Knowledge

Objective-collapse theory

Source đź“ť

1036:: Diósi and Penrose formulated the idea that gravity is responsible for the collapse of the wave function. Penrose argued that, in a quantum gravity scenario where a spatial superposition creates the superposition of two different spacetime curvatures, gravity does not tolerate such superpositions and spontaneously collapses them. He also provided a phenomenological formula for the collapse time. Independently and prior to Penrose, Diósi presented a dynamical model that collapses the wave function with the same time scale suggested by Penrose. 1151:. Two distinct problems have been discussed in the literature. The first is the “bare” tails problem: it is not clear how to interpret these tails because they amount to the system never being really fully localized in space. A special case of this problem is known as the “counting anomaly”. Supporters of collapse theories mostly dismiss this criticism as a misunderstanding of the theory, as in the context of dynamical collapse theories, the absolute square of the wave function is interpreted as an actual matter density. In this case, the 1028:: The Schrödinger equation is supplemented with a nonlinear and stochastic diffusion process driven by a suitably chosen universal noise coupled to the mass-density of the system, which counteracts the quantum spread of the wave function. As for the GRW model, the larger the system, the stronger the collapse, thus explaining the quantum-to-classical transition as a progressive breakdown of quantum linearity, when the system's mass increases. The CSL model is formulated in terms of identical particles. 1020:: It is assumed that each constituent of a physical system independently undergoes spontaneous collapses. The collapses are random in time, distributed according to a Poisson distribution; they are random in space and are more likely to occur where the wave function is larger. In between collapses, the wave function evolves according to the Schrödinger equation. For composite systems, the collapse on each constituent causes the collapse of the center of mass wave functions. 3881: 1116:
This is often presented as an unavoidable consequence of Heisenberg's uncertainty principle: the collapse in position causes a larger uncertainty in momentum. This explanation is wrong; in collapse theories the collapse in position also determines a localization in momentum, driving the wave function
1094:
They are based on the fact that the collapse noise, besides collapsing the wave function, also induces a diffusion on top of particles’ motion, which acts always, also when the wave function is already localized. Experiments of this kind involve cold atoms, opto-mechanical systems, gravitational wave
1063:
on each constituent of a physical system. Accordingly, the kinetic energy increases at a faint but constant rate. Such a feature can be modified, without altering the collapse properties, by including appropriate dissipative effects in the dynamics. This is achieved for the GRW, CSL and QMUPL models,
931:
In collapse theories, the Schrödinger equation is supplemented with additional nonlinear and stochastic terms (spontaneous collapses) which localize the wave function in space. The resulting dynamics is such that for microscopic isolated systems, the new terms have a negligible effect; therefore, the
1146:
In all collapse theories, the wave function is never fully contained within one (small) region of space, because the Schrödinger term of the dynamics will always spread it outside. Therefore, wave functions always contain tails stretching out to infinity, although their “weight” is smaller in larger
1133:
One of the biggest challenges in collapse theories is to make them compatible with relativistic requirements. The GRW, CSL and DP models are not. The biggest difficulty is how to combine the nonlocal character of the collapse, which is necessary in order to make it compatible with the experimentally
1052:
in the continuous models. The models can be generalized to include arbitrary (colored) noises, possibly with a frequency cutoff: the CSL model has been extended to its colored version (cCSL), as well as the QMUPL model (cQMUPL). In these new models the collapse properties remain basically unaltered,
1075:
Collapse models modify the Schrödinger equation; therefore, they make predictions that differ from standard quantum mechanical predictions. Although the deviations are difficult to detect, there is a growing number of experiments searching for spontaneous collapse effects. They can be classified in
1124:
Still, in the dissipative model the energy is not strictly conserved. A resolution to this situation might come by considering also the noise a dynamical variable with its own energy, which is exchanged with the quantum system in such a way that the energy of the total system and noise together is
982:
Philip Pearle's 1976 paper pioneered the quantum nonlinear stochastic equations to model the collapse of the wave function in a dynamical way; this formalism was later used for the CSL model. However, these models lacked the character of “universality” of the dynamics, i.e. its applicability to an
935:
An inbuilt amplification mechanism makes sure that for macroscopic systems consisting of many particles, the collapse becomes stronger than the quantum dynamics. Then their wave function is always well-localized in space, so well-localized that it behaves, for all practical purposes, like a point
1120:
This is the same situation as in classical Brownian motion, and similarly this increase can be stopped by adding dissipative effects. Dissipative versions of the QMUPL, GRW and CSL model exist, where the collapse properties are left unaltered with respect to the original models, while the energy
998:
In 1990 the efforts for the GRW group on one side, and of P. Pearle on the other side, were brought together in formulating the Continuous Spontaneous Localization (CSL) model, where the Schrödinger dynamics and a randomly fluctuating classical field produce collapse into spatially localized
986:
The next major advance came in 1986, when Ghirardi, Rimini and Weber published the paper with the meaningful title “Unified dynamics for microscopic and macroscopic systems”, where they presented what is now known as the GRW model, after the initials of the authors. The model has two guiding
1083:
They are refined versions of the double-slit experiment, showing the wave nature of matter (and light). The modern versions are meant to increase the mass of the system, the time of flight, and/or the delocalization distance in order to create ever larger superpositions. The most prominent
1159:
matter. This leads into the second problem, however, the so-called “structured tails problem”: it is not clear how to interpret these tails because even though their “amount of matter” is small, that matter is structured like a perfectly legitimate world. Thus, after the box is opened and
1160:
Schroedinger’s cat has collapsed to the “alive” state, there still exists a tail of the wavefunction containing “low matter” entity structured like a dead cat. Collapse theorists have offered a range of possible solutions to the structured tails problem, but it remains an open problem.
1134:
verified violation of Bell inequalities, with the relativistic principle of locality. Models exist that attempt to generalize in a relativistic sense the GRW and CSL models, but their status as relativistic theories is still unclear. The formulation of a proper
1040:
The Quantum Mechanics with Universal Position Localization (QMUPL) model should also be mentioned; an extension of the GRW model for identical particles formulated by Tumulka, which proves several important mathematical results regarding the collapse equations.
117: 1117:
to an almost minimum uncertainty state both in position and in momentum, compatibly with Heisenberg's principle. The reason the energy increases is that the collapse noise diffuses the particle, thus accelerating it.
1002:
In the late 1980s and 1990s, Diosi and Penrose and others independently formulated the idea that the wave function collapse is related to gravity. The dynamical equation is structurally similar to the CSL equation.
1112:
According to collapse theories, energy is not conserved, also for isolated particles. More precisely, in the GRW, CSL and DP models the kinetic energy increases at a constant rate, which is small but non-zero.
