Knowledge (XXG)

Nanocluster

Source đź“ť

36: 1071:
properties and the ability to control the size and number of atoms in nanoclusters have proven to be a valuable method for increasing activity and tuning the selectivity in a catalytic process. Also since nanoparticles are magnetic materials and can be embedded in glass these nanoclusters can be used
946:
of an atom in a cluster will be larger than that of one in a bulk material. Lower coordination, lower dimensionality, and increasing interatomic distance in metal clusters contribute to enhancement of the magnetic moment in nanoclusters. Metal nanoclusters also show change in magnetic properties. For
312:
and produced atomic cluster beams. Heer's team and Brack et al. discovered that certain masses of formed metal nanoclusters were stable and were like magic clusters. The number of atoms or size of the core of these magic clusters corresponds to the closing of atomic shells. Certain thiolated clusters
923:
are also used to synthesize the metal nanoclusters. Stabilization is mainly by immobilization of the clusters and thus preventing their tendency to aggregate to form larger nanoparticles. First metal ions doped glasses are prepared and later the metal ion doped glass is activated to form fluorescent
420:
In liquid-metal ion source a needle is wetted with the metal to be investigated. The metal is heated above the melting point and a potential difference is applied. A very high electric field at the tip of the needle causes a spray of small droplets to be emitted from the tip. Initially very hot and
797:
dendrimer (PAMAM) have been successfully synthesized. PAMAM is repeatedly branched molecules with different generations. The fluorescence properties of the nanoclusters are sensitively dependent on the types of dendrimers used as template for the synthesis. Metal nanoclusters embedded in different
654:
process has several advantages such as avoiding the introduction of impurities, fast synthesis, and controlled reduction. For example Diaz and his co-workers have used visible light to reduce silver ions into nanoclusters in the presence of a PMAA polymer. Kunwar et al produced silver nanoclusters
579:
In general, metal nanoclusters in an aqueous medium are synthesized in two steps: reduction of metal ions to zero-valent state and stabilization of nanoclusters. Without stabilization, metal nanoclusters would strongly interact with each other and aggregate irreversibly to form larger particles.
379:
Gas aggregation is mostly used to synthesize large clusters of nanoparticles. Metal is vaporized and introduced in a flow of cold inert gas, which causes the vapor to become highly supersaturated. Due to the low temperature of the inert gas, cluster production proceeds primarily by successive
84:
are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research
928:
size range can be loaded with metal ions and later activated either by heat treatment, UV light excitation, or two-photon excitation. During the activation, the silver ions combine to form the nanoclusters that can grow only to oligomeric size due to the limited cage dimensions.
818:(NIR) region and the relative PAMAM/gold concentration and the dendrimer generation can be varied. The green-emitting gold nanoclusters can be synthesized by adding mercaptoundecanoic acid (MUA) into the prepared small gold nanoparticle solution. The addition of freshly reduced 1790:
Chakraborty, I; Govindarajan, A; Erusappan, J; Ghosh, A; Pradeep, T; Yoon, B; Whetten, R. L.; Landman, U. (2012). "The Superstable 25 kDa Monolayer Protected Silver Nanoparticle: Measurements and Interpretation as an Icosahedral Ag152(SCH2CH2Ph)60 Cluster".
689:. By irradiating microwaves Linja Li prepared fluorescent silver nanoclusters in PMAA, which typically possess a red color emission. Similarly Suslick et al. have synthesized silver nanoclusters using high ultrasound in the presence of PMAA polymer. 764:. The higher the ratio, the smaller the nanoclusters. The thiol-stabilized nanoclusters can be produced using strong as well as mild reductants. Thioled metal nanoclusters are mostly produced using the strong reductant sodium borohydride (NaBH 157:
The first set of experiments to consciously form nanoclusters can be traced back to 1950s and 1960s. During this period, nanoclusters were produced from intense molecular beams at low temperature by supersonic expansion. The development of
1992:
Conn, B. E.; Desireddy, A; Atnagulov, A; Wickramasinghe, S; Bhattarai, B; Yoon, B; Barnett, R. N.; Abdollahian, Y; Kim, Y. W.; Griffith, W. P.; Oliver, S. R.; Landman, U; Bigioni T. P. (2015). "M4Ag44(p-MBA)30 Molecular Nanoparticles".
722:
force between individual particles will not allow them to flow freely without agglomeration. Whereas on the other hand in steric stabilization,the metal center is surrounded by layers of sterically bulk material. These large
562:
In this method, cluster ions produced in a laser vaporized cluster source are mass selected and introduced in a long inert-gas-filled drift tube with an entrance and exit aperture. Since cluster mobility depends upon the
360:
metal. In this source method metal is vaporized in a hot oven. The metal vapor is mixed with (seeded in) inert carrier gas. The vapor mixture is ejected into a vacuum chamber via a small hole, producing a supersonic
888:
bases in single-stranded DNA which makes DNA a promising candidate for synthesizing small silver nanoclusters. The number of cytosines in the loop could tune the stability and fluorescence of Ag NCs. Biological
1039:, ultrasmall, and exhibit bright emission, hence promising candidates for fluorescence bio imaging or cellular labeling. Nanoclusters along with fluorophores are widely used for staining cells for study both 2601:
Cremer, G. D.; Sels, B. F; Hotta, J; Roeffaers, M. B. J.; Bartholomeeusen, E; Coutino-Gonzales, E; Valtchev, V; De Vos, D, E; Vosch, T; Hofkens, J (2010). "Optical Encoding of Silver Zeolite Microcarriers".
784:(DPA), is used as the stabilizer. Furthermore, nanoclusters can be produced by etching larger nanoparticles with thiols. Thiols can be used to etch larger nanoparticles stabilized by other capping agents. 1023:) varies with the size and composition of a nanocluster. Thus, the optical properties of nanoclusters change. Furthermore, the gaps can be modified by coating the nanoclusters with different ligands or 760:
are other thiolated compounds currently being used in the synthesis of metal nanoclusters. The size as well as the luminescence efficiency of the nanocluster depends sensitively on the thiol-to-metal
2578:
Bellec, M; Royon, A; Bourhis, K; Choi, J; Bousquet, B; Treguer, M; Cardinal, T; Videau, J. J; Richardson, M; Canioni, L (2010). "3D Patterning at the Nanoscale of Fluorescent Emitters in Glass".
