Knowledge (XXG)

Rank (linear algebra)

Source 📝

1325: 769: 1320:{\displaystyle {\begin{aligned}{\begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix}}&\xrightarrow {2R_{1}+R_{2}\to R_{2}} {\begin{bmatrix}1&2&1\\0&1&3\\3&5&0\end{bmatrix}}\xrightarrow {-3R_{1}+R_{3}\to R_{3}} {\begin{bmatrix}1&2&1\\0&1&3\\0&-1&-3\end{bmatrix}}\\&\xrightarrow {R_{2}+R_{3}\to R_{3}} \,\,{\begin{bmatrix}1&2&1\\0&1&3\\0&0&0\end{bmatrix}}\xrightarrow {-2R_{2}+R_{1}\to R_{1}} {\begin{bmatrix}1&0&-5\\0&1&3\\0&0&0\end{bmatrix}}~.\end{aligned}}} 6398: 3494:. (The order of a minor is the side-length of the square sub-matrix of which it is the determinant.) Like the decomposition rank characterization, this does not give an efficient way of computing the rank, but it is useful theoretically: a single non-zero minor witnesses a lower bound (namely its order) for the rank of the matrix, which can be useful (for example) to prove that certain operations do not lower the rank of a matrix. 6662: 5114: 1969: 4746: 663:. Row operations do not change the row space (hence do not change the row rank), and, being invertible, map the column space to an isomorphic space (hence do not change the column rank). Once in row echelon form, the rank is clearly the same for both row rank and column rank, and equals the number of 3511:
submatrix with non-zero determinant) shows that the rows and columns of that submatrix are linearly independent, and thus those rows and columns of the full matrix are linearly independent (in the full matrix), so the row and column rank are at least as large as the determinantal rank; however, the
4951: 1359:), which are still more numerically robust than Gaussian elimination. Numerical determination of rank requires a criterion for deciding when a value, such as a singular value from the SVD, should be treated as zero, a practical choice which depends on both the matrix and the application. 1760: 4502: 4887: 4629: 3970: 606: 4376: 4578: 3210: 764: 2184: 502: 407: 5140:. If on the other hand, the ranks of these two matrices are equal, then the system must have at least one solution. The solution is unique if and only if the rank equals the number of variables. Otherwise the general solution has 1395:
possibly bordered by rows and columns of zeros. Again, this changes neither the row rank nor the column rank. It is immediate that both the row and column ranks of this resulting matrix is the number of its nonzero entries.
279: 4235: 2636: 5800: 4406: 4122: 4046: 5721: 5109:{\displaystyle \operatorname {rank} (A)=\operatorname {rank} ({\overline {A}})=\operatorname {rank} (A^{\mathrm {T} })=\operatorname {rank} (A^{*})=\operatorname {rank} (A^{*}A)=\operatorname {rank} (AA^{*}).} 5148:
is the difference between the number of variables and the rank. In this case (and assuming the system of equations is in the real or complex numbers) the system of equations has infinitely many solutions.
5432: 5233:, and thus matrices all have tensor order 2. More precisely, matrices are tensors of type (1,1), having one row index and one column index, also called covariant order 1 and contravariant order 1; see 3314: 3264: 3121: 3063: 2902: 2844: 413:, so the rank is at least 2, but since the third is a linear combination of the first two (the first column plus the second), the three columns are linearly dependent so the rank must be less than 3. 5548: 3754: 774: 4799: 3892: 1964:{\displaystyle 0=c_{1}A\mathbf {x} _{1}+c_{2}A\mathbf {x} _{2}+\cdots +c_{r}A\mathbf {x} _{r}=A(c_{1}\mathbf {x} _{1}+c_{2}\mathbf {x} _{2}+\cdots +c_{r}\mathbf {x} _{r})=A\mathbf {v} ,} 510: 1372:
The fact that the column and row ranks of any matrix are equal forms is fundamental in linear algebra. Many proofs have been given. One of the most elementary ones has been sketched in
4301: 4509: 3359: 5625: 677: 319: 2088: 419: 4804: 2450: 332: 4924: 3471: 5319: 3528:
of the vectors): the equivalence implies that a subset of the rows and a subset of the columns simultaneously define an invertible submatrix (equivalently, if the span of
624:, the statement that the column rank of a matrix equals its row rank is equivalent to the statement that the rank of a matrix is equal to the rank of its transpose, i.e., 2961: 2931: 3606: 2491: 5550:
is well-defined and injective. We thus obtain the inequality in terms of dimensions of kernel, which can then be converted to the inequality in terms of ranks by the
3141: 222: 299: 213: 4741:{\displaystyle \operatorname {rank} (A^{\mathrm {T} }A)=\operatorname {rank} (AA^{\mathrm {T} })=\operatorname {rank} (A)=\operatorname {rank} (A^{\mathrm {T} }).} 2994: 2743: 1391:
of a matrix has the same row rank and the same column rank as the original matrix. Further elementary column operations allow putting the matrix in the form of an
3410:. Unfortunately, this definition does not suggest an efficient manner to compute the rank (for which it is better to use one of the alternative definitions). See 5648: 5741: 5668: 5572: 2531: 2511: 2401: 4165: 3364:
As in the case of the "dimension of image" characterization, this can be generalized to a definition of the rank of any linear map: the rank of a linear map
180:
if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be
5198:
generalizes to arbitrary tensors; for tensors of order greater than 2 (matrices are order 2 tensors), rank is very hard to compute, unlike for matrices.
4071: 3995: 6256: 5187:, where column rank, row rank, dimension of column space, and dimension of row space of a matrix may be different from the others or may not exist. 5345: 5175:, the rank of the communication matrix of a function gives bounds on the amount of communication needed for two parties to compute the function. 3512:
converse is less straightforward. The equivalence of determinantal rank and column rank is a strengthening of the statement that if the span of
6647: 2576: 5445: 6212: 6129: 6103: 6051: 6011: 3703: 161:
A fundamental result in linear algebra is that the column rank and the row rank are always equal. (Three proofs of this result are given in
5746: 5673: 6174: 6147: 6069: 6039: 5987: 6186: 6159: 6081: 5258: 6178: 6151: 6073: 6043: 6637: 5244:
necessary to express the matrix as a linear combination, and that this definition does agree with matrix rank as here discussed.
