Knowledge

Cluster decay

Source 📝

928: 1348:, in which a heavy nucleus splits into two (or more) large fragments and an assorted number of neutrons. Spontaneous fission ends up with a probabilistic distribution of daughter products, which sets it apart from cluster decay. In cluster decay for a given radioisotope, the emitted particle is a light nucleus and the decay method always emits this same particle. For heavier emitted clusters, there is otherwise practically no qualitative difference between cluster decay and spontaneous cold fission. 941: 1439:
numerical (NuSAF) and analytical (ASAF). Superasymmetric fission models are based on the macroscopic-microscopic approach using the asymmetrical two-center shell model level energies as input data for the shell and pairing corrections. Either the liquid drop model or the Yukawa-plus-exponential model extended to different charge-to-mass ratios have been used to calculate the macroscopic deformation energy.
156: 36: 77: 2805:
The fine structure in C radioactivity of Ra was discussed for the first time by M. Greiner and W. Scheid in 1986. The superconducting spectrometer SOLENO of IPN Orsay has been used since 1984 to identify C clusters emitted from Ra nuclei. Moreover, it was used to discover the fine structure observing
2809:
Surprisingly, the experimentalists had seen a transition to the first excited state of the daughter stronger than that to the ground state. The transition is favoured if the uncoupled nucleon is left in the same state in both parent and daughter nuclei. Otherwise the difference in nuclear structure
1874:
The main region of 20 emitters experimentally observed until 2010 is above Z = 86: Fr, Ra, Ac, Th, Pa, U, Pu, and Cm. Only upper limits could be detected in the following cases: C decay of Ba, N decay of Ac, O decay of Th, Ne decays of Th and of U, Mg decays of U, Mg decay of Np, and Si decay of Pu
1881:
From many decay modes with half-lives and branching ratios relative to alpha decay predicted with the analytical superasymmetric fission (ASAF) model, the following 11 have been experimentally confirmed: C, O, F, Ne, Mg, and Si. The experimental data are in good agreement with predicted values. A
1438:
Four theoretical approaches were used: fragmentation theory by solving a Schrödinger equation with mass asymmetry as a variable to obtain the mass distributions of fragments; penetrability calculations similar to those used in traditional theory of alpha decay, and superasymmetric fission models,
1423:
In 1980 A. Sandulescu, D.N. Poenaru, and W. Greiner described calculations indicating the possibility of a new type of decay of heavy nuclei intermediate between alpha decay and spontaneous fission. The first observation of heavy-ion radioactivity was that of a 30-MeV, carbon-14 emission from
1856:
Detection of radiations is based on their interactions with matter, leading mainly to ionizations. Using a semiconductor telescope and conventional electronics to identify the C ions, the Rose and Jones's experiment was running for about six months in order to get 11 useful events.
1415:, particle accompanied (ternary) fission, etc. The height of the potential barrier, mainly of Coulomb nature, for emission of the charged particles is much higher than the observed kinetic energy of the emitted particles. The spontaneous decay can only be explained by 1867:(SSNTD) insensitive to alpha particles and magnetic spectrometers in which alpha particles are deflected by a strong magnetic field have been used to overcome this difficulty. SSNTD are cheap and handy but they need chemical etching and microscope scanning. 1434:
Usually the theory explains an already experimentally observed phenomenon. Cluster decay is one of the rare examples of phenomena predicted before experimental discovery. Theoretical predictions were made in 1980, four years before experimental discovery.
1737:). The experimental data on cluster decay in three groups of even-even, even-odd, and odd-even parent nuclei are reproduced with comparable accuracy by both types of universal curves, fission-like UNIV and UDL derived using alpha-like R-matrix theory. 1234:
Cluster decay, like alpha decay, is a quantum tunneling process: in order to be emitted, the cluster must penetrate a potential barrier. This is a different process than the more random nuclear disintegration that precedes light fragment emission in
1619:, et al. The model was the first to be used to predict measurable quantities in cluster decay. More than 150 cluster decay modes have been predicted before any other kind of half-lives calculations have been reported. Comprehensive tables of 1870:
A key role in experiments on cluster decay modes performed in Berkeley, Orsay, Dubna, and Milano was played by P. Buford Price, Eid Hourany, Michel Hussonnois, Svetlana Tretyakova, A. A. Ogloblin, Roberto Bonetti, and their coworkers.
1860:
With modern magnetic spectrometers (SOLENO and Enge-split pole), at Orsay and Argonne National Laboratory (see ch. 7 in Ref. pp. 188–204), a very strong source could be used, so that results were obtained in a run of few hours.
3695:
Guglielmetti, A.; Faccio, D.; Bonetti, R.; Shishkin, S. V.; Tretyakova, S. P.; Dmitriev, S. V.; Ogloblin, A. A.; Pik-Pichak, G. A.; van der Meulen, N. P.; Steyn, G. F.; van der Walt, T. N.; Vermeulen, C.; McGee, D. (2008).
1844:
The main experimental difficulty in observing cluster decay comes from the need to identify a few rare events against a background of alpha particles. The quantities experimentally determined are the partial half life,
1733:) represents a single straight line which can be conveniently used to estimate the half-life. A single universal curve for alpha decay and cluster decay modes results by expressing log T + log S = f(log P 1254:
phenomena or in alpha decay, the total kinetic energy is equal to the Q-value and is divided between the particles in inverse proportion with their masses, as required by conservation of linear momentum
1596:
of the three partners (parent, daughter, and emitted cluster). In a fission theory the preformation probability is the penetrability of the internal part of the barrier from the initial turning point R
1722: 1356:
The first information about the atomic nucleus was obtained at the beginning of the 20th century by studying radioactivity. For a long period of time only three kinds of nuclear decay modes (
1627:, and kinetic energies have been published, e.g. Potential barrier shapes similar to that considered within the ASAF model have been calculated by using the macroscopic-microscopic method. 1517: 1561: 1878:
Some of the cluster emitters are members of the three natural radioactive families. Others should be produced by nuclear reactions. Up to now no odd-odd emitter has been observed.
1307: 1218: 3174:
Krappe, H. J.; Nix, J. R.; Sierk, A. J. (1979). "Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations".
3783:
Brillard, L.; Elayi, A. G.; Hourani, E.; Hussonnois, M.; Le Du, J. F.; Rosier, L. H.; Stab, L. (1989). "Mise en évidence d'une structure fine dans la radioactivité C".
95: 1817: 3802:
Hourany, E.; Berrier-Ronsin, G.; Elayi, A.; Hoffmann-Rothe, P.; Mueller, A. C.; Rosier, L.; Rotbard, G.; Renou, G.; Lièbe, A.; Poenaru, D. N.; Ravn, H. L. (1995).
1586: 1247:
in certain nuclides, demonstrating that input energy is not necessarily needed for fission, which remains a fundamentally different process mechanistically.
3922: 1634:. The ASAF model may be used to describe in a unified manner cold alpha decay, cluster decay, and cold fission (see figure 6.7, p. 287 of the Ref. ). 886: 1882:
strong shell effect can be seen: as a rule the shortest value of the half-life is obtained when the daughter nucleus has a magic number of neutrons (N
972: 1637:
One can obtain with good approximation one universal curve (UNIV) for any kind of cluster decay mode with a mass number Ae, including alpha decay
1442:
Penetrability theory predicted eight decay modes: C, Ne, Mg, Si, Ar, and Ca from the following parent nuclei: Ra, Th, U, Pu, Cm, Cf, Fm, and No.