228: 406:
Ion sputtering source produces an intense continuous beam of small singly ionized cluster of metals. Cluster ion beams are produced by bombarding the surface with high energetic inert gas (
839:
groups were identified as promising templates for synthesizing highly fluorescent, water-soluble silver nanoclusters. Fluorescent silver nanoclusters have been successfully synthesized on
1003:. Clusters can have high electron affinity and nanoclusters with high electron affinity are classified as super halogens. Super halogens are metal atoms at the core surrounded by 85:
conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.
390:
is used to vaporize the target metal rod and the rod is moved in a spiral so that a fresh area can be evaporated every time. The evaporated metal vapor is cooled by using cold
1291:
Tanaka S. I, Miyazaki J, Tiwari D. K., Jin T, Inouye Y. (2011). "Fluorescent Platinum Nanoclusters: Synthesis, Purification, Characterization, and Application to Bioimaging".
162:
technique made it possible to create nanoclusters of a clear majority of the elements in the periodic table. Since 1980s, there has been tremendous work on nanoclusters of
736:-containing small molecules are the most commonly adopted stabilizers in metal nanoparticle synthesis owing to the strong interaction between thiols and gold and silver. 1027:. It is also possible to design nanoclusters with tailored band gaps and thus tailor optical properties by simply tuning the size and coating layer of the nanocluster. 2653: 1389: 1326: 1941:
Gonzáles, B. S.; Blanco, M. C.; López-Quintela, A (2012). "Single step electro-chemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters".
698:
Cryogenic gas molecules are used as scaffolds for nanocluster synthesis in solid state. In aqueous medium there are two common methods for stabilizing nanoclusters:
436:
mass separation is done with crossed homogeneous electric and magnetic fields perpendicular to ionized cluster beam. The net force on a charged cluster with
769: 2764:
Chakraborty, Indranath; Pradeep, Thalappil (6 June 2017). "Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles".
913:
can be combined with the fluorescence property of metal nanoclusters in a single cluster to make it possible to construct multi-functional nanoprobes.
1217:
Beecher, Alexander N.; Yang, Xiaohao; Palmer, Joshua H.; LaGrassa, Alexandra L.; Juhas, Pavol; Billinge, Simon J. L.; Owen, Jonathan S. (2014-07-30).
1035:
Nanoclusters potentially have many areas of application as they have unique optical, electrical, magnetic and reactivity properties. Nanoclusters are
345:
by with molecular beam techniques combined with a mass spectrometer for mass selection, separation and analysis. And finally detected with detectors.
548:. The ion gun accelerates the ions that pass through the field-free drift space (flight tube) and ultimately impinge on an ion detector. Usually an 2098:
de Lara-Castells, Maria Pilar (2022). "First-principles modelling of the new generation of subnanometric metal clusters: Recent case studies".
1706:
Bhattarai, B; Zaker, Y; Atnagulov A; Yoon, B; Landman, U; Bigioni T. P. (2018). "Chemistry and Structure of Silver Molecular Nanoparticles".
1663:
Bhattarai, B; Zaker, Y; Atnagulov A; Yoon, B; Landman, U; Bigioni T. P. (2018). "Chemistry and Structure of Silver Molecular Nanoparticles".
321:
explained this stability with a theory that a nanocluster is stable if the number of valence electrons corresponds to the shell closure of
2020:
Campbell, E. K.; Holz, M; Gerlich D; Maier, J. P. (2015). "Laboratory confirmation of C60+ as carrier of two diffuse interstellar bands".
2383:
Walter, M; Akola, J; Lopez-Aceved, O; Jadzinsky, P. D.; Calero, G; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A (2008).
2137:"Exploring the materials space in the smallest particle size range: from heterogeneous catalysis to electrocatalysis and photocatalysis" 61: 1771: 1640:
Ashenfelter, B. A.; Desireddy, A; Yau, S. H; Goodson T; Bigioni, T. P (2015). "Fluorescence from Molecular Silver Nanoparticles".
515:
in a two-dimensional quadrupole field are stable if the field has an AC component superimposed on a DC component with appropriate
533: 1608:
Shang, L; Dong, S; Nienhaus, G. U. (2011). "Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications".
2071:
Lu, Yan; Chen, Wei (2012). "Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries".
909:, thus offering better scaffolds for template-driven formation of small metal nanoclusters. Also the catalytic function of 991:, it becomes highly reactive when scaled down to nanometer scale. One of the properties that govern cluster reactivity is 2289:"Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers" 1081:"Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles" by Chakraborty and Pradeep 1092:
Gary, Dylan C.; Flowers, Sarah E.; Kaminsky, Werner; Petrone, Alessio; Li, Xiaosong; Cossairt, Brandi M. (2016-02-10).
971:, which can be made nonmagnetic simply by changing its structure. So they can form the basis of a nanomagnetic switch. 866:, poly(methacrylic acid), act as an excellent scaffold for the preparation of silver nanoclusters in water solution by 191: 619:
O). For instance, Dickson and his research team have synthesized silver nanoclusters in DNA using sodium borohydride.
1055:
ions in an aqueous solution based on fluorescence quenching. Also many small molecules, biological entities such as
173:
Subnanometric metal clusters typically contain fewer than 10 atoms and measure less than one nanometer in size.
905:, large and complicated proteins possess abundant binding sites that can potentially bind and further reduce metal 815: 2197:"An Ab Initio Journey toward the Molecular-Level Understanding and Predictability of Subnanometric Metal Clusters" 901:
have also been utilized as templates for synthesizing highly fluorescent metal nanoclusters. Compared with short
301: 112: 983:
of nanoclusters. Thus, nanoclusters are widely used as catalysts. Gold nanocluster is an excellent example of a
400:
This is similar to laser vaporization, but an intense electric discharge is used to evaporate the target metal.
545: 508: 595:
Chemical reductants can reduce silver ions into silver nanoclusters. Some examples of chemical reductants are
715: 2805: 1808: 1068: 980: 840: 497:) are not deflected. These cluster ions that are not deflected are selected with appropriately positioned 314: 1019:. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital ( 2647: 1383: 1320: 1047:. Furthermore, nanoclusters can be used for sensing and detection applications. They are able to detect 979:
Large surface-to-volume ratios and low coordination of surface atoms are primary reasons for the unique
843:, microgels of poly(N-isopropylacrylamide-acrylic acid-2-hydroxyethyl acrylate) polyglycerol-block-poly( 677:. For example silver nanoclusters formed by gamma reduction technique in aqueous solutions that contain 2288: 2611: 2550: 2493: 2451: 2396: 2342: 2243: 2029: 1950: 1800: 1511: 1437: 1347: 1146: 859: 604: 524: 140: 97: 1813: 2442:
Heer, W. A (1993). "The physics of simple metal clusters: experimental aspects and simple models".