6599: 6535: 3269: 3219: 3076: 3018: 2857: 2799: 1356: 504:
has rank 1: there are nonzero columns, so the rank is positive, but any pair of columns is linearly dependent. Similarly, the
4497:{\displaystyle \operatorname {rank} (AB)+\operatorname {rank} (BC)\leq \operatorname {rank} (B)+\operatorname {rank} (ABC).} 5129: 6121: 5234: 6377: 6249: 5263: 5202: 3625: 3621: 3431: 3427: 1348: 65:. This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the " 6482: 6332: 4761: 2643: 2409: 81:. There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics. 6387: 6281: 5214: 5125: 131: 70: 2533:. This definition has the advantage that it can be applied to any linear map without need for a specific matrix. 6627: 6276: 4382: 3557: 660: 6502: 6222: 5551: 5339: 4604: 3582:
rank 1 matrices, where a matrix is defined to have rank 1 if and only if it can be written as a nonzero product
2558: 1347:) can be unreliable, and a rank-revealing decomposition should be used instead. An effective alternative is the 6619: 6225: 5172: 1388: 1380: 46: 5124:
One useful application of calculating the rank of a matrix is the computation of the number of solutions of a
2455: 6686: 6665: 6372: 6242: 3326: 1617:, this establishes the reverse inequality and we obtain the equality of the row rank and the column rank of 1578: 6429: 6362: 6352: 5577: 4882:{\displaystyle 0=\mathbf {x} ^{\mathrm {T} }A^{\mathrm {T} }A\mathbf {x} =\left|A\mathbf {x} \right|^{2}.} 4265: 3487: 1689: 304: 6589: 6444: 6434: 6367: 6312: 74: 165:, below.) This number (i.e., the number of linearly independent rows or columns) is simply called the 115:
In this section, we give some definitions of the rank of a matrix. Many definitions are possible; see
3965:{\displaystyle \operatorname {rank} (AB)\leq \min(\operatorname {rank} (A),\operatorname {rank} (B)).} 1734:. To see why, consider a linear homogeneous relation involving these vectors with scalar coefficients 6454: 6419: 6406: 6297: 5944: 5868: 4902: 3437: 1731: 1384: 650: 58: 39: 601:{\displaystyle A^{\mathrm {T} }={\begin{bmatrix}1&-1\\1&-1\\0&0\\2&-2\end{bmatrix}}} 6632: 6512: 6487: 6337: 3816: 2369: 1415:; it is based upon Mackiw (1995). Both proofs can be found in the book by Banerjee and Roy (2014). 1404: 216: 5295: 4371:{\displaystyle \operatorname {rank} (A)+\operatorname {rank} (B)-n\leq \operatorname {rank} (AB).} 188:
of a matrix is the difference between the lesser of the number of rows and columns, and the rank.
6342: 6113: 5961: 5184: 5137: 3790: 3411: 3001: 1622: 1400: 1327:
The final matrix (in reduced row echelon form) has two non-zero rows and thus the rank of matrix
6230: 4573:{\displaystyle \operatorname {rank} (A+B)\leq \operatorname {rank} (A)+\operatorname {rank} (B)} 3205:{\displaystyle (1)\Leftrightarrow (2)\Leftrightarrow (3)\Leftrightarrow (4)\Leftrightarrow (5)} 2940: 2910: 655:
A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally
6540: 6497: 6424: 6317: 6208: 6182: 6155: 6125: 6099: 6077: 6047: 6007: 5983: 5273: 5268: 4941: 3857: 3585: 1379:
It is straightforward to show that neither the row rank nor the column rank are changed by an
410: 5627:; apply this inequality to the subspace defined by the orthogonal complement of the image of 759:{\displaystyle A={\begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix}}} 6545: 6449: 6302: 5953: 5877: 5133: 3524:
of those vectors span the space (equivalently, that one can choose a spanning set that is a
2550: 2179:{\displaystyle c_{1}\mathbf {x} _{1}+c_{2}\mathbf {x} _{2}+\cdots +c_{r}\mathbf {x} _{r}=0.} 1352: 1344: 656: 497:{\displaystyle A={\begin{bmatrix}1&1&0&2\\-1&-1&0&-2\end{bmatrix}}} 284: 198: 6604: 6397: 6357: 6347: 5210: 5161: 4896: 4749: 4600: 4258: 2970: 2719: 1392: 66: 5229:, which is called tensor rank. Tensor order is the number of indices required to write a 766:
can be put in reduced row-echelon form by using the following elementary row operations:
402:{\displaystyle {\begin{bmatrix}1&0&1\\0&1&1\\0&1&1\end{bmatrix}}} 5630: 6609: 6594: 6530: 6265: 5726: 5653: 5557: 5153: 2516: 2496: 2404: 2386: 1340: 31: 5183:
There are different generalizations of the concept of rank to matrices over arbitrary
6680: 6642: 6565: 6525: 6492: 6472: 6031: 5965: 5241: 5165: 5157: 1408: 664: 6221:
Kaw, Autar K. Two Chapters from the book Introduction to Matrix Algebra: 1. Vectors
5866:
Mackiw, G. (1995), "A Note on the Equality of the Column and Row Rank of a Matrix",
1597:. This result can be applied to any matrix, so apply the result to the transpose of 1399:
We present two other proofs of this result. The first uses only basic properties of
6575: 6464: 6414: 6307: 6139: 6091: 5957: 5881: 5253: 5226: 4615: 2647: 1412: 135: 50: 6555: 6520: 6477: 6322: 6061: 5195: 4623: 3780: 3686: 3617: 3561: 1648: 1545:
is the matrix which contains the multiples for the bases of the column space of
54: 274:{\displaystyle \operatorname {rank} (\Phi ):=\dim(\operatorname {img} (\Phi ))} 6584: 6327: 5206: 2055: 192: 6382: 3430:, which is the same as the number of non-zero diagonal elements in Σ in the 2689: 617: 505: 151: 1351:(SVD), but there are other less computationally expensive choices, such as 17: 6550: 4230:{\displaystyle XAY={\begin{bmatrix}I_{r}&0\\0&0\\\end{bmatrix}},} 2631:{\displaystyle \mathbf {c} _{1},\mathbf {c} _{2},\dots ,\mathbf {c} _{k}} 5191: 4603:
of the matrix equals the number of columns of the matrix. (This is the
3689: 6560: 5982:, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, 5230: 2346:
to get the reverse inequality and conclude as in the previous proof.
5795:{\displaystyle \operatorname {rank} (AB)-\operatorname {rank} (ABC)} 1196: 1088: 963: 854: 4117:{\displaystyle \operatorname {rank} (CA)=\operatorname {rank} (A).} 4041:{\displaystyle \operatorname {rank} (AB)=\operatorname {rank} (A).} 5716:{\displaystyle \operatorname {rank} (B)-\operatorname {rank} (BC)} 6234: 5240:
The tensor rank of a matrix can also mean the minimum number of
2561:
states that this definition is equivalent to the preceding one.