927: 3279: 2910: 2885: 3547:
Qi, C.; Xu, F. R.; Liotta, R. J.; Wyss, R. (2009). "Universal Decay Law in Charged-Particle Emission and Exotic Cluster Radioactivity".
235: 1864: 1588:
is the frequency of assaults on the barrier per second, S is the preformation probability of the cluster at the nuclear surface, and P
3209:
Poenaru, D.N.; Ivaşcu, M.; Mazilu, D. (1980). "Folded Yukawa-plus-exponential model pes for nuclei with different charge densities".
131: 113: 63: 1832:
of the parent, daughter, and emitted nuclei, c is the light velocity. The mass excess is transformed into energy according to the
539: 2806:
transitions to excited states of the daughter. A transition with an excited state of C predicted in Ref. was not yet observed.
3915: 3381:
Poenaru, D. N.; Schnabel, D.; Greiner, W.; Mazilu, D.; Gherghescu, R. (1991). "Nuclear lifetimes for cluster radioactivities".
731: 3663: 2942:
Sandulescu, A.; Poenaru, D. N.; Greiner, W. "New type of decay of heavy nuclei intermediate between fission and alpha-decay".
1645: 436: 49: 1607:
A very large number, of the order 10, of parent-emitted cluster combinations were considered in a systematic search for new
965: 3512:
Poenaru, D. N.; Gherghescu, R. A.; Greiner, W. (2011). "Single universal curve for cluster radioactivities and α-decay".
3416:
Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter (2006). "Potential energy surfaces for cluster emitting nuclei".
749: 719: 220: 796: 3908: 1028:
The loss of protons from the parent nucleus changes it to the nucleus of a different element, the daughter, with a
346: 1475: 1392:
because of both the military and the peaceful applications of induced fission. This was discovered circa 1939 by
682: 3849:
Sheline, R. K.; Ragnarsson, I. (1991). "Interpretation of the fine structure in the C radioactive decay of Ra".
1611:. The large amount of computations could be performed in a reasonable time by using the ASAF model developed by 1527: 1419:
in a similar way to the first application of the Quantum Mechanics to Nuclei given by G. Gamow for alpha decay.
381: 4185: 958: 945: 677: 4039: 3245: 4074: 4019: 3974: 2813:
The interpretation was confirmed: the main spherical component of the deformed parent wave function has an i
1013: 672: 569: 534: 230: 726: 4190: 4069: 4059: 3338:
Poenaru, D. N.; Ivascu, M.; Sandulescu, A.; Greiner, W. (1984). "Spontaneous emission of heavy clusters".
1445:
The first experimental report was published in 1984, when physicists at Oxford University discovered that
1231:
are the half-lives of the parent nucleus relative to alpha decay and cluster radioactivity, respectively.
376: 341: 1593: 1377: 851: 736: 628: 791: 4064: 4054: 3858: 3815: 3749: 3709: 3621: 3566: 3521: 3478: 3435: 3390: 3347: 3304: 3218: 3183: 3109: 3056: 3021: 2978: 1592:
is the penetrability of the external barrier. In alpha-like theories S is an overlap integral of the
1340:
Cluster decay exists in an intermediate position between alpha decay (in which a nucleus spits out a
861: 836: 653: 1261: 4118: 4009: 3989: 3984: 1385: 1381: 1345: 1175: 756: 635: 529: 472: 465: 455: 396: 391: 225: 3765: 3590: 3556: 3494: 3451: 3425: 3363: 3320: 3125: 3099: 3072: 2994: 1369: 699: 694: 509: 55: 3740:
Greiner, M.; Scheid, W. (1986). "Radioactive decay into excited states via heavy ion emission".
1604:. Very frequently it is calculated by using the Wentzel-Kramers-Brillouin (WKB) approximation. 3999: 3969: 3939: 3874: 3831: 3582: 3275: 2951: 2906: 2881: 1416: 1244: 891: 871: 866: 826: 704: 443: 431: 414: 386: 356: 197: 1748: 4029: 3994: 3979: 3931: 3866: 3823: 3757: 3717: 3629: 3574: 3529: 3486: 3469:
Poenaru, D. N.; Ivascu, M.; Sandulescu, A. (1979). "Alpha decay as a fission-like process".
3443: 3398: 3355: 3312: 3295:
Poenaru, Dorin N.; Greiner, Walter (1991). "Cluster preformation as barrier penetrability".
3226: 3191: 3156: 3117: 3064: 3029: 2986: 2869: 2850: 2161: 1401: 1373: 1240: 881: 811: 564: 482: 450: 270: 202: 4139: 4034: 4004: 1905: 1624: 1612: 1571: 1462: 1408: 1236: 1166: 1017: 876: 856: 831: 761: 648: 576: 522: 487: 147: 3722: 3697: 3862: 3819: 3753: 3713: 3625: 3570: 3525: 3482: 3439: 3394: 3351: 3308: 3222: 3187: 3113: 3060: 3025: 2982: 1000:, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of 4160: 4144: 2873: 2835: 1616: 1412: 1389: 1159: 1009: 932: 786: 781: 660: 593: 401: 336: 313: 300: 287: 187: 165: 3761: 3012:
Strutinsky, V. M. (1967). "Shell effects in nuclear masses and deformation energies".
27:
Nuclear decay in which an atomic nucleus emits a small cluster of neutrons and protons
4179: 4049: 3769: 3498: 3490: 3455: 3402: 3367: 3359: 3324: 3316: 3230: 3160: 3129: 3076: 3033: 2744: 2716: 2649: 2621: 2594: 1630:
Previously it was shown that even alpha decay may be considered a particular case of
1050: 911: 906: 901: 896: 846: 504: 321: 260: 213: 192: 3633: 3594: 2926: 4123: 3678: 3578: 2998: 2702: 2678: 2626: 2599: 2580: 2556: 2496: 2471: 2364: 2336: 2268: 2053: 1918: 1631: 1472:
Both fission-like and alpha-like approaches are able to express the decay constant
1397: 1251: 1155: 841: 816: 801: 546: 494: 351: 3047:
Maruhn, Joachim; Greiner, Walter (1972). "The asymmetrie two center shell model".
1250:
In the absence of any energy loss for fragment deformation and excitation, as in
3949: 2510: 2426: 2359: 2291: 2239: 2212: 2166: 2134: 2107: 1466: 1357: 1162:, and it occurs only in a small percentage of the decays for all such isotopes. 1029: 806: 499: 421: 274: 17: 3533: 3447: 3144: 3121: 2854: 1411:, various beta-delayed decay modes (p, 2p, 3p, n, 2n, 3n, 4n, d, t, alpha, f), 1368:) were known. They illustrate three of the fundamental interactions in nature: 4100: 3954: 2777: 2772: 2749: 2721: 2654: 2080: 2026: 1999: 1972: 1945: 1620: 1608: 1446: 1361: 776: 766: 623: 603: 426: 296: 155: 3870: 3609: 4095: 4087: 4079: 4044: 3959: 3827: 3195: 2880:. Lecture Notes in Physics. Vol. 818. Berlin: Springer. pp. 1–56. 2112: 2085: 2058: 2031: 2004: 1977: 1950: 1923: 1450: 1393: 1365: 821: 771: 598: 586: 581: 460: 3586: 3878: 3835: 2969:
Rose, H. J.; Jones, G. A. (1984). "A new kind of natural radioactivity".