932:
usual quantum properties are recovered, apart from very tiny deviations. Such deviations can potentially be detected in dedicated experiments, and efforts are increasing worldwide towards testing them.
939:
In this sense, collapse models provide a unified description of microscopic and macroscopic systems, avoiding the conceptual problems associated to measurements in quantum theory.
1668:
Ghirardi, Gian Carlo; Pearle, Philip; Rimini, Alberto (1990). "Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles".
1256:
Bassi, Angelo; Lochan, Kinjalk; Satin, Seema; Singh, Tejinder P.; Ulbricht, Hendrik (2013). "Models of wave-function collapse, underlying theories, and experimental tests".
3110: 2144:
Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties".
3678: 3905: 3311: 383: 1056:
In all collapse models, the noise effect cannot be described within quantum-mechanics. Instead it must prevent quantum mechanical linearity and unitarity.
884: 3849: 1024: 951: 3861: 3160: 916:, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the 591: 135: 47: 928:
is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.
3545: 3103: 364: 3479: 547: 1389: 1016: 946: 3402: 913: 470: 1170: 3070: 3133: 3096: 920:, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the 130: 983:
arbitrary physical system (at least at the non-relativistic level), a necessary condition for any model to become a viable option.
3243: 1225: 219: 3525: 3520: 326: 306: 3816: 3228: 877: 174: 3500: 1067:
Lastly, the QMUPL model was further generalized to include both colored noise as well as dissipative effects (dcQMUPL model).
1064:
obtaining their dissipative counterparts (dGRW, dCSL, dQMUPL). In these new models, the energy thermalizes to a finite value.
296: 3828: 566: 3377: 2714:
Ghirardi, G. C.; Grassi, R.; Pearle, P. (1990). "Relativistic dynamical reduction models: General framework and examples".
3806: 3583: 3505: 3273: 3143: 606: 344: 244: 3540: 359: 3910: 3474: 3469: 3440: 3138: 2649:
Carlesso, Matteo; Donadi, Sandro; Ferialdi, Luca; Paternostro, Mauro; Ulbricht, Hendrik; Bassi, Angelo (February 2022).
542: 537: 508: 140: 3515: 321: 311: 3608: 2083:
Adler, Stephen L; Bassi, Angelo (2008). "Collapse models with non-white noises: II. Particle-density coupled noises".
576: 3425: 2316:
Smirne, Andrea; Vacchini, Bassano; Bassi, Angelo (2014). "Dissipative extension of the Ghirardi-Rimini-Weber model".
493: 1032: 956: 3884: 3646: 3454: 1175: 963: 870: 522: 3357: 3293: 441: 3668: 3535: 3420: 3336: 3186: 1180: 994:
The modification must reduce superpositions for macroscopic objects without altering the microscopic predictions.
488: 416: 339: 199: 2458:
Bassi, Angelo; Ippoliti, Emiliano; Vacchini, Bassano (2005). "On the energy increase in space-collapse models".
3735: 3715: 3705: 3695: 3651: 3211: 611: 3064:, Stanford Encyclopedia of Philosophy (First published Thu Mar 7, 2002; substantive revision Fri May 15, 2020) 1622:
Pearle, Philip (1989). "Combining stochastic dynamical state-vector reduction with spontaneous localization".
3844: 3430: 3392: 3341: 1371: 917: 780: 498: 456: 406: 354: 120: 1579:
Ghirardi, G. C.; Rimini, A.; Weber, T. (1986). "Unified dynamics for microscopic and macroscopic systems".
3755: 3530: 3510: 3435: 3331: 3288: 1230: 1106: 785: 503: 411: 331: 301: 264: 2580:
Ferialdi, Luca; Bassi, Angelo (2012). "Exact Solution for a Non-Markovian Dissipative Quantum Dynamics".
3780: 3278: 3258: 2998:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
1185: 1045: 1044:
In all models listed so far, the noise responsible for the collapse is Markovian (memoryless): either a
967: 254: 239: 3181: 1059:
In collapse models the energy is not conserved, because the noise responsible for the collapse induces
166: 1711:
DiĂłsi, L. (1987). "A universal master equation for the gravitational violation of quantum mechanics".
991:
The position basis states are used in the dynamic state reduction (the "preferred basis" is position);
3811: 3740: 3685: 3415: 3223: 3015: 2906:"Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?" 2784: 2723: 2672: 2599: 2538: 2477: 2403: 2335: 2224: 2163: 2102: 2041: 1924: 1869: 1814: 1760: 1720: 1677: 1631: 1588: 1550: 1499: 1464: 1336: 1275: 1195: 815: 571: 483: 209: 3796: 3765: 3710: 3690: 3598: 3555: 3410: 3321: 3248: 3238: 3150: 1220: 1215: 1205: 1200: 1190: 909: 670: 478: 396: 224: 204: 156: 1414:
Bassi, Angelo; Lochan, Kinjalk; Satin, Seema; Singh, Tejinder P.; Ulbricht, Hendrik (2013-04-02).
3725: 3623: 3316: 3263: 3155: 3039: 3005: 2917: 2808: 2774: 2747: 2696: 2662: 2631: 2589: 2562: 2528: 2501: 2467: 2393: 2359: 2325: 2275: 2256: 2214: 2187: 2153: 2126: 2092: 2065: 2031: 2004: 1978: 1948: 1914: 1838: 1523: 1427: 1352: 1326: 1299: 1265: 1135: 391: 316: 249: 161: 3856: 1121:
thermalizes to a finite value (therefore it can even decrease, depending on its initial value).
3866: 3775: 3745: 3673: 3636: 3631: 3613: 3578: 3568: 3372: 3268: 3233: 3216: 3119: 3031: 2974: 2935: 2886: 2847: 2800: 2739: 2688: 2623: 2615: 2554: 2493: 2437: 2419: 2351: 2295: 2248: 2240: 2179: 2118: 2057: 1996: 1940: 1887: 1830: 1784: 1776: 1693: 1647: 1604: 1515: 1455:
Pearle, Philip (1976). "Reduction of the state vector by a nonlinear Schr\"odinger equation".
1385: 1291: 825: 800: 740: 735: 635: 601: 581: 179: 38: 2205:
Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian Quantum Trajectories: An Exact Result".
3593: 3588: 3445: 3326: 3023: 2966: 2927: 2878: 2839: 2792: 2731: 2680: 2607: 2546: 2485: 2427: 2411: 2343: 2287: 2232: 2171: 2110: 2049: 1988: 1932: 1905:
Tumulka, Roderich (2006). "On spontaneous wave function collapse and quantum field theory".
1877: 1822: 1768: 1728: 1685: 1639: 1596: 1558: 1507: 1472: 1437: 1377: 1344: 1283: 830: 820: 810: 710: 690: 675: 645: 513: 401: 3823: 3750: 3730: 3700: 3663: 3658: 3563: 3387: 2519:
Ferialdi, Luca; Bassi, Angelo (2012). "Dissipative collapse models with nonwhite noises".