6238: 2062:
and, hence, is orthogonal to every vector in the row space of
5427:{\displaystyle \dim \ker(AB)\leq \dim \ker(A)+\dim \ker(B).} 57:) by its columns. This corresponds to the maximal number of 5942:
Wardlaw, William P. (2005), "Row Rank Equals Column Rank",
5156:, the rank of a matrix can be used to determine whether a 1407:. The proof is based upon Wardlaw (2005). The second uses 3309:{\displaystyle \mathbf {c} _{1},\ldots ,\mathbf {c} _{k}} 3259:{\displaystyle \mathbf {c} _{1},\ldots ,\mathbf {c} _{k}} 3116:{\displaystyle \mathbf {r} _{1},\ldots ,\mathbf {r} _{k}} 3058:{\displaystyle \mathbf {r} _{1},\ldots ,\mathbf {r} _{k}} 2897:{\displaystyle \mathbf {c} _{1},\ldots ,\mathbf {c} _{k}} 2839:{\displaystyle \mathbf {c} _{1},\ldots ,\mathbf {c} _{k}} 667:(or basic columns) and also the number of non-zero rows. 5543:{\displaystyle C:\ker(ABC)/\ker(BC)\to \ker(AB)/\ker(B)} 4752:. The null space of the Gram matrix is given by vectors 3478:
Determinantal rank – size of largest non-vanishing minor
6171:
Linear Algebra: An Introduction to Abstract Mathematics
3749:{\displaystyle \operatorname {rank} (A)\leq \min(m,n).} 2024:
is a linear combination of vectors in the row space of
1343:
computations on computers, basic Gaussian elimination (
162: 4186: 2684:
is the maximal number of linearly independent rows of
2573:
is the maximal number of linearly independent columns
1246: 1134: 1013: 901: 782: 692: 534: 434: 341: 5749: 5729: 5676: 5656: 5633: 5580: 5560: 5448: 5348: 5298: 4954: 4905: 4807: 4764: 4632: 4588:
are of the same dimension. As a consequence, a rank-
4512: 4409: 4304: 4168: 4074: 3998: 3895: 3706: 3588: 3548:
coordinates on which they are linearly independent).
3440: 3329: 3272: 3222: 3144: 3079: 3021: 2973: 2943: 2913: 2860: 2802: 2722: 2579: 2519: 2499: 2458: 2412: 2389: 2091: 1763: 1525:
th column is formed from the coefficients giving the
772: 680: 513: 422: 335: 307: 287: 225: 201: 5905: 5322: 2664:, which is in fact just the image of the linear map 2318:
linearly independent vectors in the column space of
6618: 6574: 6511: 6463: 6405: 6290: 2354:In all the definitions in this section, the matrix 2201:and so are linearly independent. This implies that 100:; sometimes the parentheses are not written, as in 5794: 5735: 5715: 5662: 5642: 5619: 5566: 5542: 5426: 5313: 5108: 4918: 4881: 4793: 4740: 4572: 4496: 4370: 4229: 4116: 4040: 3964: 3748: 3600: 3465: 3353: 3308: 3258: 3204: 3115: 3057: 2988: 2955: 2925: 2896: 2838: 2737: 2630: 2525: 2505: 2485: 2444: 2395: 2178: 1963: 1319: 758: 600: 496: 401: 313: 293: 273: 207: 5980:Linear Algebra and Matrix Analysis for Statistics 2322:and, hence, the dimension of the column space of 612:has rank 1. Indeed, since the column vectors of 5132:, the system is inconsistent if the rank of the 4794:{\displaystyle A^{\mathrm {T} }A\mathbf {x} =0.} 3917: 3725: 3138:Indeed, the following equivalences are obvious: 1485:can be expressed as a linear combination of the 1373: 4748:This can be shown by proving equality of their 3361:that the row rank is equal to the column rank. 1655:. Therefore, the dimension of the row space of 4378:This is a special case of the next inequality. 3552:Tensor rank – minimum number of simple tensors 6250: 6203:Roger A. Horn and Charles R. Johnson (1985). 4801:If this condition is fulfilled, we also have 2342:. Now apply this result to the transpose of 2276:is obviously a vector in the column space of 8: 2066:. The facts (a) and (b) together imply that 1593:is less than or equal to the column rank of 116: 6098:(4th ed.). Orthogonal Publishing L3C. 3390:can be written as the composition of a map 3212:. For example, to prove (3) from (2), take 2197:were chosen as a basis of the row space of 2072:is orthogonal to itself, which proves that 1387:proceeds by elementary row operations, the 6257: 6243: 6235: 4134:if and only if there exists an invertible 5748: 5728: 5675: 5655: 5632: 5579: 5559: 5520: 5476: 5447: 5347: 5297: 5094: 5063: 5038: 5012: 5011: 4982: 4953: 4906: 4904: 4870: 4860: 4843: 4833: 4832: 4821: 4820: 4815: 4806: 4780: 4770: 4769: 4763: 4725: 4724: 4680: 4679: 4647: 4646: 4631: 4511: 4408: 4303: 4193: 4181: 4167: 4073: 3997: 3894: 3705: 3587: 3457: 3439: 3328: 3300: 3295: 3279: 3274: 3271: 3250: 3245: 3229: 3224: 3221: 3143: 3107: 3102: 3086: 3081: 3078: 3049: 3044: 3028: 3023: 3020: 2972: 2942: 2912: 2888: 2883: 2867: 2862: 2859: 2830: 2825: 2809: 2804: 2801: 2721: 2622: 2617: 2601: 2596: 2586: 2581: 2578: 2518: 2498: 2457: 2436: 2423: 2411: 2388: 2164: 2159: 2152: 2133: 2128: 2121: 2108: 2103: 2096: 2090: 1953: 1938: 1933: 1926: 1907: 1902: 1895: 1882: 1877: 1870: 1851: 1846: 1836: 1817: 1812: 1802: 1789: 1784: 1774: 1762: 1601:. Since the row rank of the transpose of 1241: 1233: 1220: 1207: 1129: 1128: 1127: 1119: 1106: 1093: 1008: 1000: 987: 974: 896: 888: 875: 862: 777: 773: 771: 687: 679: 529: 519: 518: 512: 429: 421: 336: 334: 306: 286: 224: 200: 163:§ Proofs that column rank = row rank 27:Dimension of the column space of a matrix 6118:A (Terse) Introduction to Linear Algebra 5978:Banerjee, Sudipto; Roy, Anindya (2014), 5893: 5861: 5859: 5225:Matrix rank should not be confused with 5213:. It is equal to the linear rank of the 2654:(the column space being the subspace of 1609:and the column rank of the transpose of 1573:form a spanning set of the row space of 1561:is given by a linear combination of the 301:is the dimension of a vector space, and 6229:Mike Brookes: Matrix Reference Manual. 