1341: 3430: 3104: 3068: 2540: 2515: 2455: 2431: 2412: 2388: 2320: 2296: 2244: 2217: 2190: 2139: 1001: 283: 256: 248: 180: 170: 2955: 2990: 1833: 1005: 175: 3900: 3803: 2834:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
1169:
with respect to alpha decay is rather small (see the Table below).
3651:(16th ed.). Knolls Atomic Power Laboratory (Lockheed Martin). 3561: 1020:
into three fragments also produces products in the cluster size.
1407:
There are many other kinds of radioactivity, e.g. cluster decay,
3904: 1465:
to a larger mass asymmetry or by heavier emitted particle from
3698:"Carbon radioactivity ofAc and a search for nitrogen emission" 3274:. Bristol: Institute of Physics Publishing. pp. 337–349. 70: 29: 3090:
Gherghescu, R. A. (2003). "Deformed two-center shell model".
2905:. Bristol: Institute of Physics Publishing. pp. 1–577. 1461:
The quantum tunneling may be calculated either by extending
1453:
nucleus among every billion (10) decays by alpha emission.
3895: 1384:
became better studied soon after its discovery in 1940 by
1853:. There is also a need to identify the emitted particle. 1717:{\displaystyle \log T=-\log P_{s}-22.169+0.598(A_{e}-1)} 3664:"Cluster radioactivity: an overview after twenty years" 1893:
The known cluster emissions as of 2010 are as follows:
91: 3270:
Blendowske, R.; Fliessbach, T.; Walliser, H. (1996).
1751: 1648: 1574: 1530: 1478: 1264: 1178: 4153: 4132: 4109: 4018: 3938: 3143:Myers, William D.; Swiatecki, Wladyslaw J. (1966). 1824:
one can use the compilation of measured masses M, M
1729:
In a logarithmic scale the equation log T = f(log P
1519:, as a product of three model-dependent quantities 86:
may be too technical for most readers to understand
1811: 1716: 1580: 1555: 1511: 1301: 1212: 2836:"The NUBASE2020 evaluation of nuclear properties" 2817:character, i.e. the main component is spherical. 1849:, and the kinetic energy of the emitted cluster E 3608:Audi, G.; Wapstra, A. H.; Thibault, C. (2003). 1424:radium-223 by H.J. Rose and G.A. Jones in 1984. 1421: 3916: 1154:This type of rare decay mode was observed in 966: 8: 3804:"Ra Nuclear Spectroscopy in C Radioactivity" 3649:Nuclides and Isotopes: Chart of the nuclides 1512:{\displaystyle \lambda =\ln 2/T_{\text{c}}} 64:Learn how and when to remove these messages 4129: 3923: 3909: 3901: 3735: 3733: 1556:{\displaystyle \lambda =\nu SP_{\text{s}}} 973: 959: 143: 3721: 3560: 3429: 3103: 1803: 1787: 1774: 1750: 1699: 1674: 1647: 1573: 1547: 1529: 1503: 1494: 1477: 1291: 1285: 1269: 1263: 1204: 1195: 1189: 1177: 132:Learn how and when to remove this message 114:Learn how and when to remove this message 98:, without removing the technical details. 1895: 1243:, but can also be a type of spontaneous 2826: 146: 3662:Bonetti, R.; Guglielmetti, A. (2007). 2944:Soviet Journal of Particles and Nuclei 3702:Journal of Physics: Conference Series 1740:In order to find the released energy 96:make it understandable to non-experts 7: 3610:"The Ame2003 atomic mass evaluation" 2901:Poenaru, D. N.; Greiner, W. (1996). 1319:is the mass number of the daughter, 3383:Atomic Data and Nuclear Data Tables 3246:"Nuclear Decay by Cluster Emission" 3244:Poenaru, D.N.; Greiner, W. (1995). 1865:Solid state nuclear track detectors 25: 3647:Baum, E. M.; et al. (2002). 3145:"Nuclear masses and deformations" 2876:(2011). "Cluster Radioactivity". 1012:, but less than a typical binary 45:This article has multiple issues. 940: 939: 926: 154: 75: 34: 3634:10.1016/j.nuclphysa.2003.11.003 3211:Computer Physics Communications 53:or discuss these issues on the 3723:10.1088/1742-6596/111/1/012050 3579:10.1103/PhysRevLett.103.072501 2928:Encyclopædia Britannica Online 1796: 1793: 1767: 1758: 1711: 1692: 1302:{\displaystyle E_{k}=QA_{d}/A} 1: 1239:, which may be a result of a 1213:{\displaystyle B=T_{a}/T_{c}} 3896:National Nuclear Data Center 3403:10.1016/0092-640X(91)90008-R 3231:10.1016/0010-4655(80)90051-X 3161:10.1016/0029-5582(66)90639-0 3034:10.1016/0375-9474(67)90510-6 2810:leads to a large hindrance. 1158:that decay predominantly by 990:heavy particle radioactivity 3762:10.1088/0305-4616/12/10/003 3671:Romanian Reports in Physics 720:High-energy nuclear physics 4207: 3534:10.1103/PhysRevC.83.014601 3491:10.1088/0305-4616/5/10/005 3448:10.1103/PhysRevC.73.014608 3360:10.1088/0305-4616/10/8/004 3317:10.1088/0031-8949/44/5/004 3122:10.1103/PhysRevC.67.014309 3677:: 301–310. Archived from 1429:Encyclopædia Britannica, 3871:10.1103/PhysRevC.43.1476 2855:10.1088/1674-1137/abddae 1886:= 126) and/or protons (Z 3975:Double electron capture 3828:10.1103/physrevc.52.267 3549:Physical Review Letters 3196:10.1103/PhysRevC.20.992 1812:{\displaystyle Q=c^{2}} 1600:to the touching point R 994:heavy ion radioactivity 231:Interacting boson model 3785:C. R. Acad. Sci. Paris 3049:Zeitschrift für Physik 1813: 1718: 1582: 1557: 1513: 1432: 1303: 1214: 3684:on 19 September 2016. 