stratosphere 916: 915: 742: 633:Diamond dust 557:Winter storm 388:Thunderstorm 178: 3484:Statistical 3400:Theoretical 3377:Engineering 3189:February 5, 3137:|work= 3103:11 November 2909:Weather Lab 2574:27 December 2353:21 November 2331:February 5, 2305:18 November 2251:February 5, 2219:February 5, 1898:1013 - 100 1877:cloud cover 1723:Altocumulus 1716:Altostratus 1688:High-level 1649:Nitric acid 1630:Noctilucent 1610:Cumuliform 1595:Stratiform 1578:noctilucent 1539:altocumulus 1535:altostratus 1474:troposphere 1438:equilibrium 1209:Cold fronts 1204:Warm fronts 1149:circulation 1125:circulation 1101:temperature 1093:water vapor 941:microscopic 939:consist of 921:troposphere 847:Meteorology 782:Meteorology 670:Snow roller 665:Snow grains 628:Ice pellets 577:Snow squall 508:Storm surge 454:Anticyclone 410:Mesocyclone 398:Thundersnow 347:Arcus cloud 114:Climatology 72:Meteorology 3601:Geophysics 3591:Biophysics 3435:Analytical 3388:Approaches 3161:15 January 2611:7 February 2507:9 November 2188:2016-03-19 2017:References 1990:subsidence 1918:emissivity 1858:Parameters 1852:reflective 1733:Low-level 1712:Mid-level 1672:Lenticular 1600:Cirriform 1491:cumuliform 1486:Stratiform 1446:ice nuclei 1234:convection 1220:See also: 1178:Cold front 1174:Warm front 1168:See also: 1089:orographic 1077:See also: 1014:spider web 933:homosphere 929:mesosphere 841:Glossaries 777:Jet stream 716:Convection 702:Atmosphere 650:Cloudburst 513:Dust storm 479:Nor'easter 449:Fire whirl 444:Dust devil 437:Waterspout 364:Heat burst 359:Microburst 317:Wet season 305:Dry season 179:Glossaries 3551:Molecular 3452:Acoustics 3445:Continuum 3440:Celestial 3430:Newtonian 3417:Classical 3360:Divisions 3139:ignored ( 3129:cite book 3009:USA Today 2952:22 August 2772:2 January 2714:2 January 2667:2 January 2536:, 2nd ed. 2135:122081455 1888:cloud top 1841:radiances 1819:Detection 1661:Cirriform 1552:. Small 1508:into ten 1482:Cirriform 1256:showers. 1097:dew point 1058:rainstorm 1024:in 1884. 994:satellite 986:mechanics 772:Heat wave 767:Cold wave 711:Chemistry 562:Ice storm 552:Firestorm 464:Polar low 432:Landspout 415:Supercell 376:Lightning 354:Downburst 310:Harmattan 244:Part of 3677:Category 3077:12145499 2987:30 March 2677:cite web 2548:, p. 109 2546:Ackerman 2526:Archived 2390:51160155 2273:19 March 2065:12250134 2005:See also 1675:nacreous 1664:nacreous 1458:storms. 1303:twilight 1284:mountain 1253:updrafts 1229:gradient 1188:cyclonic 1143:such as 643:Freezing 604:Freezing 567:Blizzard 246:a series 170:Aeronomy 161:Aeronomy 145:category 128:category 103:category 86:category 61:category 49:category 3635:Related 3519:General 3514:Special 3372:Applied 3298:Bibcode 3257:Bibcode 3218:Bibcode 3047:Bibcode 2873:Bibcode 2830:Bibcode 2419:Bibcode 2115:Bibcode 2107:Weather 1833:CALIPSO 1753:fractus 1737:Stratus 1554:cumulus 1546:stratus 1307:tornado 1249:gravity 1062:Denmark 797:Extreme 743:Physics 733:Climate 721:Physics 611:Graupel 599:Drizzle 