1235: 1060: 855: 725: 705: 451: 291: 2954: 2866: 2827: 2114: 3019: 2905: 2788: 2727: 2676: 2603: 2542: 2481: 2407: 2339: 2228: 2167: 2106: 2045: 1928: 1873: 1818: 1764: 1751:
DiĂłsi, L. (1989). "Models for universal reduction of macroscopic quantum fluctuations".
1724: 1681: 1635: 1592: 1554: 1503: 1468: 1340: 1279: 1147:
systems. Critics of collapse theories argue that it is not clear how to interpret these
3801: 3770: 3760: 3382: 3362: 3191: 2765:
Tumulka, Roderich (2006). "A Relativistic Version of the Ghirardi–Rimini–Weber Model".
2432: 2381: 925: 790: 750: 730: 700: 680: 630: 596: 446: 436: 229: 2651:"Present status and future challenges of non-interferometric tests of collapse models" 2489: 2291: 2053: 1992: 1373:
Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy
1348: 3899: 3720: 3573: 3464: 3367: 3283: 3253: 3206: 2751: 2700: 2650: 2566: 2191: 2130: 2069: 1732: 1527: 1415: 1356: 1303: 971: 921: 850: 845: 775: 745: 715: 586: 532: 259: 234: 3043: 2812: 2635: 2505: 2363: 2260: 2008: 1952: 1842: 3603: 3201: 3196: 2611: 2236: 1907:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
840: 835: 770: 755: 720: 214: 3061: 2022:
Adler, Stephen L; Bassi, Angelo (2007). "Collapse models with non-white noises".
1969:
Bassi, Angelo (2005). "Collapse models: analysis of the free particle dynamics".
1541:
Pearle, Philip (1984). "Experimental tests of dynamical state-vector reduction".
17: 3641: 3027: 1210: 1049: 805: 760: 695: 650: 2684: 2550: 2347: 2276:"Testing the limits of quantum mechanics: motivation, state of play, prospects" 2175: 1416:"Models of wave-function collapse, underlying theories, and experimental tests" 2993: 2796: 1882: 1857: 1441: 1287: 795: 765: 685: 660: 655: 640: 3035: 2978: 2939: 2890: 2851: 2804: 2743: 2692: 2619: 2558: 2497: 2423: 2355: 2299: 2244: 2183: 2122: 2061: 2000: 1944: 1891: 1834: 1780: 1772: 1643: 1519: 1381: 1295: 112:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 3495: 3176: 2970: 2882: 2843: 1600: 1562: 1476: 286: 2931: 2627: 2441: 2252: 1936: 1689: 2955:"Discussion. More about dynamical reduction and the enumeration principle" 1788: 1697: 1651: 1608: 2922: 2779: 2472: 1983: 1919: 1331: 1317:
Bassi, Angelo; Ghirardi, GianCarlo (2003). "Dynamical reduction models".
665: 2735: 1826: 1805:
Penrose, Roger (1996). "On Gravity's role in Quantum State Reduction".
1511: 1138:
theory of continuous objective collapse is still a matter of research.
1085: 2415: 1858:"On the Gravitization of Quantum Mechanics 1: Quantum State Reduction" 3088: 3010: 2867:"Discussion. Losing your marbles in wavefunction collapse theories" 2667: 2594: 2533: 2398: 2330: 2219: 2158: 2097: 2036: 1432: 1270: 3092: 3071:"Physics Experiments Spell Doom for Quantum 'Collapse' Theory" 2382:"Dissipative Continuous Spontaneous Localization (CSL) model" 1490:
Pearle, Philip (1979). "Toward explaining why events occur".
1053:
but specific physical predictions can change significantly.
1011:
Three models are most widely discussed in the literature:
1084:
experiments of this kind are with atoms, molecules and
2994:"Four Tails Problems for Dynamical Collapse Theories" 50: 3837: 3789: 3622: 3554: 3488: 3401: 3350: 3304: 3169: 3126: 942:The most well-known examples of such theories are: 2085:Journal of Physics A: Mathematical and Theoretical 2024:Journal of Physics A: Mathematical and Theoretical 111: 2959:The British Journal for the Philosophy of Science 2910:The British Journal for the Philosophy of Science 2871:The British Journal for the Philosophy of Science 2832:The British Journal for the Philosophy of Science 1409: 1407: 1405: 1403: 1401: 1155:merely represent an immeasurably small amount of 2828:"Quantum Mechanics, Orthogonality, and Counting" 1025:Continuous spontaneous localization (CSL) model 952:Continuous spontaneous localization (CSL) model 2460:Journal of Physics A: Mathematical and General 1971:Journal of Physics A: Mathematical and General 3104: 878: 8: 1492:International Journal of Theoretical Physics 1100:Problems and criticisms to collapse theories 936:moving in space according to Newton's laws. 106: 80: 3111: 3097: 3089: 1376:(2 ed.). Cambridge University Press. 885: 871: 29: 3009: 2921: 2778: 2666: 2593: 2532: 2471: 2431: 2397: 2329: 2218: 2157: 2096: 2035: 1982: 1918: 1881: 1431: 1330: 1269: 962:Collapse theories stand in opposition to 98: 87: 86: 72: 57: 49: 910:measurement problem in quantum mechanics 1248: 54: 37: 2380:Smirne, Andrea; Bassi, Angelo (2015). 966:, in that they hold that a process of 2453: 2451: 2375: 2373: 2311: 2309: 1964: 1962: 1800: 1798: 1746: 1744: 1742: 1663: 1661: 7: 3906:Interpretations of quantum mechanics 2280:Journal of Physics: Condensed Matter 1574: 1572: 914:interpretations of quantum mechanics 2953:Bassi, A.; Ghirardi, G.-C. (1999). 2904:Ghirardi, G. C.; Bassi, A. (1999). 1171:Interpretation of quantum mechanics 1095:detectors, underground experiments. 964:many-worlds interpretation theories 27:Interpretation of quantum mechanics 1807:General Relativity and Gravitation 1105:Violation of the principle of the 974:and removes unobserved behaviour. 