1814: 1719: 1583: 1558: 1514: 1304: 1215: 618:High-energy processes 316:– equal all the above 214:Models of the nucleus 3742:Journal of Physics G 3471:Journal of Physics G 3340:Journal of Physics G 2878:Clusters in Nuclei I 1749: 1646: 1581:{\displaystyle \nu } 1572: 1528: 1476: 1262: 1176: 654:nuclear astrophysics 4119:Photodisintegration 4040:Proton–proton chain 4010:Spontaneous fission 3990:Isomeric transition 3985:Internal conversion 3863:1991PhRvC..43.1476S 3820:1995PhRvC..52..267H 3754:1986JPhG...12L.229G 3714:2008JPhCS.111a2050G 3626:2003NuPhA.729..337A 3571:2009PhRvL.103g2501Q 3526:2011PhRvC..83a4601P 3483:1979JPhG....5L.169P 3440:2006PhRvC..73a4608P 3395:1991ADNDT..48..231P 3352:1984JPhG...10L.183P 3309:1991PhyS...44..427P 3272:Nuclear Decay Modes 3223:1980CoPhC..19..205P 3188:1979PhRvC..20..992K 3114:2003PhRvC..67a4309G 3061:1972ZPhy..251..431M 3026:1967NuPhA..95..420S 2983:1984Natur.307..245R 2903:Nuclear Decay Modes 1386:Konstantin Petrzhak 1382:Spontaneous fission 1346:spontaneous fission 998:heavy cluster decay 636:Photodisintegration 559:Capturing processes 473:Spontaneous fission 466:Internal conversion 397:Valley of stability 392:Island of stability 226:Nuclear shell model 3069:10.1007/BF01391737 1834:Einstein's formula 1809: 1714: 1578: 1553: 1509: 1299: 1210: 1008:, more than in an 933:Physics portal 727:Quark–gluon plasma 510:Radiogenic nuclide 4173: 4172: 4169: 4168: 4000:Positron emission 3970:Double beta decay 3932:Nuclear processes 3851:Physical Review C 3808:Physical Review C 3748:(10): L229–L234. 3614:Nuclear Physics A 3514:Physical Review C 3477:(10): L169–L173. 3418:Physical Review C 3281:978-0-7503-0338-5 3176:Physical Review C 3092:Physical Review C 3014:Nuclear Physics A 2977:(5948): 245–247. 2912:978-0-7503-0338-5 2887:978-3-642-13898-0 2870:Poenaru, Dorin N. 2843:Chinese Physics C 2798: 2797: 1902:Emitted particle 1550: 1506: 1417:quantum tunneling 1245:radioactive decay 983: 982: 669: 415:Radioactive decay 371:Nuclear stability 198:Nuclear structure 142: 141: 134: 124: 123: 116: 68: 16:(Redirected from 4198: 4130: 4030:Deuterium fusion 3995:Neutron emission 3980:Electron capture 3925: 3918: 3911: 3902: 3883: 3882: 3857:(3): 1476–1479. 3846: 3840: 3839: 3799: 3793: 3792: 3780: 3774: 3773: 3737: 3728: 3727: 3725: 3692: 3686: 3685: 3683: 3668: 3659: 3653: 3652: 3644: 3638: 3637: 3605: 3599: 3598: 3564: 3544: 3538: 3537: 3509: 3503: 3502: 3466: 3460: 3459: 3433: 3413: 3407: 3406: 3378: 3372: 3371: 3346:(8): L183–L189. 3335: 3329: 3328: 3292: 3286: 3285: 3267: 3261: 3260: 3258: 3256: 3251:. Europhys. News 3250: 3241: 3235: 3234: 3206: 3200: 3199: 3171: 3165: 3164: 3140: 3134: 3133: 3107: 3087: 3081: 3080: 3044: 3038: 3037: 3009: 3003: 3002: 2991:10.1038/307245a0 2966: 2960: 2959: 2939: 2933: 2932: 2923: 2917: 2916: 2898: 2892: 2891: 2866: 2860: 2858: 2840: 2831: 2788: 2786: 2761: 2759: 2733: 2731: 2689: 2687: 2665: 2663: 2638: 2636: 2610: 2608: 2567: 2565: 2527: 2525: 2483: 2481: 2442: 2440: 2399: 2397: 2375: 2373: 2348: 2346: 2307: 2305: 2280: 2278: 2255: 2253: 2228: 2226: 2201: 2199: 2177: 2175: 2150: 2148: 2123: 2121: 2096: 2094: 2069: 2067: 2042: 2040: 2015: 2013: 1988: 1986: 1961: 1959: 1934: 1932: 1896: 1818: 1816: 1815: 1810: 1808: 1807: 1792: 1791: 1779: 1778: 1723: 1721: 1720: 1715: 1704: 1703: 1679: 1678: 1625:branching ratios 1587: 1585: 1584: 1579: 1562: 1560: 1559: 1554: 1552: 1551: 1548: 1518: 1516: 1515: 1510: 1508: 1507: 1504: 1498: 1430: 1402:Fritz Strassmann 1308: 1306: 1305: 1300: 1295: 1290: 1289: 1274: 1273: 1241:nuclear reaction 1219: 1217: 1216: 1211: 1209: 1208: 1199: 1194: 1193: 1150: 1149: 1148: 1141: 1140: 1131: 1130: 1129: 1122: 1121: 1112: 1111: 1110: 1103: 1102: 1014:fission fragment 975: 968: 961: 948: 943: 942: 935: 931: 930: 807:Skłodowska-Curie 667: 483:Neutron emission 251:' classification 203:Nuclear reaction 158: 144: 137: 130: 119: 112: 108: 105: 99: 79: 78: 71: 60: 38: 37: 30: 21: 18:Cluster emission 4206: 4205: 4201: 4200: 4199: 4197: 4196: 4195: 4186:Nuclear physics 4176: 4175: 4174: 4165: 4149: 4140:Neutron capture 4128: 4111: 4105: 4022:nucleosynthesis 4021: 4014: 4005:Proton emission 3960:Gamma radiation 3941: 3934: 3929: 3892: 3887: 3886: 3848: 3847: 3843: 3801: 3800: 3796: 3782: 3781: 3777: 3739: 3738: 3731: 3694: 3693: 3689: 3681: 3666: 3661: 3660: 3656: 3646: 3645: 3641: 3607: 3606: 3602: 3546: 3545: 3541: 3511: 3510: 3506: 3468: 3467: 3463: 3431:nucl-th/0509073 3415: 3414: 3410: 3380: 3379: 3375: 3337: 3336: 3332: 3297:Physica Scripta 3294: 3293: 3289: 3282: 3269: 3268: 3264: 3254: 3252: 3248: 3243: 3242: 3238: 3208: 3207: 3203: 3182:(3): 992–1013. 