547:Sirocco 530:Monsoon 501:Typhoon 459:Cyclone 422:Tornado 369:Derecho 254:Weather 123:Climate 81:Weather 3546:Atomic 3501:Modern 3351:Major 3075:  2797:  2739:  2636:  2462:23 May 2388:  2378:  2158:  2133:  2088:  2063:  2053:  1996:Models 1913:cloud 1829:POLDER 1697:Cirrus 1651:& 1519:cirro- 1515:cirrus 1192:stable 1180:, and 1113:energy 1099:, the 982:riming 966:solute 937:Clouds 927:, and 805:Canada 760:Season 690:Topics 535:Amihan 523:Haboob 518:Simoom 330:Storms 285:Autumn 280:Summer 275:Spring 270:Winter 150:portal 91:portal 3098:(PDF) 3073:S2CID 2708:(PDF) 2701:(PDF) 2605:(PDF) 2594:(PDF) 2131:S2CID 1957:Icing 1825:MODIS 1653:water 1632:veils 1531:alto- 1510:genus 1506:level 1478:forms 1012:used 810:Japan 738:Cloud 726:River 675:Slush 337:Cloud 3472:Wave 3367:Pure 3191:2018 3163:2015 3141:help 3105:2014 2989:2017 2954:2012 2947:NASA 2795:ISBN 2774:2009 2737:ISBN 2716:2009 2683:link 2669:2009 2634:ISBN 2613:2009 2576:2008 2509:2014 2464:2007 2386:OCLC 2376:ISBN 2355:2013 2333:2018 2307:2013 2275:2012 2253:2018 2221:2018 2156:ISBN 2086:ISBN 2061:OCLC 2051:ISBN 1948:the 1941:the 1931:the 1924:the 1911:the 1904:the 1894:the 1884:the 1874:the 1866:The 1837:ATSR 1548:and 1537:and 1525:and 1456:hail 1145:salt 1121:salt 992:and 792:List 755:Mist 655:Snow 638:Rain 616:Hail 542:Gale 3467:Ray 3306:doi 3265:doi 3226:doi 3063:hdl 3055:doi 2881:doi 2838:doi 2427:doi 2415:117 2123:doi 1900:hPa 1835:or 1751:or 1678:PSC 1667:PSC 1656:PSC 1626:PMC 1321:fog 1060:in 935:. 750:Fog 3679:: 3304:. 3294:53 3292:. 3286:. 3263:. 3253:55 3251:. 3224:. 3214:62 3212:. 3208:. 3180:. 3133:: 3131:}} 3127:{{ 3085:^ 3071:. 3061:. 3053:. 3043:94 3041:. 3035:. 3018:^ 3006:. 2962:^ 2945:. 2926:. 2904:. 2879:. 2869:58 2867:. 2861:. 2836:. 2826:60 2824:. 2818:. 2760:. 2679:}} 2675:{{ 2660:. 2596:. 2562:. 2450:. 2425:. 2413:. 2407:. 2384:. 2283:^ 2237:. 2212:. 2206:. 2179:. 2129:. 2121:. 2111:58 2109:. 2059:. 1915:IR 1847:. 1831:, 1827:, 1628:: 1586:. 1541:. 1378:. 1370:. 1202:. 1176:, 1172:, 1107:. 952:. 923:, 248:on 3344:e 3337:t 3330:v 3314:. 3308:: 3300:: 3271:. 3267:: 3259:: 3234:. 3228:: 3220:: 3193:. 3165:. 3143:) 3107:. 3079:. 3065:: 3057:: 3049:: 3012:. 2991:. 2956:. 2930:. 2911:. 2889:. 2883:: 2875:: 2846:. 2840:: 2832:: 2803:. 2776:. 2745:. 2718:. 2685:) 2671:. 2642:. 2615:. 2578:. 2511:. 2466:. 2435:. 2429:: 2421:: 2392:. 2357:. 2335:. 2309:. 2277:. 2255:. 2223:. 2191:. 2164:. 2137:. 2125:: 2117:: 2094:. 2067:. 1286:( 1068:. 905:e 898:t 891:v 230:e 223:t 216:v

Index

Atmospheric sciences

Atmospheric physics
Atmospheric dynamics
category
Atmospheric chemistry
category
Meteorology
Weather
category
portal
Tropical cyclone
category
Climatology
Climate
category
Climate variability and change
Climate change
category
portal
Aeronomy
Aeronomy
Glossary of meteorology
Glossary of tropical cyclone terms
Glossary of tornado terms
Glossary of climate change
v
t
e
a series

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.