5917: 5815: 5285: 2565:Column rank – dimension of column space 6648:Comparison of linear algebra libraries 5929: 5326: 3354:{\displaystyle (1)\Leftrightarrow (5)} 3266:from (2). To prove (2) from (3), take 409:has rank 2: the first two columns are 5837: 5822: 3650:matrix, and we define the linear map 3486:is the largest order of any non-zero 2338:is no larger than the column rank of 1463:be any basis for the column space of 7: 5833: 5831: 5620:{\displaystyle \dim(AM)\leq \dim(M)} 4592:matrix can be written as the sum of 314:{\displaystyle \operatorname {img} } 4626:are equal. Thus, for real matrices 3216:to be the matrix whose columns are 1589:. This proves that the row rank of 1467:. Place these as the columns of an 1411:and is valid for matrices over the 1376:. Here is a variant of this proof: 215:is defined as the dimension of its 184:if it does not have full rank. The 6175:Undergraduate Texts in Mathematics 6148:Undergraduate Texts in Mathematics 6070:Undergraduate Texts in Mathematics 6040:Undergraduate Texts in Mathematics 5906:Katznelson & Katznelson (2008) 5305: 5013: 4834: 4822: 4771: 4726: 4681: 4648: 4622:and the rank of its corresponding 3692:and cannot be greater than either 3450: 2773:matrix. In fact, for all integers 1403:of vectors, and is valid over any 1374:§ Rank from row echelon forms 1363:Proofs that column rank = row rank 520: 262: 235: 202: 25: 6116:; Katznelson, Yonatan R. (2008). 6004:An introduction to linear algebra 5323:Katznelson & Katznelson (2008 5259:Nonnegative rank (linear algebra) 4926:denotes the complex conjugate of 3793:(or "one-to-one") if and only if 3616:. This notion of rank is called 2676:Row rank – dimension of row space 2513:is the dimension of the image of 2018:. We make two observations: (a) 6661: 6660: 6638:Basic Linear Algebra Subprograms 6396: 6066:Finite-Dimensional Vector Spaces 5136:is greater than the rank of the 4861: 4844: 4816: 4781: 3540:of these vectors span the space 3418:Rank in terms of singular values 3323:It follows from the equivalence 3296: 3275: 3246: 3225: 3103: 3082: 3045: 3024: 2884: 2863: 2826: 2805: 2777:, the following are equivalent: 2618: 2597: 2582: 2445:{\displaystyle f:F^{n}\to F^{m}} 2160: 2129: 2104: 1954: 1934: 1903: 1878: 1847: 1813: 1785: 84:The rank is commonly denoted by 6536:Seven-dimensional cross product 4919:{\displaystyle {\overline {A}}} 4596:rank-1 matrices, but not fewer. 3620:; it can be generalized in the 3466:{\displaystyle A=U\Sigma V^{*}} 2688:; this is the dimension of the 2334:. This proves that row rank of 1553:), which are then used to form 1533:as a linear combination of the 1437:matrix. Let the column rank of 1419:Proof using linear combinations 1357:rank-revealing QR factorization 6207:. Cambridge University Press. 5958:10.1080/0025570X.2005.11953349 5882:10.1080/0025570X.1995.11996337 5789: 5777: 5765: 5756: 5710: 5701: 5689: 5683: 5614: 5608: 5596: 5587: 5537: 5531: 5517: 5508: 5499: 5496: 5487: 5473: 5461: 5418: 5412: 5394: 5388: 5370: 5361: 5308: 5302: 5292:Alternative notation includes 5100: 5084: 5072: 5056: 5044: 5031: 5019: 5004: 4992: 4979: 4967: 4961: 4732: 4717: 4705: 4699: 4687: 4669: 4657: 4639: 4599:The rank of a matrix plus the 4567: 4561: 4549: 4543: 4531: 4519: 4488: 4476: 4464: 4458: 4446: 4437: 4425: 4416: 4362: 4353: 4335: 4329: 4317: 4311: 4108: 4102: 4090: 4081: 4032: 4026: 4014: 4005: 3956: 3953: 3947: 3935: 3929: 3920: 3911: 3902: 3740: 3728: 3719: 3713: 3426:equals the number of non-zero 3348: 3342: 3339: 3336: 3330: 3199: 3193: 3190: 3187: 3181: 3178: 3175: 3169: 3166: 3163: 3157: 3154: 3151: 3145: 2541:Given the same linear mapping 2468: 2462: 2429: 1944: 1863: 1493:. This means that there is an 1226: 1112: 993: 881: 640:Computing the rank of a matrix 268: 265: 259: 250: 238: 232: 1: 6122:American Mathematical Society 5896:p. 200, ch. 3, Definition 2.1 5235:Tensor (intrinsic definition) 2330:) must be at least as big as 1557:as a whole. Now, each row of 6378:Eigenvalues and eigenvectors 6169:Valenza, Robert J. (1993) . 