3173: 3172: 3168: 3149:Nuclear Physics 3142: 3141: 3137: 3105:nucl-th/0210064 3089: 3088: 3084: 3046: 3045: 3041: 3011: 3010: 3006: 2968: 2967: 2963: 2941: 2940: 2936: 2925: 2924: 2920: 2913: 2900: 2899: 2895: 2888: 2874:Greiner, Walter 2868: 2867: 2863: 2838: 2833: 2832: 2828: 2823: 2816: 2803: 2784: 2782: 2757: 2755: 2729: 2727: 2685: 2683: 2661: 2659: 2634: 2632: 2606: 2604: 2563: 2561: 2523: 2521: 2479: 2477: 2438: 2436: 2395: 2393: 2371: 2369: 2344: 2342: 2303: 2301: 2276: 2274: 2251: 2249: 2224: 2222: 2197: 2195: 2173: 2171: 2146: 2144: 2119: 2117: 2092: 2090: 2065: 2063: 2038: 2036: 2011: 2009: 1984: 1982: 1957: 1955: 1930: 1928: 1906:Branching ratio 1889: 1885: 1852: 1848: 1842: 1831: 1827: 1799: 1783: 1770: 1747: 1746: 1736: 1732: 1695: 1670: 1644: 1643: 1613:Dorin N Poenaru 1603: 1599: 1591: 1570: 1569: 1543: 1526: 1525: 1499: 1474: 1473: 1459: 1431: 1428: 1413:fission isomers 1409:proton emission 1378:electromagnetic 1354: 1336: 1325: 1318: 1281: 1265: 1260: 1259: 1237:ternary fission 1230: 1226: 1200: 1185: 1174: 1173: 1167:branching ratio 1147: 1145: 1144: 1143: 1139: 1136: 1135: 1134: 1133: 1128: 1126: 1125: 1124: 1120: 1117: 1116: 1115: 1114: 1109: 1107: 1106: 1105: 1101: 1098: 1097: 1096: 1095: 1091:. For example: 1090: 1083: 1076: 1069: 1058: 1048: 1037: 1026: 1018:Ternary fission 979: 938: 925: 924: 917: 916: 752: 742: 741: 722: 712: 711: 656: 652: 649:Nucleosynthesis 641: 640: 619: 611: 610: 560: 552: 551: 525: 523:Nuclear fission 515: 514: 488:Proton emission 417: 407: 406: 372: 364: 363: 265: 252: 241: 240: 216: 148:Nuclear physics 138: 127: 126: 125: 120: 109: 103: 100: 92:help improve it 89: 80: 76: 39: 35: 28: 23: 22: 15: 12: 11: 5: 4204: 4202: 4194: 4193: 4188: 4178: 4177: 4171: 4170: 4167: 4166: 4164: 4163: 4161:(n-p) reaction 4157: 4155: 4151: 4150: 4148: 4147: 4145:Proton capture 4142: 4136: 4134: 4127: 4126: 4121: 4115: 4113: 4107: 4106: 4104: 4103: 4098: 4093: 4085: 4077: 4072: 4067: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4026: 4024: 4016: 4015: 4013: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3946: 3944: 3936: 3935: 3930: 3928: 3927: 3920: 3913: 3905: 3899: 3898: 3891: 3890:External links 3888: 3885: 3884: 3841: 3814:(1): 267–270. 3794: 3775: 3729: 3687: 3654: 3639: 3620:(1): 337–676. 3600: 3539: 3504: 3461: 3408: 3389:(2): 231–327. 3373: 3330: 3303:(5): 427–429. 3287: 3280: 3262: 3236: 3217:(2): 205–214. 3201: 3166: 3135: 3082: 3055:(5): 431–457. 3039: 3020:(2): 420–442. 3004: 2961: 2934: 2918: 2911: 2893: 2886: 2861: 2825: 2824: 2822: 2819: 2814: 2802: 2801:Fine structure 2799: 2796: 2795: 2792: 2789: 2780: 2775: 2769: 2768: 2765: 2762: 2752: 2747: 2741: 2740: 2737: 2734: 2724: 2719: 2713: 2712: 2709: 2707: 2705: 2700: 2697: 2696: 2693: 2690: 2681: 2676: 2673: 2672: 2669: 2666: 2657: 2652: 2646: 2645: 2642: 2639: 2629: 2624: 2618: 2617: 2614: 2611: 2602: 2597: 2591: 2590: 2587: 2585: 2583: 2578: 2575: 2574: 2571: 2568: 2559: 2554: 2551: 2550: 2547: 2545: 2543: 2538: 2535: 2534: 2531: 2528: 2518: 2513: 2507: 2506: 2503: 2501: 2499: 2494: 2491: 2490: 2487: 2484: 2474: 2469: 2466: 2465: 2462: 2460: 2458: 2453: 2450: 2449: 2446: 2443: 2434: 2429: 2423: 2422: 2419: 2417: 2415: 2410: 2407: 2406: 2403: 2400: 2391: 2386: 2383: 2382: 2379: 2376: 2367: 2362: 2356: 2355: 2352: 2349: 2339: 2334: 2331: 2330: 2327: 2325: 2323: 2318: 2315: 2314: 2311: 2308: 2299: 2294: 2288: 2287: 2284: 2281: 2271: 2266: 2263: 2262: 2259: 2256: 2247: 2242: 2236: 2235: 2232: 2229: 2220: 2215: 2209: 2208: 2205: 2202: 2193: 2188: 2185: 2184: 2181: 2178: 2169: 2164: 2158: 2157: 2154: 2151: 2142: 2137: 2131: 2130: 2127: 2124: 2115: 2110: 2104: 2103: 2100: 2097: 2088: 2083: 2077: 2076: 2073: 2070: 2061: 2056: 2050: 2049: 2046: 2043: 2034: 2029: 2023: 2022: 2019: 2016: 2007: 2002: 1996: 1995: 1992: 1989: 1980: 1975: 1969: 1968: 1965: 1962: 1953: 1948: 1942: 1941: 1938: 1935: 1926: 1921: 1915: 1914: 1911: 1908: 1903: 1900: 1887: 1883: 1850: 1846: 1841: 1838: 1829: 1825: 1822: 1821: 1820: 1819: 1806: 1802: 1798: 1795: 1790: 1786: 1782: 1777: 1773: 1769: 1766: 1763: 1760: 1757: 1754: 1734: 1730: 1727: 1726: 1725: 1724: 1713: 1710: 1707: 1702: 1698: 1694: 1691: 1688: 1685: 1682: 1677: 1673: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1617:Walter Greiner 1601: 1597: 1589: 1577: 1566: 1565: 1564: 1563: 1546: 1542: 1539: 1536: 1533: 1502: 1497: 1493: 1490: 1487: 1484: 1481: 1463:fission theory 1458: 1455: 1426: 1390:Georgy Flyorov 1353: 1350: 1344:nucleus), and 1334: 1323: 1316: 1310: 1309: 1298: 1294: 1288: 1284: 1280: 1277: 1272: 1268: 1228: 1224: 1221: 1220: 1207: 1203: 1198: 1192: 1188: 1184: 1181: 1160:alpha emission 1152: 1151: 1146: 1137: 1127: 1118: 1108: 1099: 1088: 1081: 1074: 1067: 1056: 1046: 1035: 1025: 1022: 1010:alpha particle 981: 980: 978: 977: 970: 963: 955: 952: 951: 950: 949: 936: 919: 918: 915: 914: 909: 904: 899: 894: 889: 884: 879: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 753: 748: 747: 744: 743: 740: 739: 734: 729: 723: 718: 717: 714: 713: 710: 709: 708: 707: 702: 697: 688: 687: 686: 685: 680: 675: 664: 663: 661:Nuclear fusion 657: 647: 646: 643: 642: 639: 638: 633: 632: 631: 620: 617: 616: 613: 612: 609: 608: 607: 606: 601: 591: 590: 589: 584: 574: 573: 572: 561: 558: 557: 554: 553: 550: 549: 544: 543: 542: 532: 526: 521: 520: 517: 516: 513: 512: 507: 502: 497: 491: 490: 485: 480: 475: 470: 469: 468: 463: 453: 448: 447: 446: 441: 440: 439: 424: 418: 413: 412: 409: 408: 405: 404: 402:Stable nuclide 399: 394: 389: 384: 379: 377:Binding energy 373: 370: 369: 366: 365: 362: 361: 360: 359: 349: 344: 339: 333: 332: 318: 317: 310: 309: 293: 292: 