1903:
Xu, H.; Suslick, K. S. (2010). "Sonochemical Synthesis of Highly Fluorescent Silver Nanoclusters".
1562:
Wilcoxon, J. P; Abrams, B. L. (2006). "Synthesis, Structure and Properties of Metal Nanoclusters".
678: 630: 294: 2328:"The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches" 341:
can be used to create nanocluster beams of virtually any element. They can be synthesized in high
2746: 2635: 2053: 1974: 1731: 1688: 1371: 757: 745: 641: 596: 274: 159: 544:
and an ion cluster source. The neutral clusters are ionized, typically using pulsed laser or an
884:
are good templates for synthesizing metal nanoclusters. Silver ions possess a high affinity to
2781: 2738: 2730: 2691: 2627: 2519: 2424: 2308: 2045: 1966: 1920: 1880: 1826: 1767: 1723: 1680: 1579: 1527: 1463: 1449: 1363: 1308: 1279: 1246: 1238: 1205: 1172: 1121: 1113: 1052: 992: 719: 366: 1258:
Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; Cossairt, Brandi M. (2015-02-24).
740:
has been shown to be an excellent stabilizer for synthesizing gold nanoclusters with visible
421:
often multiply ionized droplets undergo evaporative cooling and fission to smaller clusters.
111:. However, when the size of metal nanoclusters is further reduced to form a nanocluster, the 2773: 2722: 2683: 2619: 2583: 2558: 2509: 2501: 2459: 2414: 2404: 2350: 2300: 2251: 2214: 2204: 2177: 2148: 2115: 2107: 2080: 2037: 2002: 1958: 1912: 1870: 1862: 1818: 1715: 1672: 1645: 1617: 1571: 1519: 1453: 1445: 1355: 1300: 1271: 1230: 1197: 1162: 1154: 1105: 1036: 988: 855: 794: 650:
Silver nanoclusters can be produced using ultraviolet light, visible or infrared light. The
626: 564: 167: 56: 874:
and can be transferred to other scaffolds or solvents and can sense the local environment.
2274:
Synthesis, Characterization and Application of Water- soluble Gold and Silver Nanoclusters
1260:"Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates" 943: 881: 851: 836: 756:, phenylethylthiolate, thiolate α-cyclodextrin and 3-mercaptopropionic acid and bidentate 370: 967:
is antiferromagnetic in bulk but ferromagnetic in nanoclusters. A small nanocluster is a
2615: 2554: 2497: 2455: 2400: 2346: 2247: 2033: 1954: 1804: 1515: 1441: 1351: 1150: 289:
Not all the clusters are stable. The stability of nanoclusters depends on the number of
123:. This gives nanoclusters similar qualities as a singular molecule and does not exhibit 2711:"The synthesis of metal nanoclusters and their applications in bio-sensing and imaging" 2514: 2481: 2419: 2384: 1875: 1850: 1458: 1425: 1167: 1134: 1000: 960: 867: 803: 703: 699: 682: 651: 588:
There are several methods reported to reduce silver ion into zero-valent silver atoms:
553: 386:
Laser vaporization source can be used to create clusters of various size and polarity.
362: 338: 322: 256: 249: 2672:"Direct Laser Writing of Photostable Fluorescent Silver Nanoclusters in Polymer Films" 2539:"Holographic patterning of fluorescent microstructures comprising silver nanoclusters" 2482:"Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser" 1186:"Direct Laser Writing of Photostable Fluorescent Silver Nanoclusters in Polymer Films" 1135:"Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser" 2799: 2750: 2057: 1015:
The optical properties of materials are determined by their electronic structure and
956: 890: 871: 781: 761: 727:
provide a steric barrier which prevents close contact of the metal particle centers.
686: 635: 357: 163: 128: 101: 1978: 1735: 1692: 2671: 2639: 2538: 2537:
Kunwar, P; Turquet, L; Hassinen, J; Ras, R. H. A; Toivonen, J; Bautista, G (2016).
2168:
Luo, Zhi; Shehzad, Adeel (2024). "Advances in Naked Metal Clusters for Catalysis".
1375: 1335: 1185: 1056: 863: 844: 823: 802:. The change in fluorescence property is mainly due to surface modification by the 741: 711: 549: 541: 387: 241: 151: 116: 89: 50: 1275: 1094:"Single-Crystal and Electronic Structure of a 1.3 nm Indium Phosphide Nanocluster" 1072:
in optical data storage that can be used for many years without any loss of data.
854:, poly(methacrylic acid) (PMAA) etc. Gold nanoclusters have been synthesized with 1719: 1676: 1621: 706:(organic) stabilization. Electrostatic stabilization occurs by the adsorption of 17: 2777: 1259: 819: 811: 793:
are used as templates to synthesize nanoclusters. Gold nanoclusters embedded in
737: 433: 2726: 2327: 2111: 552:
records the arrival time of the ions. The mass is calculated from the measured
2463: 2354: 2304: 1219:"Atomic Structures and Gram Scale Synthesis of Three Tetrahedral Quantum Dots" 1024: 968: 799: 773: 674: 666: 512: 498: 300:
counts and encapsulating scaffolds. In the 1990s, Heer and his coworkers used
182: 2734: 2312: 1649: 1283: 1242: 1117: 942:
Most atoms in a nanocluster are surface atoms. Thus, it is expected that the
2409: 1336:"Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films" 1020: 964: 848: 790: 753: 724: 670: 568: 520: 516: 309: 108: 2785: 2742: 2710: 2695: 2631: 2623: 2523: 2428: 2209: 2196: 2181: 2049: 1970: 1924: 1884: 1830: 1727: 1684: 1583: 1531: 1467: 1367: 1312: 1304: 1250: 1209: 1176: 1125: 924:
nanoclusters by laser irradiation. In zeolites, the pores which are in the
2563: 1359: 1109: 1016: 996: 984: 948: 925: 885: 807: 768:). Gold nanocluster synthesis can also be achieved using a mild reducant 656: 448: 297: 120: 2670:
Kunwar, P; Hassinen, J; Bautista, G; Ras, R. H. A.; Toivonen, J (2014).
2480:
Kunwar, P; Hassinen, J; Bautista, G; Ras, R. H. A.; Toivonen, J (2016).
2255: 2219: 2120: 2041: 1184:
Kunwar, P; Hassinen, J; Bautista, G; Ras, R. H. A.; Toivonen, J (2014).