5825:pp. 111-112, §§ 3.115, 3.119 5314:{\displaystyle \rho (\Phi )} 5264:Rank (differential topology) 4987: 4911: 3626:singular value decomposition 3432:singular value decomposition 2660:generated by the columns of 2034:belongs to the row space of 1696:. We claim that the vectors 1349:singular value decomposition 4936:the conjugate transpose of 3827:(in this case, we say that 3819:(or "onto") if and only if 3801:(in this case, we say that 3772:; otherwise, the matrix is 3578:can be written as a sum of 3073:is a linear combination of 2854:is a linear combination of 2549:minus the dimension of the 1647:matrix with entries in the 645:Rank from row echelon forms 616:are the row vectors of the 6703: 5574:is a linear subspace then 5325:, p. 52, §2.5.1) and 5126:system of linear equations 3842:is a square matrix (i.e., 3555: 2850:such that every column of 2326:(i.e., the column rank of 2259:are linearly independent. 648: 71:system of linear equations 6656: 6394: 6272: 6036:Linear Algebra Done Right 3558:Tensor rank decomposition 3382:of an intermediate space 3378:is the minimal dimension 3130:is less than or equal to 2956:{\displaystyle k\times n} 2926:{\displaystyle m\times k} 2785:is less than or equal to 2403:, there is an associated 2368:matrix over an arbitrary 2079:or, by the definition of 1629:Proof using orthogonality 1569:. Therefore, the rows of 1368:Proof using row reduction 1355:with pivoting (so-called 661:elementary row operations 176:A matrix is said to have 6224:and System of Equations 5853:, ch. II, §10.12, p. 359 5190:Thinking of matrices as 5173:communication complexity 3601:{\displaystyle c\cdot r} 2708:is the smallest integer 2537:Rank in terms of nullity 2486:{\displaystyle f(x)=Ax.} 1389:reduced row echelon form 1381:elementary row operation 670:For example, the matrix 150:is the dimension of the 6144:Advanced Linear Algebra 6002:Mirsky, Leonid (1955). 3756:A matrix that has rank 3570:is the smallest number 3069:such that every row of 3000:is the rank, this is a 2350:Alternative definitions 2058:to every row vector of 1579:Steinitz exchange lemma 321:is the image of a map. 117:Alternative definitions 6363:Row and column vectors 6006:. Dover Publications. 5796: 5737: 5717: 5664: 5644: 5621: 5568: 5544: 5428: 5315: 5144:free parameters where 5130:Rouché–Capelli theorem 5110: 4920: 4883: 4795: 4742: 4574: 4498: 4381:The inequality due to 4372: 4231: 4118: 4042: 3966: 3750: 3624:interpretation of the 3602: 3532:vectors has dimension 3516:vectors has dimension 3467: 3355: 3310: 3260: 3206: 3117: 3059: 2990: 2957: 2927: 2898: 2840: 2739: 2632: 2545:as above, the rank is 2527: 2507: 2487: 2446: 2397: 2180: 1965: 1605:is the column rank of 1321: 760: 602: 498: 403: 315: 295: 275: 209: 119:for several of these. 6368:Row and column spaces 6313:Scalar multiplication 5797: 5738: 5718: 5670:, whose dimension is 5665: 5645: 5622: 5569: 5545: 5429: 5316: 5201:There is a notion of 5111: 4921: 4895:is a matrix over the 4884: 4796: 4743: 4614:is a matrix over the 4575: 4499: 4373: 4232: 4119: 4043: 3967: 3751: 3603: 3468: 3356: 3316:to be the columns of 3311: 3261: 3207: 3118: 3060: 2991: 2958: 2928: 2899: 2841: 2740: 2633: 2528: 2508: 2488: 2447: 2398: 2181: 2028:, which implies that 1966: 1322: 761: 603: 499: 404: 316: 296: 294:{\displaystyle \dim } 276: 210: 208:{\displaystyle \Phi } 75:linear transformation 6503:Gram–Schmidt process 6455:Gaussian elimination 6062:Halmos, Paul Richard 5945:Mathematics Magazine 5869:Mathematics Magazine 5747: 5727: 5674: 5654: 5631: 5578: 5558: 5554:. Alternatively, if 5552:rank–nullity theorem 5446: 5346: 5340:rank–nullity theorem 5329:, p. 90, § 50). 5296: 4952: 4903: 4805: 4762: 4630: 4605:rank–nullity theorem 4510: 4407: 4302: 4166: 4072: 3996: 3893: 3704: 3586: 3438: 3327: 3270: 3220: 3142: 3077: 3019: 2989:{\displaystyle A=CR} 2971: 2941: 2911: 2858: 2800: 2738:{\displaystyle A=CR} 2720: 2577: 2559:rank–nullity theorem 2517: 2497: 2456: 2410: 2387: 2186:But recall that the 2089: 1761: 1732:linearly independent 1692:of the row space of 1521:is the matrix whose 1385:Gaussian elimination 770: 678: 651:Gaussian elimination 511: 420: 411:linearly independent 333: 305: 285: 223: 199: 59:linearly independent 6633:Numerical stability 6513:Multilinear algebra 6488:Inner product space 6338:Linear independence 6114:Katznelson, Yitzhak 5221:Matrices as tensors 5128:. According to the 3608:of a column vector 2781:the column rank of 2716:can be factored as 2225:. It follows that 1613:is the row rank of 1401:linear combinations 1239: 1125: 1006: 894: 6343:Linear combination 5792: 5733: 5723:; its image under 5713: 5660: 5643:{\displaystyle BC} 5640: 5617: 5564: 5540: 5424: 5342:to the inequality 5311: 5138:coefficient matrix 5106: 4916: 4879: 4791: 4738: 4570: 4494: 4403:are defined, then 4368: 4268:’s rank inequality 4227: 4218: 4148:and an invertible 4114: 4038: 3962: 3746: 3598: 3544:there is a set of 3463: 3412:rank factorization 3351: 3306: 3256: 3202: 3113: 3055: 3002:rank factorization 2986: 2953: 2923: 2894: 2836: 2735: 2700:Decomposition rank 2628: 2523: 2503: 2483: 2442: 2393: 2379:Dimension of image 2358:is taken to be an 2176: 1961: 1651:whose row rank is 1623:Rank factorization 1581:, the row rank of 1541:. In other words, 1481:. Every column of 1317: 1315: 1301: 1186: 1071: 953: 840: 756: 750: 598: 592: 494: 488: 399: 393: 311: 291: 271: 205: 6674: 6673: 6541:Geometric algebra 6498:Kronecker product 6333:Linear projection 6318:Vector projection 6214:978-0-521-38632-6 6131:978-0-8218-4419-9 6105:978-1-944325-11-4 6053:978-3-319-11079-0 6013:978-0-486-66434-7 5736:{\displaystyle A} 5663:{\displaystyle B} 5567:{\displaystyle M} 5338:Proof: Apply the 5274:Linear dependence 5269:Multicollinearity 4990: 4914: 4618:then the rank of 3612:and a row vector 2526:{\displaystyle f} 2506:{\displaystyle A} 2396:{\displaystyle A} 2383:Given the matrix 1309: 1240: 1126: 1007: 895: 67:nondegenerateness 16:(Redirected from 6694: 6664: 6663: 6546:Exterior algebra 6483:Hadamard product 6400: 6388:Linear equations 6259: 6252: 6245: 6236: 6218: 6192: 6177:(3rd ed.). 