280: 279: 267: 266: 253: 247: 246: 243: 242: 239: 238: 233: 228: 223: 217: 212: 211: 208: 207: 206: 205: 200: 195: 190: 188:Nuclear matter 185: 184: 183: 178: 168: 160: 159: 151: 150: 140: 139: 122: 121: 83: 81: 74: 69: 43: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4203: 4192: 4191:Radioactivity 4189: 4187: 4184: 4183: 4181: 4162: 4159: 4158: 4156: 4152: 4146: 4143: 4141: 4138: 4137: 4135: 4131: 4125: 4122: 4120: 4117: 4116: 4114: 4108: 4102: 4099: 4097: 4094: 4092: 4090: 4086: 4084: 4082: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4031: 4028: 4027: 4025: 4023: 4017: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3965:Cluster decay 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3947: 3945: 3943: 3937: 3933: 3926: 3921: 3919: 3914: 3912: 3907: 3906: 3903: 3897: 3894: 3893: 3889: 3880: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3845: 3842: 3837: 3833: 3829: 3825: 3821: 3817: 3813: 3809: 3805: 3798: 3795: 3790: 3786: 3779: 3776: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3736: 3734: 3730: 3724: 3719: 3715: 3711: 3708:(1): 012050. 3707: 3703: 3699: 3691: 3688: 3680: 3676: 3672: 3665: 3658: 3655: 3650: 3643: 3640: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3604: 3601: 3596: 3592: 3588: 3584: 3580: 3576: 3572: 3568: 3563: 3558: 3555:(7): 072501. 3554: 3550: 3543: 3540: 3535: 3531: 3527: 3523: 3520:(1): 014601. 3519: 3515: 3508: 3505: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3465: 3462: 3457: 3453: 3449: 3445: 3441: 3437: 3432: 3427: 3424:(1): 014608. 3423: 3419: 3412: 3409: 3404: 3400: 3396: 3392: 3388: 3384: 3377: 3374: 3369: 3365: 3361: 3357: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3291: 3288: 3283: 3277: 3273: 3266: 3263: 3247: 3240: 3237: 3232: 3228: 3224: 3220: 3216: 3212: 3205: 3202: 3197: 3193: 3189: 3185: 3181: 3177: 3170: 3167: 3162: 3158: 3154: 3150: 3146: 3139: 3136: 3131: 3127: 3123: 3119: 3115: 3111: 3106: 3101: 3098:(1): 014309. 3097: 3093: 3086: 3083: 3078: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3043: 3040: 3035: 3031: 3027: 3023: 3019: 3015: 3008: 3005: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2962: 2957: 2953: 2949: 2945: 2938: 2935: 2930: 2929: 2922: 2919: 2914: 2908: 2904: 2897: 2894: 2889: 2883: 2879: 2875: 2871: 2865: 2862: 2856: 2852: 2849:(3): 030001. 2848: 2844: 2837: 2830: 2827: 2820: 2818: 2811: 2807: 2800: 2793: 2790: 2781: 2779: 2776: 2774: 2771: 2770: 2766: 2763: 2753: 2751: 2748: 2746: 2743: 2742: 2738: 2735: 2725: 2723: 2720: 2718: 2715: 2714: 2710: 2708: 2706: 2704: 2701: 2699: 2698: 2694: 2691: 2682: 2680: 2677: 2675: 2674: 2670: 2667: 2658: 2656: 2653: 2651: 2648: 2647: 2643: 2640: 2630: 2628: 2625: 2623: 2620: 2619: 2615: 2612: 2603: 2601: 2598: 2596: 2593: 2592: 2588: 2586: 2584: 2582: 2579: 2577: 2576: 2572: 2569: 2560: 2558: 2555: 2553: 2552: 2548: 2546: 2544: 2542: 2539: 2537: 2536: 2532: 2529: 2519: 2517: 2514: 2512: 2509: 2508: 2504: 2502: 2500: 2498: 2495: 2493: 2492: 2488: 2485: 2475: 2473: 2470: 2468: 2467: 2463: 2461: 2459: 2457: 2454: 2452: 2451: 2447: 2444: 2435: 2433: 2430: 2428: 2425: 2424: 2420: 2418: 2416: 2414: 2411: 2409: 2408: 2404: 2401: 2392: 2390: 2387: 2385: 2384: 2380: 2377: 2368: 2366: 2363: 2361: 2358: 2357: 2353: 2350: 2340: 2338: 2335: 2333: 2332: 2328: 2326: 2324: 2322: 2319: 2317: 2316: 2312: 2309: 2300: 2298: 2295: 2293: 2290: 2289: 2285: 2282: 2272: 2270: 2267: 2265: 2264: 2260: 2257: 2248: 2246: 2243: 2241: 2238: 2237: 2233: 2230: 2221: 2219: 2216: 2214: 2211: 2210: 2206: 2203: 2194: 2192: 2189: 2187: 2186: 2182: 2179: 2170: 2168: 2165: 2163: 2160: 2159: 2155: 2152: 2143: 2141: 2138: 2136: 2133: 2132: 2128: 2125: 2116: 2114: 2111: 2109: 2106: 2105: 2101: 2098: 2089: 2087: 2084: 2082: 2079: 2078: 2074: 2071: 2062: 2060: 2057: 2055: 2052: 2051: 2047: 2044: 2035: 2033: 2030: 2028: 2025: 2024: 2020: 2017: 2008: 2006: 2003: 2001: 1998: 1997: 1993: 1990: 1981: 1979: 1976: 1974: 1971: 1970: 1966: 1963: 1954: 1952: 1949: 1947: 1944: 1943: 1939: 1936: 1927: 1925: 1922: 1920: 1917: 1916: 1912: 1909: 1907: 1904: 1901: 1898: 1897: 1894: 1891: 1879: 1876: 1872: 1868: 1866: 1862: 1858: 1854: 1839: 1837: 1835: 1804: 1800: 1788: 1784: 1780: 1775: 1771: 1764: 1761: 1755: 1752: 1745: 1744: 1743: 1742: 1741: 1738: 1708: 1705: 1700: 1696: 1689: 1686: 1683: 1680: 1675: 1671: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1642: 1641: 1640: 1639: 1638: 1635: 1633: 1628: 1626: 1622: 1618: 1614: 1610: 1605: 1595: 1594:wave function 1575: 1544: 1540: 1537: 1534: 1531: 1524: 1523: 1522: 1521: 1520: 1500: 1495: 1491: 1488: 1485: 1482: 1479: 1470: 1468: 1464: 1456: 1454: 1452: 1448: 1443: 1440: 1436: 1425: 1420: 1418: 1414: 1410: 1405: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1351: 1349: 1347: 1343: 1338: 1333: 1329: 1322: 1315: 1296: 1292: 1286: 1282: 1278: 1275: 1270: 1266: 1258: 1257: 1256: 1253: 1248: 1246: 1242: 1238: 1232: 1205: 1201: 1196: 1190: 1186: 1182: 1179: 1172: 1171: 1170: 1168: 1163: 1161: 1157: 1156:radioisotopes 1094: 1093: 1092: 1087: 1080: 1073: 1066: 1062: 1055: 1052: 