417:Sum-over-histories (path integral) 103: 77: 33:Part of a series of articles about 25: 1017:Ghirardi–Rimini–Weber (GRW) model 947:Ghirardi–Rimini–Weber (GRW) model 3880: 3879: 2865:Clifton, R.; Monton, B. (1999). 1226:Measurement in quantum mechanics 1092:Non-interferometric experiments. 1048:in the discrete GRW model, or a 908:, are proposed solutions to the 3829:Relativistic quantum mechanics 2767:Journal of Statistical Physics 2612:10.1103/PhysRevLett.108.170404 2237:10.1103/PhysRevLett.103.050403 2115:10.1088/1751-8113/41/39/395308 970:curtails the branching of the 567:Relativistic quantum mechanics 99: 92: 73: 1: 3807:Quantum statistical mechanics 3584:Quantum differential calculus 3506:Delayed-choice quantum eraser 3274:Symmetry in quantum mechanics 1349:10.1016/S0370-1573(03)00103-0 607:Quantum statistical mechanics 1733:10.1016/0375-9601(87)90681-5 1129:Relativistic collapse models 1081:Interferometric experiments. 978:History of collapse theories 3609:Quantum stochastic calculus 3599:Quantum measurement problem 3521:Mach–Zehnder interferometer 3028:10.1016/j.shpsb.2014.12.001 2992:McQueen, Kelvin J. (2015). 2490:10.1088/0305-4470/38/37/007 2292:10.1088/0953-8984/14/15/201 2274:Leggett, A J (2002-04-22). 2054:10.1088/1751-8113/40/50/012 1993:10.1088/0305-4470/38/14/008 902:spontaneous collapse models 898:Objective-collapse theories 577:Quantum information science 3927: 2685:10.1038/s41567-021-01489-5 2551:10.1103/PhysRevA.86.022108 2348:10.1103/PhysRevA.90.062135 2176:10.1103/PhysRevA.80.012116 1176:Many-worlds interpretation 924:describing the state of a 906:dynamical reduction models 3875: 3669:Quantum complexity theory 3647:Quantum cellular automata 3337:Path integral formulation 2797:10.1007/s10955-006-9227-3 1883:10.1007/s10701-013-9770-0 1442:10.1103/RevModPhys.85.471 1420:Reviews of Modern Physics 1288:10.1103/RevModPhys.85.471 1258:Reviews of Modern Physics 1181:Philosophy of information 3736:Quantum machine learning 3716:Quantum key distribution 3706:Quantum image processing 3696:Quantum error correction 3546:Wheeler's delayed choice 2826:Lewis, Peter J. (1997). 1773:10.1103/PhysRevA.40.1165 1644:10.1103/PhysRevA.39.2277 1382:10.1017/cbo9780511815676 1071:Tests of collapse models 1033:DiĂłsi–Penrose (DP) model 957:DiĂłsi–Penrose (DP) model 612:Quantum machine learning 365:Wheeler's delayed-choice 3652:Quantum finite automata 2582:Physical Review Letters 2207:Physical Review Letters 1856:Penrose, Roger (2014). 1601:10.1103/PhysRevD.34.470 1563:10.1103/PhysRevD.29.235 1477:10.1103/PhysRevD.13.857 322:Leggett–Garg inequality 3756:Quantum neural network 2716:Foundations of Physics 1937:10.1098/rspa.2005.1636 1862:Foundations of Physics 1690:10.1103/PhysRevA.42.78 1231:Wave function collapse 1107:conservation of energy 968:wave function collapse 113: 3781:Quantum teleportation 3294:Wave–particle duality 2971:10.1093/bjps/50.4.719 2883:10.1093/bjps/50.4.697 2844:10.1093/bjps/48.3.313 1186:Philosophy of physics 307:Elitzur–Vaidman 297:Davisson–Germer 114: 3812:Quantum field theory 3741:Quantum metamaterial 3686:Quantum cryptography 3416:Consistent histories 3060:Giancarlo Ghirardi, 2932:10.1093/bjps/50.1.49 1370:Bell, J. S. (2004). 1196:Quantum entanglement 918:Schrödinger equation 572:Quantum field theory 484:Consistent histories 121:Schrödinger equation 48: 3911:Quantum measurement 3797:Quantum fluctuation 3766:Quantum programming 3726:Quantum logic gates 3711:Quantum information 3691:Quantum electronics 3151:Classical mechanics 3020:2015SHPMP..49...10M 2789:2006JSP...125..821T 2728:1990FoPh...20.1271G 2677:2022NatPh..18..243C 2604:2012PhRvL.108q0404F 2543:2012PhRvA..86b2108F 2482:2005JPhA...38.8017B 2408:2015NatSR...512518S 2340:2014PhRvA..90f2135S 2229:2009PhRvL.103e0403B 2168:2009PhRvA..80a2116B 2107:2008JPhA...41M5308A 2046:2007JPhA...4015083A 2030:(50): 15083–15098. 1929:2006RSPSA.462.1897T 1913:(2070): 1897–1908. 1874:2014FoPh...44..557P 1819:1996GReGr..28..581P 1765:1989PhRvA..40.1165D 1725:1987PhLA..120..377D 1682:1990PhRvA..42...78G 1636:1989PhRvA..39.2277P 1593:1986PhRvD..34..470G 1555:1984PhRvD..29..235P 1504:1979IJTP...18..489P 1469:1976PhRvD..13..857P 1341:2003PhR...379..257B 1280:2013RvMP...85..471B 1221:Measurement problem 1216:Quantum Zeno effect 1206:Quantum decoherence 1201:Coherence (physics) 1191:Quantum information 1007:Most popular models 360:Stern–Gerlach 157:Classical mechanics 3850:in popular culture 3632:Quantum algorithms 3480:Von Neumann–Wigner 3460:Objective collapse 3156:Old quantum theory 2736:10.1007/BF01883487 2386:Scientific Reports 1827:10.1007/BF02105068 1512:10.1007/BF00670504 548:Von Neumann–Wigner 528:Objective-collapse 327:Mach–Zehnder 317:Leggett inequality 312:Franck–Hertz 162:Old quantum theory 109: 3893: 3892: 3867:Quantum mysticism 3845:Schrödinger's cat 3776:Quantum simulator 3746:Quantum metrology 3674:Quantum computing 3637:Quantum amplifier 3614:Quantum spacetime 3579:Quantum cosmology 3569:Quantum chemistry 3269:Scattering theory 3217:Zero-point energy 3212:Degenerate levels 3120:Quantum mechanics 3062:Collapse Theories 2722:(11): 1271–1316. 2521:Physical Review A 2466:(37): 8017–8038. 