6165: 6150:(2nd ed.). 6135: 6109: 6087: 6072:(2nd ed.). 6057: 6042:(3rd ed.). 6018: 6017: 5999: 5993: 5992: 5975: 5969: 5968: 5939: 5933: 5927: 5921: 5915: 5909: 5903: 5897: 5891: 5885: 5884: 5863: 5854: 5847: 5841: 5835: 5826: 5820: 5803: 5801: 5799: 5798: 5793: 5742: 5740: 5739: 5734: 5722: 5720: 5719: 5714: 5669: 5667: 5666: 5661: 5650:in the image of 5649: 5647: 5646: 5641: 5626: 5624: 5623: 5618: 5573: 5571: 5570: 5565: 5549: 5547: 5546: 5541: 5524: 5480: 5440: 5434: 5433: 5431: 5430: 5425: 5336: 5330: 5320: 5318: 5317: 5312: 5290: 5211:smooth manifolds 5171:In the field of 5147: 5143: 5134:augmented matrix 5115: 5113: 5112: 5107: 5099: 5098: 5068: 5067: 5043: 5042: 5018: 5017: 5016: 4991: 4983: 4947: 4939: 4935: 4929: 4925: 4923: 4922: 4917: 4915: 4907: 4894: 4888: 4886: 4885: 4880: 4875: 4874: 4869: 4865: 4864: 4847: 4839: 4838: 4837: 4827: 4826: 4825: 4819: 4800: 4798: 4797: 4792: 4784: 4776: 4775: 4774: 4757: 4747: 4745: 4744: 4739: 4731: 4730: 4729: 4686: 4685: 4684: 4653: 4652: 4651: 4621: 4613: 4595: 4591: 4587: 4583: 4579: 4577: 4576: 4571: 4503: 4501: 4500: 4495: 4402: 4396: 4390: 4377: 4375: 4374: 4369: 4297: 4287: 4283: 4273: 4257: 4247: 4236: 4234: 4233: 4228: 4223: 4222: 4198: 4197: 4161: 4157: 4147: 4143: 4133: 4129: 4123: 4121: 4120: 4115: 4067: 4063: 4053: 4047: 4045: 4044: 4039: 3991: 3987: 3977: 3971: 3969: 3968: 3963: 3888: 3878: 3871: 3867: 3863: 3855: 3851: 3841: 3830: 3826: 3822: 3814: 3807:full column rank 3804: 3800: 3796: 3788: 3768:is said to have 3767: 3755: 3753: 3752: 3747: 3699: 3695: 3684: 3670: 3653: 3649: 3639: 3622:separable models 3615: 3611: 3607: 3605: 3604: 3599: 3581: 3577: 3573: 3569: 3547: 3539: 3535: 3531: 3523: 3519: 3515: 3510: 3500: 3497:A non-vanishing 3493: 3485: 3474: 3472: 3470: 3469: 3464: 3462: 3461: 3425: 3409: 3399: 3389: 3385: 3381: 3377: 3360: 3358: 3357: 3352: 3319: 3315: 3313: 3312: 3307: 3305: 3304: 3299: 3284: 3283: 3278: 3265: 3263: 3262: 3257: 3255: 3254: 3249: 3234: 3233: 3228: 3215: 3211: 3209: 3208: 3203: 3133: 3129: 3126:the row rank of 3122: 3120: 3119: 3114: 3112: 3111: 3106: 3091: 3090: 3085: 3072: 3068: 3064: 3062: 3061: 3056: 3054: 3053: 3048: 3033: 3032: 3027: 3014: 3007: 2999: 2995: 2993: 2992: 2987: 2966: 2962: 2960: 2959: 2954: 2936: 2932: 2930: 2929: 2924: 2903: 2901: 2900: 2895: 2893: 2892: 2887: 2872: 2871: 2866: 2853: 2849: 2845: 2843: 2842: 2837: 2835: 2834: 2829: 2814: 2813: 2808: 2795: 2788: 2784: 2776: 2772: 2762: 2758: 2748: 2744: 2742: 2741: 2736: 2715: 2711: 2707: 2695: 2687: 2683: 2671: 2667: 2663: 2659: 2653: 2641: 2637: 2635: 2634: 2629: 2627: 2626: 2621: 2606: 2605: 2600: 2591: 2590: 2585: 2572: 2556: 2548: 2544: 2532: 2530: 2529: 2524: 2512: 2510: 2509: 2504: 2492: 2490: 2489: 2484: 2451: 2449: 2448: 2443: 2441: 2440: 2428: 2427: 2402: 2400: 2399: 2394: 2374: 2367: 2357: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2279: 2275: 2258: 2224: 2200: 2196: 2185: 2183: 2182: 2177: 2169: 2168: 2163: 2157: 2156: 2138: 2137: 2132: 2126: 2125: 2113: 2112: 2107: 2101: 2100: 2084: 2078: 2071: 2065: 2061: 2053: 2047: 2038:, and (b) since 2037: 2033: 2027: 2023: 2017: 1970: 1968: 1967: 1962: 1957: 1943: 1942: 1937: 1931: 1930: 1912: 1911: 1906: 1900: 1899: 1887: 1886: 1881: 1875: 1874: 1856: 1855: 1850: 1841: 1840: 1822: 1821: 1816: 1807: 1806: 1794: 1793: 1788: 1779: 1778: 1756: 1729: 1695: 1687: 1662: 1658: 1654: 1646: 1636: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1506: 1502: 1492: 1488: 1484: 1480: 1476: 1466: 1462: 1444: 1440: 1436: 1426: 1353:QR decomposition 1345:LU decomposition 1339:When applied to 1330: 1326: 1324: 1323: 1318: 1316: 1307: 1306: 1305: 1238: 1237: 1225: 1224: 1212: 1211: 1192: 1191: 1190: 1124: 1123: 1111: 1110: 1098: 1097: 1084: 1080: 1076: 1075: 1005: 1004: 992: 991: 979: 978: 959: 958: 957: 893: 892: 880: 879: 867: 866: 850: 845: 844: 765: 763: 762: 757: 755: 754: 673: 657:row echelon form 635: 623: 615: 611: 607: 605: 604: 599: 597: 596: 525: 524: 523: 503: 501: 500: 495: 493: 492: 408: 406: 405: 400: 398: 397: 320: 318: 317: 312: 300: 298: 297: 292: 280: 278: 277: 272: 214: 212: 211: 206: 172: 157: 149: 141: 129: 111:Main definitions 106: 99: 91: 80: 64: 44: 21: 6702: 6701: 6697: 6696: 6695: 6693: 6692: 6691: 6677: 6676: 6675: 6670: 6652: 6614: 6570: 6507: 6459: 6401: 6392: 6358:Change of basis 6348:Multilinear