1051:atomic number 1045: 1041: 1034: 1031: 1023: 1021: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 988:, also named 987: 986:Cluster decay 976: 971: 969: 964: 962: 957: 956: 954: 953: 947: 937: 934: 929: 923: 922: 921: 920: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 754: 751: 746: 745: 738: 735: 733: 730: 728: 725: 724: 721: 716: 715: 706: 703: 701: 698: 696: 693: 692: 690: 689: 684: 681: 679: 676: 674: 671: 670: 666: 665: 662: 659: 658: 655: 650: 645: 644: 637: 634: 630: 629:by cosmic ray 627: 626: 625: 622: 621: 615: 614: 605: 602: 600: 597: 596: 595: 592: 588: 585: 583: 580: 579: 578: 575: 571: 568: 567: 566: 563: 562: 556: 555: 548: 545: 541: 540:pair breaking 538: 537: 536: 533: 531: 528: 527: 524: 519: 518: 511: 508: 506: 505:Decay product 503: 501: 498: 496: 493: 492: 489: 486: 484: 481: 479: 478:Cluster decay 476: 474: 471: 467: 464: 462: 459: 458: 457: 454: 452: 449: 445: 442: 438: 435: 434: 433: 430: 429: 428: 425: 423: 420: 419: 416: 411: 410: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 374: 368: 367: 358: 355: 354: 353: 350: 348: 345: 343: 340: 338: 335: 334: 331: 327: 323: 322:Mirror nuclei 320: 319: 315: 312: 311: 308: 307: 304: −  303: 298: 295: 294: 291: 290: 285: 282: 281: 278: 277: 272: 269: 268: 264: 263: 258: 255: 254: 250: 245: 244: 237: 234: 232: 229: 227: 224: 222: 219: 218: 215: 210: 209: 204: 201: 199: 196: 194: 193:Nuclear force 191: 189: 186: 182: 179: 177: 174: 173: 172: 169: 167: 164: 163: 162: 161: 157: 153: 152: 149: 145: 136: 133: 118: 115: 107: 97: 93: 87: 84:This article 82: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 19: 4124:Photofission 4088: 4080: 3964: 3854: 3850: 3844: 3811: 3807: 3797: 3791:: 1105–1110. 3788: 3784: 3778: 3745: 3741: 3705: 3701: 3690: 3679:the original 3674: 3670: 3657: 3648: 3642: 3617: 3613: 3603: 3552: 3548: 3542: 3517: 3513: 3507: 3474: 3470: 3464: 3421: 3417: 3411: 3386: 3382: 3376: 3343: 3339: 3333: 3300: 3296: 3290: 3271: 3265: 3253:. Retrieved 3239: 3214: 3210: 3204: 3179: 3175: 3169: 3152: 3148: 3138: 3095: 3091: 3085: 3052: 3048: 3042: 3017: 3013: 3007: 2974: 2970: 2964: 2947: 2943: 2937: 2927: 2921: 2902: 2896: 2877: 2864: 2846: 2842: 2829: 2812: 2808: 2804: 1892: 1880: 1877: 1873: 1869: 1863: 1859: 1855: 1843: 1823: 1739: 1728: 1636: 1632:cold fission 1629: 1606: 1567: 1471: 1460: 1444: 1441: 1437: 1433: 1422: 1406: 1398:Lise Meitner 1355: 1339: 1331: 1327: 1320: 1313: 1311: 1252:cold fission 1249: 1233: 1222: 1164: 1153: 1085: 1078: 1071: 1064: 1060: 1053: 1043: 1039: 1032: 1027: 997: 993: 989: 985: 984: 547:Photofission 495:Decay energy 477: 422:Alpha α 329: 325: 305: 301: 288: 275: 261: 128: 110: 101: 85: 61: 54: 48: 47:Please help 44: 3950:Alpha decay 3940:Radioactive 3255:15 December 2950:: 528–541. 2764:> 25.26 2736:> 25.52 2641:> 27.57 2530:> 25.90 2486:> 28.09 2351:> 27.59 2283:> 22.26 1875:and of Am. 1840:Experiments 1609:decay modes 1467:alpha decay 1030:mass number 1024:Description 852:Oppenheimer 530:Spontaneous 500:Decay chain 451:K/L capture 427:Beta β 297:Isodiaphers 221:Liquid drop 4180:Categories 4101:rp-process 4075:Si burning 4065:Ne burning 4035:Li burning 3955:Beta decay 2821:References 1621:half-lives 1449:emits one 882:Strassmann 872:Rutherford 750:Scientists 705:Artificial 700:Cosmogenic 695:Primordial 691:Nuclides: 668:Processes: 624:Spallation 104:March 2016 50:improve it 4112:processes 4096:p-process 4070:O burning 4060:C burning 4050:α process 4045:CNO cycle 3770:250914956 3562:0909.4492 3499:250859467 3456:119434512 3368:250844668 3325:250885957 3130:119429669 3077:117002558 1910:log T(s) 1765:− 1706:− 1681:− 1668:⁡ 1662:− 1653:⁡ 1576:ν 1538:ν 1532:λ 1489:⁡ 1480:λ 1394:Otto Hahn 887:Świątecki 802:Pi. Curie 797:Fr. Curie 792:Ir. Curie 787:Cockcroft 762:Becquerel 683:Supernova 387:Drip line 382:p–n ratio 357:Borromean 236:Ab initio 56:talk page 4154:Exchange 4091:-process 4083:-process 4055:Triple-α 3595:34973496 3587:19792636 3155:: 1–60. 1913:Q (MeV) 1899:Isotope 1836:E = mc. 1469:theory. 1427:—  1070:, where 1002:neutrons 946:Category 847:Oliphant 832:Lawrence 812:Davisson 782:Chadwick 678:Big Bang 565:electron 535:Products 456:Isomeric 347:Even/odd 324: – 299:– equal 286:– equal 284:Isotones 273:– equal 259:– equal 257:Isotopes 249:Nuclides 171:Nucleons 4133:Capture 4020:Stellar 3879:9967191 3859:Bibcode 3836:9970505 3816:Bibcode 3750:Bibcode 3710:Bibcode 3622:Bibcode 3567:Bibcode 3522:Bibcode 3479:Bibcode 3436:Bibcode 3391:Bibcode 3348:Bibcode 3305:Bibcode 3219:Bibcode 3184:Bibcode 3110:Bibcode 3057:Bibcode 3022:Bibcode 2999:4312488 2979:Bibcode 2956:6189038 2931:. 2011. 2794:96.508 2767:93.923 2739:91.026 2711:76.822 2695:75.910 2671:91.188 2644:74.814 2616:79.668 2589:72.299 2573:70.560 2549:56.753 2533:55.944 2505:72.535 2489:72.162 2464:57.756 2448:57.361 2421:59.465 2405:58.825 2381:74.108 2354:74.224 2329:60.776 2313:60.484 2286:74.318 2261:62.309 2234:61.388 2207:60.408 2183:51.844 2156:57.758 2129:44.723 2102:28.196 2075:30.476 2048:30.535 2021:31.829 1994:33.049 1967:32.394 1940:31.290 1890:= 82). 