1133:
Kunwar, P; Hassinen, J; Bautista, G; Ras, R. H. A.; Toivonen, J (2016).
870:. Poly(methacrylic acid)-stabilized nanoclusters have an excellent high 313:
such as Au25(SR)18, Au38(SR)24, Au102(SR)44 and Au144(SR)60 also showed
127:
behavior; nanoclusters are known as the bridging link between atoms and
88:
Materials can be categorized into three different regimes, namely bulk,
2385:"Unified View of Ligand-Protected Gold Clusters as Superatom Complexes" 2153: 2136: 2084: 1962: 1523: 1093: 1004: 952: 920: 902: 898: 894: 832: 537: 467: 407: 124: 105: 2687: 2587: 2505: 2006: 1916: 1866: 1822: 1234: 1201: 1158: 414:) ions. The cluster production process is still not fully understood. 1575: 1048: 910: 806:. Although gold nanoclusters embedded in PAMAM are blue-emitting the 777: 391: 342: 305: 2234:
Kubo, R (1962). "Electronic properties of metallic fine particles".
1218: 356:
Seeded supersonic nozzles are mostly used to create clusters of low-
2709:
Zhao, Yu; Zhou, Huangmei; Zhang, Sanjun; Xu, Jianhua (2019-11-27).
131:. Nanoclusters may also be referred to as molecular nanoparticles. 733: 411: 147:) has been suggested to have occurred during the early universe. 665:
Silver nanoclusters are also formed by reducing silver ions with
1334:
Karimi N, Kunwar P, Hassinen J, Ras R. H. A, Toivonen J (2016).
437: 290: 150:
In retrospect, the first nanoclustered ions discovered were the
1849:
Petty, J. T.; Story, S. P.; Hsiang, J. C.; Dickson, R. (2013).
1502:
Dıez, I; Ras. R. H. (2011). "Fluorescent silver nanoclusters".
629:
using reductants in the presence of stabilizing agents such as
2276:(Ph. D. dissertation). Pittsburgh: Carnegie Mellon University. 1064: 1060: 906: 707: 29: 523:. It is responsible for filtering sample ions based on their 2135:
Jašík, Jozef; Fortunelli, Alessandro; Vajda, Štěpán (2022).
822:(DHLA) gold nanoclusters (AuNC@DHLA) become red-emitting 49:
Undue focus on metal nanoclusters,possible overlap with
2147:(20). Royal Society of Chemistry (RSC): 12083–12115. 999:
has highest electron affinity of any material in the
194: 571:, they are sensitive to the cluster shape and size. 115:
becomes discontinuous and breaks down into discrete
2287:Ott, Lisa Starkey; Finke, Richard G. (2007-05-01). 744:by reducing Au in the presence of glutathione with 185:, the spacing of energy levels can be predicted by 369:cooling the vapor. The cooled metal vapor becomes 222: 1424:Zheng, J; Nicovich, P. R; Dickson, R. M. (2007). 181:According to the Japanese mathematical physicist 325:as (1S, 1P, 1D, 2S 1F, 2P 1G, 2D 3S 1H.......). 223:{\displaystyle \delta ={\frac {E_{\rm {F}}}{N}}} 2372:(Ph. D. dissertation). Espoo: Aalto University. 1067:can be detected using nanoclusters. The unique 177:Size and number of atoms in metal nanoclusters 2079:(9). Royal Society of Chemistry (RSC): 3594. 1851:"DNA-Templated Molecular Silver Fluorophores" 1426:"Highly Fluorescent Noble Metal Quantum Dots" 798:templates show maximum emission at different 139:The formation of stable nanoclusters such as 8: 2652:: CS1 maint: multiple names: authors list ( 1497: 1388:: CS1 maint: multiple names: authors list ( 1325:: CS1 maint: multiple names: authors list ( 477:. Passing through the filter, clusters with 1495: 1493: 1491: 1489: 1487: 1485: 1483: 1481: 1479: 1477: 119:, somewhat similar to the energy levels of 45:needs attention from an expert in Chemistry 2665: 2663: 2562: 2513: 2418: 2408: 2218: 2208: 2152: 2119: 1874: 1812: 1457: 1450:10.1146/annurev.physchem.58.032806.104546 1166: 702:(charge, or inorganic) stabilization and 394:gas, which causes the cluster formation. 208: 207: 201: 193: 154:, intermetallics studied in the 1930s. 2715:Methods and Applications in Fluorescence 2236:Journal of the Physical Society of Japan 2100:Journal of Colloid and Interface Science 1223:Journal of the American Chemical Society 1098:Journal of the American Chemical Society 625:Silver nanoclusters can also be reduced 466:. The cluster ions are accelerated by a 1403: 1293:Angewandte Chemie International Edition 2645: 2370:Noble Metal Nanoparticles and Clusters 2195:de Lara-Castells, Maria Pilar (2024). 1419: 1417: 1415: 1413: 1411: 1409: 1407: 1381: 1318: 104:display intense colors due to surface 100:and good optical reflectors and metal 64:may be able to help recruit an expert. 27:Collection of bound atoms or molecules 2475: 2473: 2267: 2265: 1898: 1896: 1894: 1855:Journal of Physical Chemistry Letters 1844: 1842: 1840: 1785: 1783: 1762:Jena, P; Castleman A. W. Jr. (2010). 