2416:10.1038/srep12518 2318:Physical Review A 2286:(15): R415–R451. 2146:Physical Review A 1977:(14): 3173–3192. 1753:Physical Review A 1713:Physics Letters A 1670:Physical Review A 1624:Physical Review A 1581:Physical Review D 1543:Physical Review D 1457:Physical Review D 1391:978-0-521-52338-7 1136:Lorentz-covariant 912:. As with other 895: 894: 602:Scattering theory 582:Quantum computing 355:Schrödinger's cat 287:Bell's inequality 95: 70: 39:Quantum mechanics 18:Collapse theories 16:(Redirected from 3918: 3883: 3882: 3594:Quantum geometry 3589:Quantum dynamics 3446:Superdeterminism 3378:Rarita–Schwinger 3327:Matrix mechanics 3182:Bra–ket notation 3113: 3106: 3099: 3090: 3085: 3083: 3082: 3048: 3047: 3013: 2989: 2983: 2982: 2950: 2944: 2943: 2925: 2923:quant-ph/9810041 2901: 2895: 2894: 2862: 2856: 2855: 2823: 2817: 2816: 2782: 2780:quant-ph/0406094 2762: 2756: 2755: 2711: 2705: 2704: 2670: 2646: 2640: 2639: 2597: 2577: 2571: 2570: 2536: 2516: 2510: 2509: 2475: 2473:quant-ph/0506083 2455: 2446: 2445: 2435: 2401: 2377: 2368: 2367: 2333: 2313: 2304: 2303: 2271: 2265: 2264: 2222: 2202: 2196: 2195: 2161: 2141: 2135: 2134: 2100: 2080: 2074: 2073: 2039: 2019: 2013: 2012: 1986: 1984:quant-ph/0410222 1966: 1957: 1956: 1922: 1920:quant-ph/0508230 1902: 1896: 1895: 1885: 1853: 1847: 1846: 1802: 1793: 1792: 1759:(3): 1165–1174. 1748: 1737: 1736: 1708: 1702: 1701: 1665: 1656: 1655: 1630:(5): 2277–2289. 1619: 1613: 1612: 1576: 1567: 1566: 1538: 1532: 1531: 1487: 1481: 1480: 1452: 1446: 1445: 1435: 1411: 1396: 1395: 1367: 1361: 1360: 1334: 1332:quant-ph/0302164 1325:(5–6): 257–426. 1314: 1308: 1307: 1273: 1253: 887: 880: 873: 514:Superdeterminism 167:Bra–ket notation 118: 116: 115: 110: 102: 97: 96: 88: 76: 71: 69: 58: 30: 21: 3926: 3925: 3921: 3920: 3919: 3917: 3916: 3915: 3896: 3895: 3894: 3889: 3871: 3857:Wigner's friend 3833: 3824:Quantum gravity 3785: 3771:Quantum sensing 3751:Quantum network 3731:Quantum machine 3701:Quantum imaging 3664:Quantum circuit 3659:Quantum channel 3618: 3564:Quantum biology 3550: 3526:Elitzur–Vaidman 3501:Davisson–Germer 3484: 3436:Hidden-variable 3426:de Broglie–Bohm 3403:Interpretations 3397: 3346: 3300: 3187:Complementarity 3165: 3122: 3117: 3080: 3078: 3075:Quanta Magazine 3069: 3057: 3052: 3051: 2991: 2990: 2986: 2952: 2951: 2947: 2903: 2902: 2898: 2864: 2863: 2859: 2825: 2824: 2820: 2764: 2763: 2759: 2713: 2712: 2708: 2648: 2647: 2643: 2579: 2578: 2574: 2518: 2517: 2513: 2457: 2456: 2449: 2379: 2378: 2371: 2315: 2314: 2307: 2273: 2272: 2268: 2204: 2203: 2199: 2143: 2142: 2138: 2082: 2081: 2077: 2021: 2020: 2016: 1968: 1967: 1960: 1904: 1903: 1899: 1855: 1854: 1850: 1804: 1803: 1796: 1750: 1749: 1740: 1710: 1709: 1705: 1667: 1666: 1659: 1621: 1620: 1616: 1578: 1577: 1570: 1540: 1539: 1535: 1489: 1488: 1484: 1454: 1453: 1449: 1413: 1412: 1399: 1392: 1369: 1368: 1364: 1319:Physics Reports 1316: 1315: 1311: 1255: 1254: 1250: 1245: 1240: 1236:Quantum gravity 1166: 1144: 1131: 1110: 1102: 1073: 1061:Brownian motion 1046:Poisson process 1009: 980: 891: 862: 861: 860: 625: 617: 616: 562: 561:Advanced topics 554: 553: 552: 504:Hidden-variable 494:de Broglie–Bohm 473: 471:Interpretations 463: 462: 461: 431: 423: 422: 421: 379: 371: 370: 369: 336: 292:CHSH inequality 281: 273: 272: 271: 200:Complementarity 194: 186: 185: 184: 152: 123: 62: 46: 45: 28: 23: 22: 15: 12: 11: 5: 3924: 3922: 3914: 3913: 3908: 3898: 3897: 3891: 3890: 3888: 3887: 3876: 3873: 3872: 3870: 3869: 3864: 3859: 3854: 3853: 3852: 3841: 3839: 3835: 3834: 3832: 3831: 3826: 3821: 3820: 3819: 3809: 3804: 3802:Casimir effect 3799: 3793: 3791: 3787: 3786: 3784: 3783: 3778: 3773: 3768: 3763: 3761:Quantum optics 3758: 3753: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3708: 3703: 3698: 3693: 3688: 3683: 3682: 3681: 3671: 3666: 3661: 3656: 3655: 3654: 3644: 3639: 3634: 3628: 3626: 3620: 3619: 3617: 3616: 3611: 3606: 3601: 3596: 3591: 3586: 3581: 3576: 3571: 3566: 3560: 3558: 3552: 3551: 3549: 3548: 3543: 3538: 3536:Quantum eraser 3533: 3528: 3523: 3518: 3513: 3508: 3503: 3498: 3492: 3490: 3486: 3485: 3483: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3451: 3450: 3449: 3448: 3433: 3428: 3423: 3418: 3413: 3407: 3405: 3399: 3398: 3396: 3395: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3354: 3352: 3348: 3347: 3345: 3344: 3339: 3334: 3329: 3324: 3319: 3314: 3308: 3306: 3302: 3301: 3299: 3298: 3297: 3296: 3291: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3236: 3231: 3226: 3221: 3220: 3219: 3214: 3209: 3204: 3194: 3192:Density matrix 3189: 3184: 3179: 3173: 3171: 3167: 3166: 3164: 3163: 3158: 3153: 3148: 3147: 3146: 3136: 3130: 3128: 3124: 3123: 3118: 3116: 3115: 3108: 3101: 3093: 3087: 3086: 3066: 3065: 3056: 3055:External links 3053: 3050: 3049: 2984: 2965:(4): 719–734. 2945: 2896: 2877:(4): 697–717. 2857: 2838:(3): 313–328. 2818: 2773:(4): 821–840. 2757: 2706: 2661:(3): 243–250. 2655:Nature Physics 2641: 2588:(17): 170404. 2572: 2511: 2447: 2369: 2305: 2266: 2197: 2136: 2091:(39): 395308. 2075: 2014: 1958: 1897: 1868:(5): 557–575. 1848: 1813:(5): 581–600. 1794: 1738: 1719:(8): 377–381. 1703: 1657: 1614: 1587:(2): 470–491. 1568: 1549:(2): 235–240. 