1828:, and M 1352:History 1006:protons 902:Thomson 892:Szilárd 862:Purcell 842:Meitner 777:N. Bohr 772:A. Bohr 757:Alvarez 673:Stellar 577:neutron 461:Gamma γ 314:Isomers 271:Isobars 166:Nucleus 90:Please 3877:  3834:  3768:  3593:  3585:  3497:  3454:  3366:  3323:  3278:  3128:  3075:  2997:  2971:Nature 2954:  2909:  2884:  2791:23.15 2692:25.70 2668:25.27 2613:21.52 2570:27.58 2445:27.42 2402:25.88 2378:25.14 2310:24.84 2258:20.40 2231:19.57 2204:22.88 2180:26.02 2153:24.61 2126:20.72 2099:21.19 2072:17.28 2045:15.86 2018:15.04 1991:11.01 1964:13.39 1937:14.52 1684:22.169 1568:where 1457:Theory 1400:, and 1376:, and 1370:strong 1364:, and 1312:where 944:  912:Wigner 907:Walton 897:Teller 827:Jensen 594:proton 337:Stable 4110:Other 3942:decay 3766:S2CID 3682:(PDF) 3667:(PDF) 3591:S2CID 3557:arXiv 3495:S2CID 3452:S2CID 3426:arXiv 3364:S2CID 3321:S2CID 3249:(PDF) 3126:S2CID 3100:arXiv 3073:S2CID 2995:S2CID 2839:(PDF) 2754:< 2726:< 2631:< 2520:< 2476:< 2273:< 1690:0.598 1366:gamma 1358:alpha 1227:and T 877:Soddy 857:Proca 837:Mayer 817:Fermi 767:Bethe 342:Magic 3875:PMID 3832:PMID 3583:PMID 3276:ISBN 3257:2023 2952:OSTI 2907:ISBN 2882:ISBN 2815:11/2 2684:5.62 2660:1.38 2437:8.06 2370:1.38 2341:< 2275:1.18 2250:9.16 2196:1.34 2172:9.97 2118:1.13 1956:1.15 1929:8.14 1388:and 1374:weak 1362:beta 1165:The 1049:and 1004:and 867:Rabi 822:Hahn 732:RHIC 352:Halo 3867:doi 3824:doi 3789:309 3758:doi 3718:doi 3706:111 3630:doi 3618:729 3575:doi 3553:103 3530:doi 3487:doi 3444:doi 3399:doi 3356:doi 3313:doi 3227:doi 3192:doi 3157:doi 3118:doi 3065:doi 3053:251 3030:doi 2987:doi 2975:307 2851:doi 2756:7.4 2633:1.8 2605:2.7 2522:9.2 2478:1.8 2394:9.9 2343:1.3 2302:7.2 2223:4.8 2145:5.6 2091:3.2 2064:4.5 2037:4.3 2010:8.9 1983:3.7 1665:log 1650:log 996:or 737:LHC 651:and 94:to 4182:: 3873:. 3865:. 3855:43 3853:. 3830:. 3822:. 3812:52 3810:. 3806:. 3787:. 3764:. 3756:. 3746:12 3744:. 3732:^ 3716:. 3704:. 3700:. 3675:59 3673:. 3669:. 3628:. 3616:. 3612:. 3589:. 3581:. 3573:. 3565:. 3551:. 3528:. 3518:83 3516:. 3493:. 3485:. 3473:. 3450:. 3442:. 3434:. 3422:73 3420:. 3397:. 3387:48 3385:. 3362:. 3354:. 3344:10 3342:. 3319:. 3311:. 3301:44 3299:. 3225:. 3215:19 3213:. 3190:. 3180:20 3178:. 3153:81 3151:. 3147:. 3124:. 3116:. 3108:. 3096:67 3094:. 3071:. 3063:. 3051:. 3028:. 3018:95 3016:. 2993:. 2985:. 2973:. 2948:11 2946:. 2872:; 2847:45 2845:. 2841:. 2787:10 2778:Si 2773:Cm 2760:10 2750:Si 2745:Am 2732:10 2722:Si 2717:Pu 2703:Mg 2688:10 2679:Mg 2664:10 2655:Si 2650:Pu 2637:10 2627:Mg 2622:Np 2609:10 2600:Mg 2595:Pu 2581:Mg 2566:10 2557:Mg 2541:Ne 2526:10 2516:Ne 2497:Mg 2482:10 2472:Mg 2456:Ne 2441:10 2432:Ne 2413:Ne 2398:10 2389:Ne 2374:10 2365:Mg 2347:10 2337:Mg 2321:Ne 2306:10 2297:Ne 2279:10 2269:Mg 2254:10 2245:Ne 2227:10 2218:Ne 2200:10 2191:Ne 2176:10 2162:Pa 2149:10 2140:Ne 2135:Th 2122:10 2108:Th 2095:10 2081:Ra 2068:10 2054:Ac 2041:10 2027:Ra 2014:10 2000:Ra 1987:10 1973:Ra 1960:10 1946:Ra 1933:10 1919:Fr 1623:, 1615:, 1486:ln 1447:Ra 1404:. 1396:, 1380:. 1372:, 1360:, 1342:He 1337:. 1330:− 1326:= 1142:Pb 1138:82 1132:+ 1113:→ 1104:Ra 1100:88 1084:+ 1077:= 1063:− 1059:= 1042:− 1038:= 1016:. 992:, 604:rp 570:2× 437:0v 432:2β 328:↔ 59:. 4089:s 4081:r 3924:e 3917:t 3910:v 3881:. 3869:: 3861:: 3838:. 3826:: 3818:: 3772:. 3760:: 3752:: 3726:. 3720:: 3712:: 3636:. 3632:: 3624:: 3597:. 3577:: 3569:: 3559:: 3536:. 3532:: 3524:: 3501:. 3489:: 3481:: 3475:5 3458:. 3446:: 3438:: 3428:: 3405:. 3401:: 3393:: 3370:. 3358:: 3350:: 3327:. 3315:: 3307:: 3284:. 3259:. 3233:. 3229:: 3221:: 3198:. 3194:: 3186:: 3163:. 3159:: 3132:. 3120:: 3112:: 3102:: 3079:. 3067:: 3059:: 3036:. 3032:: 3024:: 3001:. 2989:: 2981:: 2958:. 2915:. 2890:. 2859:" 2857:. 2853:: 2785:× 2783:1 2758:× 2730:× 2728:6 2686:× 2662:× 2635:× 2607:× 2564:× 2562:2 2524:× 2511:U 2480:× 2439:× 2427:U 2396:× 2372:× 2360:U 2345:× 2304:× 2292:U 2277:× 2252:× 2240:U 2225:× 2213:U 2198:× 2174:× 2167:F 2147:× 2120:× 2113:O 2093:× 2086:C 2066:× 2059:C 2039:× 2032:C 2012:× 2005:C 1985:× 1978:C 1958:× 1951:C 1931:× 1924:C 1888:d 1884:d 1851:k 1847:c 1845:T 1830:e 1826:d 1805:2 1801:c 1797:] 1794:) 1789:e 1785:M 1781:+ 1776:d 1772:M 1768:( 1762:M 1759:[ 1756:= 1753:Q 1735:s 1731:s 1712:) 1709:1 1701:e 1697:A 1693:( 1687:+ 1676:s 1672:P 1659:= 1656:T 1602:t 1598:i 1590:s 1549:s 1545:P 1541:S 1535:= 1505:c 1501:T 1496:/ 1492:2 1483:= 1451:C 1335:e 1332:A 1328:A 1324:d 1321:A 1317:d 1314:A 1297:A 1293:/ 1287:d 1283:A 1279:Q 1276:= 1271:k 1267:E 1229:c 1225:a 1223:T 1206:c 1202:T 1197:/ 1191:a 1187:T 1183:= 1180:B 1123:C 1119:6 1089:e 1086:Z 1082:e 1079:N 1075:e 1072:A 1068:e 1065:Z 1061:Z 1057:d 1054:Z 1047:e 1044:A 1040:A 1036:d 1033:A 974:e 967:t 960:v 599:p 587:r 582:s 444:β 330:N 326:Z 306:Z 302:N 289:N 276:A 262:Z 181:n 176:p 135:) 129:( 117:) 111:( 106:) 102:( 88:. 66:) 62:( 20:)

Index

Cluster emission
improve it
talk page
Learn how and when to remove these messages
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Learn how and when to remove this message
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.