Knowledge (XXG)

Colin de Verdière graph invariant

Source 📝

844:
of a graph is another graph formed from it by contracting edges and by deleting edges and vertices. The Colin de Verdière invariant is minor-monotone, meaning that taking a minor of a graph can only decrease or leave unchanged its invariant:
1151:
The Colin de Verdière invariant is defined through a class of matrices corresponding to the graph instead of just a single matrix. Along the same lines other graph parameters can be defined and studied, such as the
562: 260: 899: 158: 470: 695: 393: 355: 630: 432: 1457: 1141: 316: 187: 114: 49: 1108: 591: 1077: 656: 290: 1051: 493: 1012: 781:
These same families of graphs also show up in connections between the Colin de Verdière invariant of a graph and the structure of its
1492: 1335: 1296: 1480: 1362: 1031: 996: 906: 1157: 1488: 1484: 1414: 1388: 1366: 1004: 1000: 52: 501: 199: 1553: 1237:
does not state this case explicitly, but it follows from his characterization of these graphs as the graphs with no
1161: 1548: 1358: 1330: 59: 1455:(1998), "A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs", 1153: 67: 706:
Several well-known families of graphs can be characterized in terms of their Colin de Verdière invariants:
1448: 1410: 1393:, Bolyai Soc. Math. Stud., vol. 7, Budapest: János Bolyai Math. Soc., pp. 29–85, archived from 1380: 860: 972:
with at most μ + 1 colors. For instance, the linear forests have invariant 1, and can be
119: 1080: 991:
For graphs with Colin de Verdière invariant at most four, the conjecture remains true; these are the
841: 437: 1452: 1384: 1242: 661: 360: 321: 992: 985: 946: 770: 596: 398: 977: 742: 1143:
can both be drawn with a single crossing, and have Colin de Verdière invariant at most four.
1113: 949:
as the graphs with μ ≤ 4 and as the graphs with no Petersen family minor. For
295: 163: 81: 25: 1513: 1466: 1426: 1344: 1306: 782: 194: 1371:
Graph Structure Theory: Proc. AMS–IMS–SIAM Joint Summer Research Conference on Graph Minors
1086: 995:, and the fact that they have chromatic number at most five is a consequence of a proof by 1373:, Contemporary Mathematics, vol. 147, American Mathematical Society, pp. 137–147 973: 942: 930: 567: 1056: 635: 269: 1353: 1238: 1036: 969: 954: 478: 1521: 1542: 1504: 1348: 728: 981: 756: 1471: 62:
in 1990. It was motivated by the study of the maximum multiplicity of the second
1311: 1288: 941: = 4 the set of forbidden minors consists of the seven graphs in the 63: 1434: 1394: 1333:(1990), "Sur un nouvel invariant des graphes et un critère de planarité", 968:
conjectured that any graph with Colin de Verdière invariant μ may be
953: = 5 the set of forbidden minors includes the 78 graphs of the 1517: 1430: 1361:(1993), "On a new graph invariant and a criterion for planarity", in 190: 1415:"The Colin de Verdiere number and sphere representations of a graph" 1199: 1390:
Graph Theory and Combinatorial Biology (Balatonlelle, 1996)
921:
are the same as the graphs that do not have any member of
495:
has exactly one negative eigenvalue, of multiplicity 1;
1008: 917:
of graphs such that the graphs with invariant at most
1116: 1089: 1059: 1039: 863: 664: 638: 599: 570: 504: 481: 440: 401: 363: 324: 298: 272: 202: 166: 122: 84: 28: 957:, and it is conjectured that this list is complete. 1274: 1135: 1102: 1071: 1045: 893: 689: 650: 624: 585: 556: 487: 464: 426: 387: 349: 310: 284: 254: 181: 152: 108: 43: 1387:(1999), "The Colin de Verdière graph parameter", 1234: 1222: 965: 926: 557:{\displaystyle X=(X_{i,j})\in \mathbb {R} ^{(n)}} 255:{\displaystyle M=(M_{i,j})\in \mathbb {R} ^{(n)}} 1458:Proceedings of the American Mathematical Society 1257: 980:have invariant two, and can be 3-colored; the 1053:, it has Colin de Verdière invariant at most 8: 1289:"Graphs and obstructions in four dimensions" 1200:van der Holst, Lovász & Schrijver (1999) 453: 441: 376: 364: 147: 129: 945:, due to the two characterizations of the 1470: 1336:Journal of Combinatorial Theory, Series B 1310: 1121: 1115: 1094: 1088: 1058: 1038: 862: 669: 663: 637: 604: 598: 569: 542: 538: 537: 518: 503: 480: 439: 406: 400: 362: 329: 323: 297: 271: 240: 236: 235: 216: 201: 165: 121: 83: 27: 702:Characterization of known graph families 1270: 1268: 1266: 1218: 1216: 1214: 1212: 1210: 1208: 1195: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 1173: 793:-vertex graph is a linear forest, then 1253: 1251: 7: 1275:Kotlov, Lovász & Vempala (1997) 894:{\displaystyle \mu (H)\leq \mu (G)} 808:-vertex graph is outerplanar, then 116:be a simple graph with vertex set 14: 498:(M3) there is no nonzero matrix 153:{\displaystyle V=\{1,\dots ,n\}} 1297:Journal of Combinatorial Theory 465:{\displaystyle \{i,j\}\notin E} 984:have invariant 3, and (by the 888: 882: 873: 867: 823:-vertex graph is planar, then 549: 543: 530: 511: 247: 241: 228: 209: 176: 170: 103: 91: 38: 32: 1: 1472:10.1090/S0002-9939-98-04244-0 1258:Lovász & Schrijver (1998) 690:{\displaystyle M_{i,j}\neq 0} 20:Colin de Verdière's invariant 1493:"Hadwiger's conjecture for K 1349:10.1016/0095-8956(90)90093-F 993:linklessly embeddable graphs 947:linklessly embeddable graphs 731:(a disjoint union of paths); 388:{\displaystyle \{i,j\}\in E} 350:{\displaystyle M_{i,j}<0} 1413:; Vempala, Santosh (1997), 1287:Hein van der Holst (2006). 1570: 1312:10.1016/j.jctb.2005.09.004 913:there exists a finite set 1158:minimum semidefinite rank 907:Robertson–Seymour theorem 625:{\displaystyle X_{i,j}=0} 427:{\displaystyle M_{i,j}=0} 1235:Colin de Verdière (1990) 1223:Colin de Verdière (1990) 1079:. For instance, the two 966:Colin de Verdière (1990) 927:Colin de Verdière (1990) 819:If the complement of an 804:If the complement of an 789:If the complement of an 1359:Colin de Verdière, Yves 1331:Colin de Verdière, Yves 1136:{\displaystyle K_{3,3}} 311:{\displaystyle i\neq j} 182:{\displaystyle \mu (G)} 109:{\displaystyle G=(V,E)} 44:{\displaystyle \mu (G)} 1137: 1104: 1073: 1047: 895: 