1635: 1633: 1631: 365:. The expansion into vacuum proceeds 7: 1936: 1934: 1603: 1601: 1599: 1597: 1595: 1593: 1086:Further reading (primary references) 255:can be estimated to be equal to the 2141:Physical Chemistry Chemical Physics 1757: 1755: 1753: 1751: 1749: 1747: 1745: 1557: 1555: 1553: 1551: 1549: 1547: 1545: 1543: 1541: 1430:Annual Review of Physical Chemistry 919:Inorganic materials like glass and 511:operates on the principle that ion 304:of an atomic cluster source into a 770:tetrakis(hydroxymethyl)phosphonium 209: 25: 987:. While bulk gold is chemically 714:metal surface, which creates an 531:Time of flight mass spectroscopy 166:elements, compound clusters and 34: 1995:Journal of Physical Chemistry C 2293:Coordination Chemistry Reviews 373:, condensing in cluster form. 1: 2580:Journal of Physical Chemistry 1708:Accounts of Chemical Research 1665:Accounts of Chemical Research 1642:Journal of Physical Chemistry 1276:10.1021/acs.chemmater.5b00286 752:). Also other thiols such as 560:Molecular beam chromatography 1720:10.1021/acs.accounts.8b00445 1677:10.1021/acs.accounts.8b00445 1622:10.1016/j.nantod.2011.06.004 862:(PVP) templates. The linear 248:is the number of atoms. For 2778:10.1021/acs.chemrev.6b00769 2582:. C 114 (37): 15584–15588. 2395:(27). U. S. A.: 9157–9162. 1644:. C 119 (35): 20728–20734. 534:Time-of-flight spectroscopy 329:Synthesis and stabilization 47:. The specific problem is: 2822: 2112:10.1016/j.jcis.2021.12.186 878:DNA, proteins and peptides 2543:Optical Materials Express 2464:10.1103/RevModPhys.65.611 2355:10.1103/RevModPhys.65.677 2305:10.1016/j.ccr.2006.08.016 1076:Further reading (reviews) 623:Electrochemical Reduction 2727:10.1088/2050-6120/ab57e7 2106:. Elsevier BV: 737–759. 2073:Chemical Society Reviews 1650:10.1021/acs.jpcc.5b05735 1564:Chemical Society Reviews 860:poly(N-vinylpyrrolidone) 354:Seeded supersonic nozzle 2410:10.1073/pnas.0801001105 963:in nanoclusters. Also, 716:electrical double layer 681:or partly carboxylated 663:Other reduction methods 135:History of nanoclusters 2624:10.1002/adma.200902937 2210:10.1002/sstr.202400147 2182:10.1002/cphc.202300715 1305:10.1002/anie.201004907 1264:Chemistry of Materials 841:poly(methacrylic acid) 810:can be tuned from the 509:quadrupole mass filter 505:Quadrupole mass filter 398:Pulsed arc cluster ion 380:single-atom addition. 308:in the presence of an 231: 224: 2389:Proc. Natl. Acad. Sci 2368:Hassinen, J. (2016). 975:Reactivity properties 225: 187: 98:electrical conductors 62:WikiProject Chemistry 2564:10.1364/ome.6.000946 1360:10.1364/ol.41.003627 1110:10.1021/jacs.5b13214 605:sodium hypophosphite 525:mass-to-charge ratio 317:stability. Häkkinen 302:supersonic expansion 293:in the nanocluster, 192: 141:Buckminsterfullerene 2682:(11): 11165–11171. 2616:2010AdM....22..957D 2555:2016OMExp...6..946K 2498:2016NatSR...623998K 2456:1993RvMP...65..611D 2401:2008PNAS..105.9157W 2347:1993RvMP...65..677B 2256:10.1143/JPSJ.17.975 2248:1962JPSJ...17..975K 2042:10.1038/nature14566 2034:2015Natur.523..322C 2001:(20): 11238–11249. 1955:2012Nanos...4.7632G 1805:2012NanoL..12.5861C 1516:2011Nanos...3.1963D 1442:2007ARPC...58..409Z 1352:2016OptL...41.3627K 1229:(30): 10645–10653. 1196:(11): 11165–11171. 1151:2016NatSR...623998K 959:in bulk but become 938:Magnetic properties 917:Inorganic scaffolds 679:sodium polyacrylate 250:quantum confinement 2604:Advanced Materials 2486:Scientific Reports 2154:10.1039/d1cp05677h 2085:10.1039/c2cs15325d 1963:10.1039/c2nr31994b 1524:10.1039/c1nr00006c 1139:Scientific Reports 1011:Optical properties 758:dihydrolipoic acid 746:sodium borohydride 642:tetrabutylammonium 597:sodium borohydride 593:Chemical Reduction 384:Laser vaporization 334:Solid state medium 275:Boltzmann constant 220: 160:laser vaporization 96:. Bulk metals are 2772:(12): 8208–8271. 2688:10.1021/nn5059503 2588:10.1021/jp104049e 2506:10.1038/srep23998 2326:Brack, M (1993). 2272:Kumar, S (2013). 2176:(10). Wiley-VCH. 2028:(7560): 322–325. 2007:10.1021/jp512237b 1949:(24): 7632–7635. 1917:10.1021/nn100987k 1867:10.1021/jz4000142 1823:10.1021/nl303220x 1799:(11): 5861–5866. 1714:(12): 3104–3113. 1671:(12): 3104–3113. 1570:(11): 1162–1194. 1346:(15): 3627–3630. 1235:10.1021/ja503590h 1202:10.1021/nn5059503 1159:10.1038/srep23998 993:electron affinity 720:Coulomb repulsion 627:electrochemically 218: 79: 78: 18:Cluster chemistry 16:(Redirected from 2813: 2790: 2789: 2766:Chemical Reviews 2761: 2755: 2754: 2706: 2700: 2699: 2667: 2658: 2657: 2651: 2643: 2598: 2592: 2591: 2575: 2569: 2568: 2566: 2534: 2528: 2527: 2517: 2477: 2468: 2467: 2439: 2433: 2432: 2422: 2412: 2380: 2374: 2373: 2365: 2359: 2358: 2332: 2323: 2317: 2316: 2299:(9): 1075–1100. 2284: 2278: 2277: 2269: 2260: 2259: 2231: 2225: 2224: 2222: 2212: 2201:Small Structures 2192: 2186: 2185: 2165: 2159: 2158: 2156: 2132: 2126: 2125: 2123: 2095: 2089: 2088: 2068: 2062: 2061: 2017: 2011: 2010: 1989: 1983: 1982: 1938: 1929: 1928: 1911:(6): 3209–3214. 1900: 1889: 1888: 1878: 1861:(7): 1148–1155. 