map 6286: 6268: 6263: 6215: 6205:Matrix Analysis 6202: 6199: 6197:Further reading 6189: 6168: 6162: 6138: 6132: 6112: 6106: 6090: 6084: 6060: 6054: 6030: 6027: 6022: 6021: 6014: 6001: 6000: 5996: 5990: 5977: 5976: 5972: 5941: 5940: 5936: 5928: 5924: 5916: 5912: 5904: 5900: 5894:Hefferon (2020) 5892: 5888: 5865: 5864: 5857: 5848: 5844: 5836: 5829: 5821: 5817: 5812: 5807: 5806: 5745: 5744: 5725: 5724: 5672: 5671: 5652: 5651: 5629: 5628: 5576: 5575: 5556: 5555: 5444: 5443: 5441: 5437: 5344: 5343: 5337: 5333: 5294: 5293: 5291: 5287: 5282: 5250: 5223: 5181: 5145: 5141: 5122: 5090: 5059: 5034: 5007: 4950: 4949: 4945: 4937: 4931: 4927: 4901: 4900: 4897:complex numbers 4892: 4856: 4852: 4851: 4828: 4814: 4803: 4802: 4765: 4760: 4759: 4753: 4720: 4675: 4642: 4628: 4627: 4619: 4611: 4593: 4589: 4585: 4581: 4508: 4507: 4506:Subadditivity: 4405: 4404: 4398: 4392: 4386: 4300: 4299: 4289: 4285: 4275: 4271: 4259:identity matrix 4249: 4246: 4238: 4217: 4216: 4211: 4205: 4204: 4199: 4189: 4182: 4164: 4163: 4159: 4149: 4145: 4135: 4131: 4127: 4070: 4069: 4065: 4064:matrix of rank 4055: 4051: 3994: 3993: 3989: 3988:matrix of rank 3979: 3975: 3891: 3890: 3880: 3876: 3872:has full rank). 3869: 3865: 3861: 3860:if and only if 3853: 3843: 3839: 3828: 3824: 3820: 3812: 3802: 3798: 3794: 3786: 3757: 3702: 3701: 3697: 3693: 3676: 3675:The rank of an 3655: 3651: 3641: 3637: 3636:We assume that 3634: 3613: 3609: 3584: 3583: 3579: 3575: 3571: 3567: 3564: 3556:Main articles: 3554: 3545: 3537: 3533: 3529: 3521: 3517: 3513: 3502: 3498: 3491: 3483: 3480: 3453: 3436: 3435: 3434: 3428:singular values 3423: 3420: 3401: 3391: 3387: 3383: 3379: 3365: 3325: 3324: 3317: 3294: 3273: 3268: 3267: 3244: 3223: 3218: 3217: 3213: 3140: 3139: 3131: 3127: 3101: 3080: 3075: 3074: 3070: 3066: 3043: 3022: 3017: 3016: 3012: 3005: 2997: 2969: 2968: 2964: 2939: 2938: 2934: 2909: 2908: 2907:there exist an 2882: 2861: 2856: 2855: 2851: 2847: 2824: 2803: 2798: 2797: 2793: 2786: 2782: 2774: 2764: 2760: 2750: 2746: 2718: 2717: 2713: 2709: 2705: 2702: 2693: 2685: 2681: 2678: 2669: 2665: 2661: 2655: 2651: 2639: 2616: 2595: 2580: 2575: 2574: 2570: 2567: 2554: 2546: 2542: 2539: 2515: 2514: 2495: 2494: 2454: 2453: 2432: 2419: 2408: 2407: 2385: 2384: 2381: 2372: 2359: 2355: 2352: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2312: 2300: 2290: 2281: 2277: 2274: 2263: 2257: 2245: 2235: 2226: 2221: 2215: 2208: 2202: 2198: 2195: 2187: 2158: 2148: 2127: 2117: 2102: 2092: 2087: 2086: 2080: 2073: 2067: 2063: 2059: 2049: 2039: 2035: 2029: 2025: 2019: 2016: 2007: 2001: 1995: 1988: 1982: 1972: 1932: 1922: 1901: 1891: 1876: 1866: 1845: 1832: 1811: 1798: 1783: 1770: 1759: 1758: 1754: 1748: 1741: 1735: 1728: 1716: 1706: 1697: 1693: 1686: 1677: 1670: 1664: 1660: 1656: 1652: 1642: ×  1638: 1634: 1631: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1508: 1504: 1494: 1490: 1486: 1482: 1478: 1468: 1464: 1461: 1452: 1446: 1442: 1438: 1428: 1424: 1421: 1393:identity matrix 1370: 1365: 1337: 1328: 1314: 1313: 1300: 1299: 1294: 1289: 1283: 1282: 1277: 1272: 1266: 1265: 1257: 1252: 1242: 1229: 1216: 1203: 1185: 1184: 1179: 1174: 1168: 1167: 1162: 1157: 1151: 1150: 1145: 1140: 1130: 1115: 1102: 1089: 1078: 1077: 1070: 1069: 1061: 1053: 1047: 1046: 1041: 1036: 1030: 1029: 1024: 1019: 1009: 996: 983: 970: 952: 951: 946: 941: 935: 934: 929: 924: 918: 917: 912: 907: 897: 884: 871: 858: 846: 839: 838: 833: 828: 822: 821: 816: 808: 799: 798: 793: 788: 778: 768: 767: 749: 748: 743: 738: 732: 731: 726: 718: 709: 708: 703: 698: 688: 676: 675: 671: 653: 647: 642: 625: 621: 613: 609: 591: 590: 582: 576: 575: 570: 564: 563: 555: 549: 548: 540: 530: 514: 509: 508: 487: 486: 478: 473: 465: 456: 455: 450: 445: 440: 430: 418: 417: 392: 391: 386: 381: 375: 374: 369: 364: 358: 357: 352: 347: 337: 331: 330: 327: 303: 302: 283: 282: 221: 220: 197: 196: 186:rank deficiency 170: 155: 147: 139: 127: 113: 101: 93: 85: 78: 62: 42: 28: 23: 22: 15: 12: 11: 5: 6700: 6698: 6690: 6689: 6687:Linear algebra 6679: 6678: 6672: 6671: 6669: 6668: 6657: 6654: 6653: 6651: 6650: 6645: 6640: 6635: 6630: 6628:Floating-point 6624: 6622: 6616: 6615: 6613: 6612: 6610:Tensor product 6607: 6602: 6597: 6595:Function space 6592: 6587: 6581: 6579: 6572: 6571: 6569: 6568: 6563: 6558: 6553: 6548: 6543: 6538: 6533: 6531:Triple product 6528: 6523: 6517: 6515: 6509: 6508: 6506: 6505: 6500: 6495: 6490: 6485: 6480: 6475: 6469: 6467: 6461: 6460: 6458: 6457: 6452: 6447: 6445:Transformation 6442: 6437: 6435:Multiplication 6432: 6427: 6422: 6417: 6411: 6409: 6403: 6402: 6395: 6393: 6391: 6390: 6385: 6380: 6375: 6370: 6365: 6360: 6355: 6350: 6345: 6340: 6335: 6330: 6325: 6320: 6315: 6310: 6305: 6300: 6294: 6292: 6291:Basic concepts 6288: 6287: 6285: 6284: 6279: 6273: 6270: 6269: 6266:Linear algebra 6264: 6262: 6261: 6254: 6247: 6239: 6233: 6232: 6227: 6219: 6213: 6198: 6195: 6194: 6193: 6187: 6166: 6160: 6136: 6130: 6110: 6104: 6096:Linear Algebra 6088: 6082: 6058: 6052: 6032:Axler, Sheldon 6026: 6023: 6020: 6019: 6012: 