691: 652: 626: 587: 558: 489: 466: 428: 389: 351: 312: 286: 256: 183: 154: 110: 60:Yves Colin de Verdière 45: 1379:van der Holst, Hein; 1138: 1105: 1103:{\displaystyle K_{5}} 1074: 1048: 896: 771:linklessly embeddable 692: 653: 627: 588: 559: 490: 467: 429: 390: 352: 313: 287: 257: 184: 155: 111: 68:Schrödinger operators 46: 22:is a graph parameter 1453:Schrijver, Alexander 1385:Schrijver, Alexander 1114: 1087: 1057: 1037: 1022:-minor-free graphs. 988:) can be 4-colored. 937: ≤ 3; for 929:lists these sets of 861: 717:has only one vertex; 662: 636: 597: 586:{\displaystyle MX=0} 568: 502: 479: 438: 399: 361: 322: 296: 270: 200: 164: 120: 82: 26: 1072:{\displaystyle k+3} 1013:Hadwiger conjecture 651:{\displaystyle i=j} 285:{\displaystyle i,j} 1554:Graph minor theory 1518:10.1007/BF01202354 1431:10.1007/BF01195002 1133: 1100: 1069: 1043: 997:Neil Robertson 986:four color theorem 978:outerplanar graphs 891: 687: 648: 622: 583: 554: 485: 462: 424: 385: 347: 308: 282: 252: 179: 150: 106: 41: 1162:minimum skew rank 1046:{\displaystyle k} 488:{\displaystyle M} 1561: 1549:Graph invariants 1534: 1533: 1532: 1526: 1520:, archived from 1501: 1475: 1474: 1465:(5): 1275–1285, 1444: 1443: 1442: 1433:, archived from 1409:Kotlov, Andrew; 1404: 1403: 1402: 1374: 1352:. Translated by 1351: 1317: 1316: 1314: 1293: 1284: 1278: 1272: 1261: 1255: 1246: 1232: 1226: 1220: 1203: 1197: 1142: 1140: 1139: 1134: 1132: 1131: 1109: 1107: 1106: 1101: 1099: 1098: 1078: 1076: 1075: 1070: 1052: 1050: 1049: 1044: 1026:Other properties 961:Chromatic number 931:forbidden minors 900: 898: 897: 892: 830: 815: 800: 764: 750: 736: 722: 712: 696: 694: 693: 688: 680: 679: 657: 655: 654: 649: 631: 629: 628: 623: 615: 614: 592: 590: 589: 584: 563: 561: 560: 555: 553: 552: 541: 529: 528: 494: 492: 491: 486: 471: 469: 468: 463: 433: 431: 430: 425: 417: 416: 394: 392: 391: 386: 356: 354: 353: 348: 340: 339: 317: 315: 314: 309: 291: 289: 288: 283: 261: 259: 258: 253: 251: 250: 239: 227: 226: 195:symmetric matrix 188: 186: 185: 180: 159: 157: 156: 151: 115: 113: 112: 107: 50: 48: 47: 42: 1569: 1568: 1564: 1563: 1562: 1560: 1559: 1558: 1539: 1538: 1530: 1528: 1524: 1499: 1496: 1481:Robertson, Neil 1479: 1447: 1440: 1438: 1408: 1400: 1398: 1378: 1363:Robertson, Neil 1357: 1329: 1326: 1321: 1320: 1291: 1286: 1285: 1281: 1273: 1264: 1256: 1249: 1233: 1229: 1221: 1206: 1198: 1175: 1170: 1149: 1117: 1112: 1111: 1090: 1085: 1084: 1055: 1054: 1035: 1034: 1032:crossing number 1030:If a graph has 1028: 1021: 963: 943:Petersen family 859: 858: 838: 824: 809: 794: 765:if and only if 762: 751:if and only if 748: 737:if and only if 734: 723:if and only if 720: 713:if and only if 710: 704: 665: 660: 659: 634: 633: 600: 595: 594: 566: 565: 536: 514: 500: 499: 477: 476: 436: 435: 402: 397: 396: 359: 358: 325: 320: 319: 294: 293: 268: 267: 234: 212: 198: 197: 189:is the largest 162: 161: 118: 117: 80: 79: 76: 24: 23: 17: 12: 11: 5: 1567: 1565: 1557: 1556: 1551: 1541: 1540: 1537: 1536: 1494: 1477: 1449:Lovász, László 1445: 1425:(4): 483–521, 1411:Lovász, László 1406: 1381:Lovász, László 1376: 1354:Neil J. Calkin 1325: 1322: 1319: 1318: 1305:(3): 388–404. 