1846: 1835: 1834: 1816: 1787: 1778: 1777: 1759: 1740: 1739: 1703: 1697: 1696: 1660: 1654: 1653: 1637: 1626: 1625: 1605: 1588: 1587: 1576:10.1039/b517312b 1559: 1536: 1535: 1499: 1472: 1471: 1461: 1421: 1393: 1387: 1379: 1330: 1324: 1316: 1287: 1270:(4): 1432–1441. 1254: 1213: 1180: 1170: 1129: 1104:(5): 1510–1513. 882:oligonucleotides 856:polyethylenimine 795:poly(amidoamine) 639: 418:Liquid-metal ion 281:is temperature. 268: 229: 227: 226: 221: 219: 214: 213: 212: 202: 168:transition metal 74: 71: 65: 38: 37: 30: 21: 2821: 2820: 2816: 2815: 2814: 2812: 2811: 2810: 2796: 2795: 2794: 2793: 2763: 2762: 2758: 2708: 2707: 2703: 2669: 2668: 2661: 2644: 2600: 2599: 2595: 2577: 2576: 2572: 2536: 2535: 2531: 2479: 2478: 2471: 2441: 2440: 2436: 2382: 2381: 2377: 2367: 2366: 2362: 2330: 2325: 2324: 2320: 2286: 2285: 2281: 2271: 2270: 2263: 2233: 2232: 2228: 2194: 2193: 2189: 2167: 2166: 2162: 2134: 2133: 2129: 2097: 2096: 2092: 2070: 2069: 2065: 2019: 2018: 2014: 1991: 1990: 1986: 1940: 1939: 1932: 1902: 1901: 1892: 1848: 1847: 1838: 1814:10.1.1.720.7249 1789: 1788: 1781: 1774: 1761: 1760: 1743: 1705: 1704: 1700: 1662: 1661: 1657: 1639: 1638: 1629: 1607: 1606: 1591: 1561: 1560: 1539: 1501: 1500: 1475: 1423: 1422: 1405: 1400: 1380: 1333: 1317: 1290: 1257: 1216: 1183: 1132: 1091: 1088: 1078: 1033: 1013: 977: 944:magnetic moment 940: 935: 852:polyelectrolyte 837:carboxylic acid 772:(THPC). Here a 767: 751: 696: 633: 618: 614: 610: 602: 586: 577: 540:, a field-free 536:consists of an 427: 377:Gas aggregation 351: 349:Cluster Sources 339:Molecular beams 336: 331: 323:atomic orbitals 287: 260: 239: 203: 190: 189: 179: 146: 137: 75: 69: 66: 60: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2819: 2817: 2809: 2808: 2798: 2797: 2792: 2791: 2756: 2701: 2659: 2610:(9): 957–960. 2593: 2570: 2549:(3): 946–951. 2529: 2469: 2444:Rev. Mod. Phys 2434: 2375: 2360: 2335:Rev. Mod. Phys 2318: 2279: 2261: 2226: 2187: 2160: 2127: 2090: 2063: 2012: 1984: 1930: 1890: 1836: 1779: 1772: 1741: 1698: 1655: 1627: 1616:(4): 401–418. 1589: 1537: 1510:(5): 1963–70. 1473: 1402: 1401: 1399: 1396: 1395: 1394: 1340:Optics Letters 1331: 1299:(2): 431–435. 1288: 1255: 1214: 1181: 1130: 1087: 1084: 1083: 1082: 1077: 1074: 1032: 1029: 1012: 1009: 1001:periodic table 976: 973: 939: 936: 934: 931: 891:macromolecules 868:photoreduction 835:with abundant 804:capping agents 765: 749: 695: 692: 691: 690: 687:glutaric acids 683:polyacrylamide 660: 652:photoreduction 648:Photoreduction 645: 620: 616: 612: 608: 600: 585: 582: 576: 575:Aqueous medium 573: 565:collision rate 554:time of flight 426: 423: 404:Ion sputtering 371:supersaturated 363:molecular beam 350: 347: 335: 332: 330: 327: 286: 283: 257:thermal energy 237: 217: 211: 206: 200: 197: 178: 175: 170:nanoclusters. 144: 136: 133: 113:band structure 77: 76: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2818: 2807: 2806:Nanoparticles 2804: 2803: 2801: 2787: 2783: 2779: 2775: 2771: 2767: 2760: 2757: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2721:(1): 012001. 2720: 2716: 2712: 2705: 2702: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2666: 2664: 2660: 2655: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2597: 2594: 2589: 2585: 2581: 2574: 2571: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2530: 2525: 2521: 2516: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2476: 2474: 2470: 2465: 2461: 2457: 2453: 2449: 2445: 2438: 2435: 2430: 2426: 2421: 2416: 2411: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2376: 2371: 2364: 2361: 2356: 2352: 2348: 2344: 2340: 2336: 2329: 2322: 2319: 2314: 2310: 2306: 2302: 2298: 2294: 2290: 2283: 2280: 2275: 2268: 2266: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2227: 2221: 2216: 2211: 2206: 2202: 2198: 2191: 2188: 2183: 2179: 2175: 2171: 2164: 2161: 2155: 2150: 2146: 2142: 2138: 2131: 2128: 2122: 2117: 2113: 2109: 2105: 2101: 2094: 2091: 2086: 2082: 2078: 2074: 2067: 2064: 2059: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2008: 2004: 2000: 1996: 1988: 1985: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1937: 1935: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1899: 1897: 1895: 1891: 1886: 1882: 1877: 1872: 1868: 1864: 1860: 1856: 1852: 1845: 1843: 1841: 1837: 1832: 1828: 1824: 1820: 1815: 1810: 1806: 1802: 1798: 1794: 1786: 1784: 1780: 1775: 1773:9780444534408 1769: 1765: 1758: 1756: 1754: 1752: 1750: 1748: 1746: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1702: 1699: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1659: 1656: 1651: 1647: 1643: 1636: 1634: 1632: 1628: 1623: 1619: 1615: 1611: 1604: 1602: 1600: 1598: 1596: 1594: 1590: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1556: 1554: 1552: 1550: 1548: 1546: 1544: 1542: 1538: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1498: 1496: 1494: 1492: 1490: 1488: 1486: 1484: 1482: 1480: 1478: 1474: 1469: 1465: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1420: 