1533: 1498:(7): 489–518. 1482: 1463:(4): 857–868. 1447: 1426:(2): 471–527. 1397: 1390: 1362: 1309: 1264:(2): 471–527. 1247: 1246: 1244: 1241: 1239: 1238: 1233: 1228: 1223: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1167: 1165: 1162: 1143: 1140: 1130: 1127: 1109: 1103: 1101: 1098: 1097: 1096: 1089: 1072: 1069: 1038: 1037: 1029: 1021: 1008: 1005: 999:eigentstates. 996: 995: 992: 979: 976: 960: 959: 954: 949: 926:quantum system 893: 892: 890: 889: 882: 875: 867: 864: 863: 859: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 627: 626: 623: 622: 619: 618: 615: 614: 609: 604: 599: 597:Density matrix 594: 589: 584: 579: 574: 569: 563: 560: 559: 556: 555: 551: 550: 545: 540: 535: 530: 525: 520: 519: 518: 517: 516: 501: 496: 491: 486: 481: 475: 474: 469: 468: 465: 464: 460: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 409: 404: 399: 394: 388: 387: 386: 380: 377: 376: 373: 372: 368: 367: 362: 357: 351: 350: 349: 348: 347: 345:Delayed-choice 340:Quantum eraser 335: 334: 329: 324: 319: 314: 309: 304: 299: 294: 289: 283: 282: 279: 278: 275: 274: 270: 269: 268: 267: 257: 252: 247: 242: 237: 232: 230:Quantum number 227: 222: 217: 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 171: 170: 169: 164: 159: 153: 150: 149: 146: 145: 144: 143: 138: 133: 125: 124: 119: 108: 105: 101: 94: 91: 85: 82: 79: 75: 68: 65: 61: 56: 53: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3923: 3912: 3909: 3907: 3904: 3903: 3901: 3886: 3878: 3877: 3874: 3868: 3865: 3863: 3860: 3858: 3855: 3851: 3848: 3847: 3846: 3843: 3842: 3840: 3836: 3830: 3827: 3825: 3822: 3818: 3815: 3814: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3794: 3792: 3788: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3721:Quantum logic 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3702: 3699: 3697: 3694: 3692: 3689: 3687: 3684: 3680: 3677: 3676: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3653: 3650: 3649: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3629: 3627: 3625: 3621: 3615: 3612: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3575: 3574:Quantum chaos 3572: 3570: 3567: 3565: 3562: 3561: 3559: 3557: 3553: 3547: 3544: 3542: 3541:Stern–Gerlach 3539: 3537: 3534: 3532: 3529: 3527: 3524: 3522: 3519: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3493: 3491: 3487: 3481: 3478: 3476: 3475:Transactional 3473: 3471: 3468: 3466: 3465:Quantum logic 3463: 3461: 3458: 3456: 3453: 3447: 3444: 3443: 3442: 3439: 3438: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3412: 3409: 3408: 3406: 3404: 3400: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3355: 3353: 3349: 3343: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3313: 3310: 3309: 3307: 3303: 3295: 3292: 3290: 3287: 3286: 3285: 3284:Wave function 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3259:Superposition 3257: 3255: 3254:Quantum state 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3222: 3218: 3215: 3213: 3210: 3208: 3207:Excited state 3205: 3203: 3200: 3199: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3174: 3172: 3168: 3162: 3159: 3157: 3154: 3152: 3149: 3145: 3142: 3141: 3140: 3137: 3135: 3132: 3131: 3129: 3125: 3121: 3114: 3109: 3107: 3102: 3100: 3095: 3094: 3091: 3076: 3072: 3068: 3067: 3063: 3059: 3058: 3054: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3012: 3007: 3003: 2999: 2995: 2988: 2985: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2949: 2946: 2941: 2937: 2933: 2929: 2924: 2919: 2915: 2911: 2907: 2900: 2897: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2861: 2858: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2822: 2819: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2781: 2776: 2772: 2768: 2761: 2758: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2710: 2707: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2669: 2664: 2660: 2656: 2652: 2645: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2596: 2591: 2587: 2583: 2576: 2573: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2535: 2530: 2527:(2): 022108. 2526: 2522: 2515: 2512: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2474: 2469: 2465: 2461: 2454: 2452: 2448: 2443: 2439: 2434: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2400: 2395: 2391: 2387: 2383: 2376: 2374: 2370: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2332: 2327: 2324:(6): 062135. 2323: 2319: 2312: 2310: 2306: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2267: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2221: 2216: 2213:(5): 050403. 2212: 2208: 2201: 2198: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2160: 2155: 2152:(1): 012116. 