1279: 1262: 1247: 1227: 1204: 1172: 1171: 1169: 1166: 1148: 1145: 1130: 1127: 1124: 1120: 1097: 1093: 1068: 1065: 1062: 1042: 1027: 1024: 1019: 1003:, and 962: 959: 955:Heawood family 903: 902: 890: 887: 884: 881: 878: 875: 872: 869: 866: 853:is a minor of 837: 834: 833: 832: 817: 802: 779: 778: 760: 746: 732: 718: 703: 700: 699: 698: 686: 683: 678: 675: 672: 668: 647: 644: 641: 621: 618: 613: 610: 607: 603: 593:and such that 582: 579: 576: 573: 551: 548: 545: 540: 535: 532: 527: 524: 521: 517: 513: 510: 507: 496: 484: 473: 461: 458: 455: 452: 449: 446: 443: 423: 420: 415: 412: 409: 405: 384: 381: 378: 375: 372: 369: 366: 346: 343: 338: 335: 332: 328: 307: 304: 301: 281: 278: 275: 249: 246: 243: 238: 233: 230: 225: 222: 219: 215: 211: 208: 205: 178: 175: 172: 169: 149: 146: 143: 140: 137: 134: 131: 128: 125: 105: 102: 99: 96: 93: 90: 87: 75: 72: 58:introduced by 40: 37: 34: 31: 16:Graph property 15: 13: 10: 9: 6: 4: 3: 2: 1566: 1555: 1552: 1550: 1547: 1546: 1544: 1527:on 2009-04-10 1523: 1519: 1515: 1511: 1507: 1506: 1505:Combinatorica 1498: 1497:-free graphs" 1490: 1489:Thomas, Robin 1486: 1485:Seymour, Paul 1482: 1478: 1473: 1468: 1464: 1460: 1459: 1454: 1450: 1446: 1437:on 2016-03-03 1436: 1432: 1428: 1424: 1420: 1419:Combinatorica 1416: 1412: 1407: 1397:on 2016-03-03 1396: 1392: 1391: 1386: 1382: 1377: 1372: 1368: 1367:Seymour, Paul 1364: 1360: 1355: 1350: 1346: 1342: 1338: 1337: 1332: 1328: 1327: 1323: 1313: 1308: 1304: 1300: 1298: 1290: 1283: 1280: 1276: 1271: 1269: 1267: 1263: 1259: 1254: 1252: 1248: 1244: 1240: 1236: 1231: 1228: 1224: 1219: 1217: 1215: 1213: 1211: 1209: 1205: 1201: 1196: 1194: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1174: 1167: 1165: 1163: 1159: 1155: 1146: 1144: 1128: 1125: 1122: 1118: 1095: 1091: 1082: 1066: 1063: 1060: 1040: 1033: 1025: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 989: 987: 983: 982:planar graphs 979: 975: 971: 967: 960: 958: 956: 952: 948: 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 885: 879: 876: 870: 864: 856: 852: 848: 847: 846: 843: 835: 828: 822: 818: 813: 807: 803: 798: 792: 788: 787: 786: 784: 776: 772: 768: 761: 758: 754: 747: 744: 740: 733: 730: 729:linear forest 726: 719: 716: 709: 708: 707: 701: 684: 681: 676: 673: 670: 666: 645: 642: 639: 619: 616: 611: 608: 605: 601: 580: 577: 574: 571: 546: 533: 525: 522: 519: 515: 508: 505: 497: 482: 474: 459: 456: 450: 447: 444: 421: 418: 413: 410: 407: 403: 382: 379: 373: 370: 367: 344: 341: 336: 333: 330: 326: 305: 302: 299: 279: 276: 273: 266:(M1) for all 265: 264: 263: 244: 231: 223: 220: 217: 213: 206: 203: 196: 192: 173: 167: 144: 141: 138: 135: 132: 126: 123: 100: 97: 94: 88: 85: 73: 71: 69: 65: 61: 57: 54: 35: 29: 21: 1529:, retrieved 1522:the original 1509: 1503: 1462: 1456: 1439:, retrieved 1435:the original 1422: 1418: 1399:, retrieved 1395:the original 1389: 1370: 1343:(1): 11–21, 1340: 1334: 1302: 1295: 1282: 1230: 1154:minimum rank 1150: 1029: 1016: 1005:Robin Thomas 1001:Paul Seymour 990: 964: 950: 938: 934: 925:as a minor. 