1418: 1416: 1414: 1412: 1410: 1408: 1404: 1397: 1391: 1385: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1332: 1328: 1322: 1314: 1310: 1306: 1302: 1298: 1294: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1182: 1178: 1174: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1090: 1089: 1085: 1080: 1079: 1075: 1073: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1037:biocompatible 1030: 1028: 1026: 1022: 1018: 1010: 1008: 1006: 1002: 998: 994: 990: 986: 982: 974: 972: 970: 966: 962: 961:ferromagnetic 958: 954: 950: 945: 937: 932: 930: 927: 922: 918: 914: 912: 908: 904: 900: 896: 892: 887: 883: 879: 875: 873: 872:quantum yield 869: 865: 864:polyacrylates 861: 857: 853: 850: 846: 842: 838: 834: 831: 827: 825: 821: 817: 816:near-infrared 813: 809: 805: 801: 796: 792: 789: 785: 783: 782:penicillamine 779: 775: 771: 763: 759: 755: 747: 743: 739: 735: 732: 728: 726: 721: 718:. Thus, this 717: 713: 712:electrophilic 710:to the often- 709: 705: 701: 700:electrostatic 694:Stabilization 693: 688: 684: 680: 676: 672: 668: 664: 661: 658: 653: 649: 646: 643: 637: 632: 631:dodecanethiol 628: 624: 621: 606: 598: 594: 591: 590: 589: 583: 581: 574: 572: 570: 566: 561: 557: 555: 551: 547: 546:electron beam 543: 539: 535: 532: 528: 526: 522: 518: 514: 510: 506: 502: 500: 496: 492: 488: 484: 480: 476: 473:to an energy 472: 469: 465: 461: 457: 453: 450: 446: 442: 439: 435: 431: 425:Mass Analyzer 424: 422: 419: 415: 413: 409: 405: 401: 399: 395: 393: 389: 385: 381: 378: 374: 372: 368: 367:adiabatically 364: 359: 358:boiling-point 355: 348: 346: 344: 340: 333: 328: 326: 324: 320: 316: 311: 307: 303: 299: 296: 292: 284: 282: 280: 276: 272: 267: 263: 258: 254: 251: 247: 243: 236: 230: 215: 204: 198: 195: 186: 184: 176: 174: 171: 169: 165: 164:semiconductor 161: 155: 153: 148: 142: 134: 132: 130: 129:nanoparticles 126: 122: 118: 117:energy levels 114: 110: 107: 103: 102:nanoparticles 99: 95: 91: 90:nanoparticles 86: 83: 73: 70:February 2022 63: 58: 54: 52: 46: 43:This article 41: 32: 31: 19: 2769: 2765: 2759: 2718: 2714: 2704: 2679: 2675: 2648:cite journal 2607: 2603: 2596: 2579: 2573: 2546: 2542: 2532: 2489: 2485: 2447: 2443: 2437: 2392: 2388: 2378: 2369: 2363: 2338: 2334: 2321: 2296: 2292: 2282: 2273: 2239: 2235: 2229: 2220:10261/364023 2200: 2190: 2173: 2170:ChemPhysChem 2169: 2163: 2144: 2140: 2130: 2121:10261/257736 2103: 2099: 2093: 2076: 2072: 2066: 2025: 2021: 2015: 1998: 1994: 1987: 1946: 1942: 1908: 1904: 1858: 1854: 1796: 1793:Nano Letters 1792: 1766:. Elsevier. 1764:Nanoclusters 1763: 1711: 1707: 1701: 1668: 1664: 1658: 1641: 1613: 1609: 1567: 1563: 1507: 1503: 1433: 1429: 1384:cite journal 1343: 1339: 1321:cite journal 1296: 1292: 1267: 1263: 1226: 1222: 1193: 1189: 1142: 1138: 1101: 1097: 1059:, proteins, 1057:biomolecules 1044: 1040: 1034: 1031:Applications 1014: 978: 957:paramagnetic 941: 916: 915: 877: 876: 845:acrylic acid 829: 828: 824:fluorophores 787: 786: 774:zwitterionic 742:luminescence 730: 729: 697: 662: 647: 622: 592: 587: 578: 559: 558: 550:oscilloscope 530: 529: 513:trajectories 504: 503: 494: 490: 486: 482: 478: 474: 470: 463: 459: 455: 454:vanishes if 451: 444: 440: 429: 428: 417: 416: 403: 402: 397: 396: 383: 382: 376: 375: 353: 352: 337: 318: 315:magic number 288: 278: 270: 265: 261: 252: 245: 242:Fermi energy 234: 232: 188: 180: 172: 156: 152:Zintl phases 149: 138: 94:nanoclusters 93: 87: 82:Nanoclusters 81: 80: 67: 59:for details. 51:Nanoparticle 48: 44: 2203:: 2400147. 1436:: 409–431. 1025:surfactants 820:lipoic acid 812:ultraviolet 800:wavelengths 762:molar ratio 738:Glutathione 634: [ 542:drift space 521:frequencies 499:collimators 434:Wien filter 430:Wein filter 388:Pulse laser 2450:(3): 611. 2341:(3): 677. 2242:(6): 975. 1610:Nano Today 1398:References 1069:reactivity 981:reactivity 969:nanomagnet 933:Properties 858:(PEI) and 849:copolymers 791:Dendrimers 788:Dendrimers 725:adsorbates 675:ultrasound 671:microwaves 667:gamma rays 517:amplitudes 183:Ryogo Kubo 2751:208040343 2735:2050-6120 2492:: 23998. 2313:0010-8545 2058:205244293 1943:Nanoscale 1809:CiteSeerX 1504:Nanoscale 1284:0897-4756 1243:0002-7863 1145:: 23998. 1118:0002-7863 1021:HOMO/LUMO 965:manganese 947:example, 776:thiolate 754:tiopronin 584:Reduction 569:inert gas 567:with the 443:, charge 310:inert gas 285:Stability 269:), where 196:δ 125:plasmonic 121:molecules 109:resonance 57:talk page 2800:Category 2786:28586213 2743:31726445 2696:25347726 2676:ACS Nano 2632:20217819 2524:27045598 2429:18599443 2050:26178962 1979:37245927 1971:23064311 1925:20507161 1905:ACS Nano 1885:23745165 1831:23094944 1736:53711566 1728:30462479 1693:53711566 1685:30462479 1584:17057844 1532:21409225 1468:17105412 1368:27472635 1313:21154543 1251:25003618 1210:25347726 1190:ACS Nano 1177:27045598 1126:26784649 1041:in vitro 1017:band gap 997:Chlorine 985:catalyst 949:vanadium 926:Ă…ngström 903:peptides 899:proteins 895:peptides 893:such as 886:cytosine 833:Polymers 830:Polymers 808:spectrum 657:infrared 449:velocity 298:electron 55:See the 2640:2889365 2612:Bibcode 2551:Bibcode 2515:4820741 2494:Bibcode 2452:Bibcode 2420:2442568 2397:Bibcode 2343:Bibcode 2244:Bibcode 2030:Bibcode 1951:Bibcode 1876:3670773 1801:Bibcode 1512:Bibcode 1459:2735021 1438:Bibcode 1376:3477288 1348:Bibcode 1168:4820741 1147:Bibcode 1053:mercury 1045:in vivo 1007:atoms. 