2151: 2147: 2140: 2137: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2104: 2099: 2094: 2090: 2086: 2079: 2076: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2043: 2038: 2033: 2029: 2025: 2018: 2015: 2010: 2006: 2002: 1998: 1994: 1990: 1985: 1980: 1976: 1972: 1965: 1963: 1959: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1921: 1916: 1912: 1908: 1901: 1898: 1893: 1889: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1801: 1799: 1795: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1745: 1743: 1739: 1734: 1730: 1726: 1722: 1718: 1714: 1707: 1704: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1664: 1662: 1658: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1618: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1573: 1569: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1486: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1448: 1443: 1439: 1434: 1429: 1425: 1421: 1417: 1410: 1408: 1406: 1404: 1402: 1398: 1393: 1387: 1383: 1379: 1375: 1374: 1366: 1363: 1358: 1354: 1350: 1346: 1342: 1338: 1333: 1328: 1324: 1320: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1272: 1267: 1263: 1259: 1252: 1249: 1242: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1168: 1163: 1161: 1158: 1154: 1150: 1142:Tails problem 1141: 1139: 1137: 1128: 1126: 1122: 1118: 1114: 1108: 1104: 1099: 1093: 1090: 1087: 1082: 1079: 1078: 1077: 1070: 1068: 1065: 1062: 1057: 1054: 1051: 1047: 1042: 1035: 1034: 1030: 1027: 1026: 1022: 1019: 1018: 1014: 1013: 1012: 1006: 1004: 1000: 993: 990: 989: 988: 984: 977: 975: 973: 972:wave function 969: 965: 958: 955: 953: 950: 948: 945: 944: 943: 940: 937: 933: 929: 927: 923: 922:wave function 919: 915: 911: 907: 903: 900:, also known 899: 888: 883: 881: 876: 874: 869: 868: 866: 865: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 628: 621: 620: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 587:Quantum chaos 585: 583: 580: 578: 575: 573: 570: 568: 565: 564: 558: 557: 549: 546: 544: 543:Transactional 541: 539: 536: 534: 533:Quantum logic 531: 529: 526: 524: 521: 515: 512: 511: 510: 507: 506: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 476: 472: 467: 466: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 389: 385: 382: 381: 375: 374: 366: 363: 361: 358: 356: 353: 352: 346: 343: 342: 341: 338: 337: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 284: 277: 276: 266: 263: 262: 261: 260:Wave function 258: 256: 253: 251: 248: 246: 243: 241: 240:Superposition 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 172: 168: 165: 163: 160: 158: 155: 154: 148: 147: 142: 139: 137: 134: 132: 129: 128: 127: 126: 122: 89: 83: 66: 63: 59: 51: 44: 43: 40: 36: 32: 31: 19: 3604:Quantum mind 3516:Franck–Hertz 3459: 3358:Klein–Gordon 3312:Formulations 3305:Formulations 3234:Interference 3224:Entanglement 3202:Ground state 3197:Energy level 3170:Fundamentals 3134:Introduction 3079:. Retrieved 3077:. 2022-10-20 3074: 3001: 2997: 2987: 2962: 2958: 2948: 2916:(1): 49–64. 2913: 2909: 2899: 2874: 2870: 2860: 2835: 2831: 2821: 2770: 2766: 2760: 2719: 2715: 2709: 2658: 2654: 2644: 2585: 2581: 2575: 2524: 2520: 2514: 2463: 2459: 2392:(1): 12518. 2389: 2385: 2321: 2317: 2283: 2279: 2269: 2210: 2206: 2200: 2149: 2145: 2139: 2088: 2084: 2078: 2027: 2023: 2017: 1974: 1970: 1910: 1906: 1900: 1865: 1861: 1851: 1810: 1806: 1756: 1752: 1716: 1712: 1706: 1676:(1): 78–89. 1673: 1669: 1627: 1623: 1617: 1584: 1580: 1546: 1542: 1536: 1495: 1491: 1485: 1460: 1456: 1450: 1423: 1419: 1372: 1365: 1322: 1318: 1312: 1261: 1257: 1251: 1156: 1152: 1148: 1145: 1132: 1123: 1119: 1115: 1111: 1091: 1080: 1076:two groups: 1074: 1066: 1058: 1055: 1043: 1039: 1031: 1023: 1015: 1010: 1001: 997: 987:principles: 985: 981: 961: 941: 938: 934: 930: 905: 901: 897: 896: 527: 442:Klein–Gordon 378:Formulations 215:Energy level 210:Entanglement 193:Fundamentals 180:Interference 131:Introduction 3862:EPR paradox 3642:Quantum bus 3511:Double-slit 3489:Experiments 3455:Many-worlds 3393:Schrödinger 3342:Phase space 3332:Schrödinger 3322:Interaction 3279:Uncertainty 3249:Nonlocality 3244:Measurement 3239:Decoherence 3229:Hamiltonian 1211:EPR paradox 1157:smeared-out 1125:conserved. 1050:white noise 831:von Neumann 816:Schrödinger 592:EPR paradox 523:Many-worlds 457:Schrödinger 412:Schrödinger 407:Phase-space 397:Interaction 302:Double-slit 280:Experiments 255:Uncertainty 225:Nonlocality 220:Measurement 205:Decoherence 175:Hamiltonian 3900:Categories 3790:Extensions 3624:Technology 3470:Relational 3421:Copenhagen 3317:Heisenberg 3264:Tunnelling 3127:Background 3081:2022-10-21 3011:1501.05778 2668:2203.04231 1243:References 826:Sommerfeld 741:Heisenberg 736:Gutzwiller 676:de Broglie 624:Scientists 538:Relational 489:Copenhagen 392:Heisenberg 250:Tunnelling 151:Background 3496:Bell test 3351:Equations 3177:Born rule 3036:1355-2198 3004:: 10–18. 2979:0007-0882 2940:0007-0882 2891:0007-0882 2852:0007-0882 2805:0022-4715 2752:123661865 2744:0015-9018 2701:246949254 2693:1745-2481 2620:0031-9007 2595:1204.4348 2567:119216571 2559:1050-2947 2534:1112.5065 2498:0305-4470 2424:2045-2322 2399:1408.6446 2356:1050-2947 2331:1408.6115 2300:0953-8984 2245:0031-9007 2220:0907.1615 2192:119297164 2184:1050-2947 2159:0901.1254 2131:118551622 2123:1751-8113 2098:0807.2846 2070:118366772 2062:1751-8113 2037:0708.3624 2001:0305-4470 1945:1364-5021 1892:0015-9018 1835:0001-7701 1781:0556-2791 1528:119407617 1520:0020-7748 1433:1204.4325 1357:119076099 1304:119261020 1296:0034-6861 1271:1204.4325 856:Zeilinger 701:Ehrenfest 430:Equations 107:⟩ 104:Ψ 93:^ 81:⟩ 78:Ψ 55:ℏ 3885:Category 3679:Timeline 3431:Ensemble 3411:Bayesian 3373:Majorana 