922: 918: 914: 910: 909:, for every 904: 854: 850: 839: 836:Graph minors 826: 820: 811: 805: 796: 790: 780: 774: 766: 752: 738: 724: 714: 705: 77: 55: 19: 18: 1512:: 279–361, 743:outerplanar 262:such that: 66:of certain 1543:Categories 1531:2010-08-06 1441:2010-08-06 1401:2010-08-06 1324:References 1299:, Series B 1081:Kuratowski 783:complement 763:μ ≤ 4 749:μ ≤ 3 735:μ ≤ 2 721:μ ≤ 1 711:μ ≤ 0 632:if either 564:such that 74:Definition 64:eigenvalue 1147:Influence 1011:) of the 974:2-colored 880:μ 877:≤ 865:μ 829:− 5 825:μ ≥ 814:− 4 810:μ ≥ 799:− 3 795:μ ≥ 682:≠ 534:∈ 457:∉ 380:∈ 303:≠ 232:∈ 168:μ 139:… 30:μ 1491:(1993), 1369:(eds.), 1239:triangle 51:for any 1083:graphs 1007: ( 970:colored 905:By the 193:of any 160:. Then 1245:minor. 999:, 976:; the 757:planar 395:, and 191:corank 1525:(PDF) 1500:(PDF) 1292:(PDF) 1168:Notes 857:then 842:minor 727:is a 697:hold. 475:(M2) 292:with 53:graph 1243:claw 1160:and 1110:and 1015:for 1009:1993 933:for 769:is 342:< 78:Let 1514:doi 1467:doi 1463:126 1427:doi 1356:as 1345:doi 1307:doi 1241:or 849:If 773:in 755:is 741:is 658:or 434:if 357:if 1545:: 1510:13 1508:, 1502:, 1487:; 1483:; 1461:, 1451:; 1423:17 1421:, 1417:, 1383:; 1365:; 1341:50 1339:, 1303:96 1301:. 1294:. 1265:^ 1250:^ 1207:^ 1176:^ 1164:. 1156:, 840:A 785:: 318:: 70:. 56:G, 1535:. 1516:: 1495:6 1476:. 1469:: 1429:: 1405:. 1375:. 1347:: 1315:. 1309:: 1277:. 1260:. 1225:. 1202:. 1129:3 1126:, 1123:3 1119:K 1096:5 1092:K 1067:3 1064:+ 1061:k 1041:k 1020:6 1017:K 951:k 939:k 935:k 923:H 919:k 915:H 911:k 901:. 889:) 886:G 883:( 874:) 871:H 868:( 855:G 851:H 831:. 827:n 821:n 816:; 812:n 806:n 801:; 797:n 791:n 777:. 775:R 767:G 759:; 753:G 745:; 739:G 725:G 715:G 685:0 677:j 674:, 671:i 667:M 646:j 643:= 640:i 620:0 617:= 612:j 609:, 606:i 602:X 581:0 578:= 575:X 572:M 550:) 547:n 544:( 539:R 531:) 526:j 523:, 520:i 516:X 512:( 509:= 506:X 483:M 472:; 460:E 454:} 451:j 448:, 445:i 442:{ 422:0 419:= 414:j 411:, 408:i 404:M 383:E 377:} 374:j 371:, 368:i 365:{ 345:0 337:j 334:, 331:i 327:M 306:j 300:i 280:j 277:, 274:i 248:) 245:n 242:( 237:R 229:) 224:j 221:, 218:i 214:M 210:( 207:= 204:M 177:) 174:G 171:( 148:} 145:n 142:, 136:, 133:1 130:{ 127:= 124:V 104:) 101:E 98:, 95:V 92:( 89:= 86:G 39:) 36:G 33:(

Index

graph
Yves Colin de Verdière
eigenvalue
Schrödinger operators
corank
symmetric matrix
linear forest
outerplanar
planar
linklessly embeddable
complement
minor
Robertson–Seymour theorem
Colin de Verdière (1990)
forbidden minors
Petersen family
linklessly embeddable graphs
Heawood family
Colin de Verdière (1990)
colored
2-colored
outerplanar graphs
planar graphs
four color theorem
linklessly embeddable graphs
Neil Robertson
Paul Seymour
Robin Thomas
1993
Hadwiger conjecture

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.