1005:halogen 953:rhodium 921:zeolite 911:enzymes 814:to the 538:ion gun 468:voltage 408:krypton 295:valence 273:is the 106:plasmon 2784:  2749:  2741:  2733:  2694:  2638:  2630:  2522:  2512:  2427:  2417:  2311:  2056:  2048:  2022:Nature 1977:  1969:  1923:  1883:  1873:  1829:  1811:  1770:  1734:  1726:  1691:  1683:  1582:  1530:  1466:  1456:  1374:  1366:  1311:  1282:  1249:  1241:  1208:  1175:  1165:  1124:  1116:  1063:, and 1049:copper 778:ligand 731:Thiols 704:steric 659:light. 655:using 603:) and 447:, and 392:helium 343:vacuum 306:vacuum 262:δ 233:where 2747:S2CID 2636:S2CID 2331:(PDF) 2054:S2CID 1975:S2CID 1732:S2CID 1689:S2CID 1372:S2CID 989:inert 748:(NaBH 734:Thiol 673:, or 638:] 607:(NaPO 599:(NaBH 412:xenon 319:et al 291:atoms 2782:PMID 2739:PMID 2731:ISSN 2692:PMID 2654:link 2628:PMID 2520:PMID 2425:PMID 2309:ISSN 2046:PMID 1967:PMID 1921:PMID 1881:PMID 1827:PMID 1768:ISBN 1724:PMID 1681:PMID 1580:PMID 1528:PMID 1464:PMID 1434:C 58 1390:link 1364:PMID 1327:link 1309:PMID 1280:ISSN 1247:PMID 1239:ISSN 1206:PMID 1173:PMID 1122:PMID 1114:ISSN 1051:and 1043:and 955:are 951:and 907:ions 897:and 880:DNA 780:, D- 708:ions 640:and 519:and 507:The 438:mass 410:and 277:and 244:and 92:and 2774:doi 2770:117 2723:doi 2684:doi 2620:doi 2584:doi 2559:doi 2510:PMC 2502:doi 2460:doi 2415:PMC 2405:doi 2393:105 2351:doi 2301:doi 2297:251 2252:doi 2215:hdl 2205:doi 2178:doi 2149:doi 2116:hdl 2108:doi 2104:612 2081:doi 2038:doi 2026:523 2003:doi 1999:119 1959:doi 1913:doi 1871:PMC 1863:doi 1819:doi 1716:doi 1673:doi 1646:doi 1618:doi 1572:doi 1520:doi 1454:PMC 1446:doi 1356:doi 1301:doi 1272:doi 1231:doi 1227:136 1198:doi 1163:PMC 1155:doi 1106:doi 1102:138 1065:RNA 1061:DNA 685:or 485:= 2 432:In 240:is 2802:: 2780:. 2768:. 2745:. 2737:. 2729:. 2717:. 2713:. 2690:. 2678:. 2674:. 2662:^ 2650:}} 2646:{{ 2634:. 2626:. 2618:. 2608:22 2606:. 2557:. 2545:. 2541:. 2518:. 2508:. 2500:. 2488:. 2484:. 2472:^ 2458:. 2448:65 2446:. 2423:. 2413:. 2403:. 2391:. 2387:. 2349:. 2339:65 2337:. 2333:. 2307:. 2295:. 2291:. 2264:^ 2250:. 2240:17 2238:. 2213:. 2199:. 2174:25 2172:. 2145:24 2143:. 2139:. 2114:. 2102:. 2077:41 2075:. 2052:. 2044:. 2036:. 2024:. 1997:. 1973:. 1965:. 1957:. 1945:. 1933:^ 1919:. 1907:. 1893:^ 1879:. 1869:. 1857:. 1853:. 1839:^ 1825:. 1817:. 1807:. 1797:12 1795:. 1782:^ 1744:^ 1730:. 1722:. 1712:51 1710:. 1687:. 1679:. 1669:51 1667:. 1630:^ 1612:. 1592:^ 1578:. 1568:35 1566:. 1540:^ 1526:. 1518:. 1506:. 1476:^ 1462:. 1452:. 1444:. 1432:. 1428:. 1406:^ 1386:}} 1382:{{ 1370:. 1362:. 1354:. 1344:41 1342:. 1338:. 1323:}} 1319:{{ 1307:. 1297:50 1295:. 1278:. 1268:27 1266:. 1262:. 1245:. 1237:. 1225:. 1221:. 1204:. 1192:. 1188:. 1171:. 1161:. 1153:. 1141:. 1137:. 1120:. 1112:. 1100:. 1096:. 995:. 847:) 826:. 669:, 636:de 615:.H 556:. 527:. 501:. 491:Ec 489:/( 475:QV 460:Bv 458:= 266:kT 264:= 253:𝛿 145:60 143:(C 53:.. 2788:. 2776:: 2753:. 2725:: 2719:8 2698:. 2686:: 2680:8 2656:) 2642:. 2622:: 2614:: 2590:. 2586:: 2567:. 2561:: 2553:: 2547:6 2526:. 2504:: 2496:: 2490:6 2466:. 2462:: 2454:: 2431:. 2407:: 2399:: 2357:. 2353:: 2345:: 2315:. 2303:: 2258:. 2254:: 2246:: 2223:. 2217:: 2207:: 2184:. 2180:: 2157:. 2151:: 2124:. 2118:: 2110:: 2087:. 2083:: 2060:. 2040:: 2032:: 2009:. 2005:: 1981:. 1961:: 1953:: 1947:4 1927:. 1915:: 1909:4 1887:. 1865:: 1859:4 1833:. 1821:: 1803:: 1776:. 1738:. 1718:: 1695:. 1675:: 1652:. 1648:: 1624:. 1620:: 1614:6 1586:. 1574:: 1534:. 1522:: 1514:: 1508:3 1470:. 1448:: 1440:: 1392:) 1378:. 1358:: 1350:: 1329:) 1315:. 1303:: 1286:. 1274:: 1253:. 1233:: 1212:. 1200:: 1194:8 1179:. 1157:: 1149:: 1143:6 1128:. 1108:: 766:4 750:4 644:. 617:2 613:2 611:H 609:2 601:4 495:B 493:/ 487:V 483:Q 481:/ 479:M 471:V 464:c 462:/ 456:E 452:v 445:Q 441:M 279:T 271:k 259:( 246:N 238:F 235:E 216:N 210:F 205:E 199:= 72:) 68:( 20:)

Index

Cluster chemistry
Nanoparticle
talk page
WikiProject Chemistry
nanoparticles
electrical conductors
nanoparticles
plasmon
resonance
band structure
energy levels
molecules
plasmonic
nanoparticles
Buckminsterfullerene
Zintl phases
laser vaporization
semiconductor
transition metal
Ryogo Kubo
Fermi energy
quantum confinement
thermal energy
Boltzmann constant
atoms
valence
electron
supersonic expansion
vacuum
inert gas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