3289:Collapse 3161:Glossary 3144:Timeline 3044:55718585 2813:13923422 2636:16746767 2628:22680843 2506:43241594 2442:26243034 2364:52232273 2261:25021141 2253:19792469 2009:37142667 1953:16123332 1843:44038399 1164:See also 781:Millikan 706:Einstein 691:Davisson 646:Blackett 631:Aharonov 499:Ensemble 479:Bayesian 384:Overview 265:Collapse 245:Symmetry 136:Glossary 3838:Related 3817:History 3556:Science 3388:Rydberg 3139:History 3016:Bibcode 2785:Bibcode 2724:Bibcode 2673:Bibcode 2600:Bibcode 2539:Bibcode 2478:Bibcode 2433:4525142 2404:Bibcode 2336:Bibcode 2225:Bibcode 2164:Bibcode 2103:Bibcode 2042:Bibcode 1925:Bibcode 1870:Bibcode 1815:Bibcode 1789:9902248 1761:Bibcode 1721:Bibcode 1698:9903779 1678:Bibcode 1652:9901493 1632:Bibcode 1609:9957165 1589:Bibcode 1551:Bibcode 1500:Bibcode 1465:Bibcode 1337:Bibcode 1276:Bibcode 1086:phonons 821:Simmons 811:Rydberg 776:Moseley 756:Kramers 746:Hilbert 731:Glauber 726:Feynman 711:Everett 681:Compton 452:Rydberg 141:History 3531:Popper 3042:  3034:  2977:  2938:  2889:  2850:  2811:  2803:  2750:  2742:  2699:  2691:  2634:  2626:  2618:  2565:  2557:  2504:  2496:  2440:  2430:  2422:  2362:  2354:  2298:  2259:  2251:  2243:  2190:  2182:  2129:  2121:  2068:  2060:  2007:  1999:  1951:  1943:  1890:  1841:  1833:  1787:  1779:  1696:  1650:  1607:  1526:  1518:  1388:  1355:  1302:  1294:  851:Zeeman 846:Wigner 796:Planck 766:Landau 751:Jordan 402:Matrix 332:Popper 3441:Local 3383:Pauli 3363:Dirac 3040:S2CID 3006:arXiv 2918:arXiv 2809:S2CID 2775:arXiv 2748:S2CID 2697:S2CID 2663:arXiv 2632:S2CID 2590:arXiv 2563:S2CID 2529:arXiv 2502:S2CID 2468:arXiv 2394:arXiv 2360:S2CID 2326:arXiv 2257:S2CID 2215:arXiv 2188:S2CID 2154:arXiv 2127:S2CID 2093:arXiv 2066:S2CID 2032:arXiv 2005:S2CID 1979:arXiv 1949:S2CID 1915:arXiv 1839:S2CID 1524:S2CID 1428:arXiv 1353:S2CID 1327:arXiv 1300:S2CID 1266:arXiv 1153:tails 1149:tails 806:Raman 791:Pauli 786:Onnes 721:Fermi 696:Debye 686:Dirac 651:Bloch 641:Bethe 509:Local 447:Pauli 437:Dirac 235:State 3368:Weyl 3032:ISSN 2975:ISSN 2936:ISSN 2887:ISSN 2848:ISSN 2801:ISSN 2740:ISSN 2689:ISSN 2624:PMID 2616:ISSN 2555:ISSN 2494:ISSN 2438:PMID 2420:ISSN 2352:ISSN 2296:ISSN 2249:PMID 2241:ISSN 2180:ISSN 2119:ISSN 2058:ISSN 1997:ISSN 1941:ISSN 1888:ISSN 1831:ISSN 1785:PMID 1777:ISSN 1694:PMID 1648:PMID 1605:PMID 1516:ISSN 1386:ISBN 1292:ISSN 841:Wien 836:Weyl 801:Rabi 771:Laue 761:Lamb 716:Fock 671:Bose 666:Born 661:Bohr 656:Bohm 636:Bell 3024:doi 2967:doi 2928:doi 2879:doi 2840:doi 2793:doi 2771:125 2732:doi 2681:doi 2608:doi 2586:108 2547:doi 2486:doi 2428:PMC 2412:doi 2344:doi 2288:doi 2233:doi 2211:103 2172:doi 2111:doi 2050:doi 1989:doi 1933:doi 1911:462 1878:doi 1823:doi 1769:doi 1729:doi 1717:120 1686:doi 1640:doi 1597:doi 1559:doi 1508:doi 1473:doi 1438:doi 1378:doi 1345:doi 1323:379 1284:doi 904:or 3902:: 3073:. 3038:. 3030:. 3022:. 3014:. 3002:49 3000:. 2996:. 2973:. 2963:50 2961:. 2957:. 2934:. 2926:. 2914:50 2912:. 2908:. 2885:. 2875:50 2873:. 2869:. 2846:. 2836:48 2834:. 2830:. 2807:. 2799:. 2791:. 2783:. 2769:. 2746:. 2738:. 2730:. 2720:20 2718:. 2695:. 2687:. 2679:. 2671:. 2659:18 2657:. 2653:. 2630:. 2622:. 2614:. 2606:. 2598:. 2584:. 2561:. 2553:. 2545:. 2537:. 2525:86 2523:. 2500:. 2492:. 2484:. 2476:. 2464:38 2462:. 2450:^ 2436:. 2426:. 2418:. 2410:. 2402:. 2388:. 2384:. 2372:^ 2358:. 2350:. 2342:. 2334:. 2322:90 2320:. 2308:^ 2294:. 2284:14 2282:. 2278:. 2255:. 2247:. 2239:. 2231:. 2223:. 2209:. 2186:. 2178:. 2170:. 2162:. 2150:80 2148:. 2125:. 2117:. 2109:. 2101:. 2089:41 2087:. 2064:. 2056:. 2048:. 2040:. 2028:40 2026:. 2003:. 1995:. 1987:. 1975:38 1973:. 1961:^ 1947:. 1939:. 1931:. 1923:. 1909:. 1886:. 1876:. 1866:44 1864:. 1860:. 1837:. 1829:. 1821:. 1811:28 1809:. 1797:^ 1783:. 1775:. 1767:. 1757:40 1755:. 1741:^ 1727:. 1715:. 1692:. 1684:. 1674:42 1672:. 1660:^ 1646:. 1638:. 1628:39 1626:. 1603:. 1595:. 1585:34 1583:. 1571:^ 1557:. 1547:29 1545:. 1522:. 1514:. 1506:. 1496:18 1494:. 1471:. 1461:13 1459:. 1436:. 1424:85 1422:. 1418:. 1400:^ 1384:. 1351:. 1343:. 1335:. 1321:. 1298:. 1290:. 1282:. 1274:. 1262:85 1260:. 3112:e 3105:t 3098:v 3084:. 3046:. 3026:: 3018:: 3008:: 2981:. 2969:: 2942:. 2930:: 2920:: 2893:. 2881:: 2854:. 2842:: 2815:. 2795:: 2787:: 2777:: 2754:. 2734:: 2726:: 2703:. 2683:: 2675:: 2665:: 2638:. 2610:: 2602:: 2592:: 2569:. 2549:: 2541:: 2531:: 2508:. 2488:: 2480:: 2470:: 2444:. 2414:: 2406:: 2396:: 2390:5 2366:. 2346:: 2338:: 2328:: 2302:. 2290:: 2263:. 2235:: 2227:: 2217:: 2194:. 2174:: 2166:: 2156:: 2133:. 2113:: 2105:: 2095:: 2072:. 2052:: 2044:: 2034:: 2011:. 1991:: 1981:: 1955:. 1935:: 1927:: 1917:: 1894:. 1880:: 1872:: 1845:. 1825:: 1817:: 1791:. 1771:: 1763:: 1735:. 1731:: 1723:: 1700:. 1688:: 1680:: 1654:. 1642:: 1634:: 1611:. 1599:: 1591:: 1565:. 1561:: 1553:: 1530:. 1510:: 1502:: 1479:. 1475:: 1467:: 1444:. 1440:: 1430:: 1394:. 1380:: 1359:. 1347:: 1339:: 1329:: 1306:. 1286:: 1278:: 1268:: 1088:. 886:e 879:t 872:v 100:| 90:H 84:= 74:| 67:t 64:d 60:d 52:i 20:)

Index

Collapse theories
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer
Double-slit
Elitzur–Vaidman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