5994: 5989:978-1420095388 5988: 5970: 5952:(4): 316–318, 5934: 5922: 5918:Valenza (1993) 5910: 5908:p. 52, § 2.5.1 5898: 5886: 5876:(4): 285–286, 5855: 5842: 5827: 5814: 5813: 5811: 5808: 5805: 5804: 5791: 5788: 5785: 5782: 5779: 5776: 5773: 5770: 5767: 5764: 5761: 5758: 5755: 5752: 5743:has dimension 5732: 5712: 5709: 5706: 5703: 5700: 5697: 5694: 5691: 5688: 5685: 5682: 5679: 5659: 5639: 5636: 5616: 5613: 5610: 5607: 5604: 5601: 5598: 5595: 5592: 5589: 5586: 5583: 5563: 5539: 5536: 5533: 5530: 5527: 5523: 5519: 5516: 5513: 5510: 5507: 5504: 5501: 5498: 5495: 5492: 5489: 5486: 5483: 5479: 5475: 5472: 5469: 5466: 5463: 5460: 5457: 5454: 5451: 5442:Proof. The map 5435: 5423: 5420: 5417: 5414: 5411: 5408: 5405: 5402: 5399: 5396: 5393: 5390: 5387: 5384: 5381: 5378: 5375: 5372: 5369: 5366: 5363: 5360: 5357: 5354: 5351: 5331: 5310: 5307: 5304: 5301: 5284: 5283: 5281: 5278: 5277: 5276: 5271: 5266: 5261: 5256: 5249: 5246: 5242:simple tensors 5222: 5219: 5180: 5179:Generalization 5177: 5154:control theory 5121: 5118: 5117: 5116: 5105: 5102: 5097: 5093: 5089: 5086: 5083: 5080: 5077: 5074: 5071: 5066: 5062: 5058: 5055: 5052: 5049: 5046: 5041: 5037: 5033: 5030: 5027: 5024: 5021: 5015: 5010: 5006: 5003: 5000: 4997: 4994: 4989: 4986: 4981: 4978: 4975: 4972: 4969: 4966: 4963: 4960: 4957: 4913: 4910: 4889: 4878: 4873: 4868: 4863: 4859: 4855: 4850: 4846: 4842: 4836: 4831: 4824: 4818: 4813: 4810: 4790: 4787: 4783: 4779: 4773: 4768: 4737: 4734: 4728: 4723: 4719: 4716: 4713: 4710: 4707: 4704: 4701: 4698: 4695: 4692: 4689: 4683: 4678: 4674: 4671: 4668: 4665: 4662: 4659: 4656: 4650: 4645: 4641: 4638: 4635: 4608: 4597: 4569: 4566: 4563: 4560: 4557: 4554: 4551: 4548: 4545: 4542: 4539: 4536: 4533: 4530: 4527: 4524: 4521: 4518: 4515: 4504: 4493: 4490: 4487: 4484: 4481: 4478: 4475: 4472: 4469: 4466: 4463: 4460: 4457: 4454: 4451: 4448: 4445: 4442: 4439: 4436: 4433: 4430: 4427: 4424: 4421: 4418: 4415: 4412: 4379: 4367: 4364: 4361: 4358: 4355: 4352: 4349: 4346: 4343: 4340: 4337: 4334: 4331: 4328: 4325: 4322: 4319: 4316: 4313: 4310: 4307: 4262: 4242: 4226: 4221: 4215: 4212: 4210: 4207: 4206: 4203: 4200: 4196: 4192: 4188: 4187: 4185: 4180: 4177: 4174: 4171: 4124: 4113: 4110: 4107: 4104: 4101: 4098: 4095: 4092: 4089: 4086: 4083: 4080: 4077: 4048: 4037: 4034: 4031: 4028: 4025: 4022: 4019: 4016: 4013: 4010: 4007: 4004: 4001: 3972: 3961: 3958: 3955: 3952: 3949: 3946: 3943: 3940: 3937: 3934: 3931: 3928: 3925: 3922: 3919: 3916: 3913: 3910: 3907: 3904: 3901: 3898: 3873: 3836: 3810: 3784: 3783:has rank zero. 3777: 3774:rank deficient 3745: 3742: 3739: 3736: 3733: 3730: 3727: 3724: 3721: 3718: 3715: 3712: 3709: 3633: 3630: 3597: 3594: 3591: 3553: 3550: 3479: 3476: 3460: 3456: 3452: 3449: 3446: 3443: 3419: 3416: 3350: 3347: 3344: 3341: 3338: 3335: 3332: 3303: 3298: 3293: 3290: 3287: 3282: 3277: 3253: 3248: 3243: 3240: 3237: 3232: 3227: 3201: 3198: 3195: 3192: 3189: 3186: 3183: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3156: 3153: 3150: 3147: 3136: 3135: 3124: 3110: 3105: 3100: 3097: 3094: 3089: 3084: 3052: 3047: 3042: 3039: 3036: 3031: 3026: 3009: 2985: 2982: 2979: 2976: 2952: 2949: 2946: 2922: 2919: 2916: 2905: 2891: 2886: 2881: 2878: 2875: 2870: 2865: 2833: 2828: 2823: 2820: 2817: 2812: 2807: 2790: 2734: 2731: 2728: 2725: 2701: 2698: 2677: 2674: 2668:associated to 2642:; this is the 2625: 2620: 2615: 2612: 2609: 2604: 2599: 2594: 2589: 2584: 2566: 2563: 2538: 2535: 2522: 2502: 2482: 2479: 2476: 2473: 2470: 2467: 2464: 2461: 2439: 2435: 2431: 2426: 2422: 2418: 2415: 2405:linear mapping 2392: 2380: 2377: 2351: 2348: 2308: 2298: 2288: 2270: 2253: 2243: 2233: 2219: 2213: 2206: 2191: 2175: 2172: 2167: 2162: 2155: 2151: 2147: 2144: 2141: 2136: 2131: 2124: 2120: 2116: 2111: 2106: 2099: 2095: 2012: 2005: 1999: 1993: 1986: 1980: 1960: 1956: 1952: 1949: 1946: 1941: 1936: 1929: 1925: 1921: 1918: 1915: 1910: 1905: 1898: 1894: 1890: 1885: 1880: 1873: 1869: 1865: 1862: 1859: 1854: 1849: 1844: 1839: 1835: 1831: 1828: 1825: 1820: 1815: 1810: 1805: 1801: 1797: 1792: 1787: 1782: 1777: 1773: 1769: 1766: 1752: 1746: 1739: 1724: 1714: 1704: 1682: 1675: 1668: 1630: 1627: 1585:cannot exceed 1457: 1450: 1420: 1417: 1369: 1366: 1364: 1361: 1341:floating point 1336: 1333: 1312: 1304: 1298: 1295: 1293: 1290: 1288: 1285: 1284: 1281: 1278: 1276: 1273: 1271: 1268: 1267: 1264: 1261: 1258: 1256: 1253: 1251: 1248: 1247: 1245: 1236: 1232: 1228: 1223: 1219: 1215: 1210: 1206: 1202: 1199: 1195: 1189: 1183: 1180: 1178: 1175: 1173: 1170: 1169: 1166: 1163: 1161: 1158: 1156: 1153: 1152: 1149: 1146: 1144: 1141: 1139: 1136: 1135: 1133: 1122: 1118: 1114: 1109: 1105: 1101: 1096: 1092: 1087: 1083: 1081: 1079: 1074: 1068: 1065: 1062: 1060: 1057: 1054: 1052: 1049: 1048: 1045: 1042: 1040: 1037: 1035: 1032: 1031: 1028: 1025: 1023: 1020: 1018: 1015: 1014: 1012: 1003: 999: 995: 990: 986: 982: 977: 973: 969: 966: 962: 956: 950: 947: 945: 942: 940: 937: 936: 933: 930: 928: 925: 923: 920: 919: 916: 913: 911: 908: 906: 903: 902: 900: 891: 887: 883: 878: 874: 870: 865: 861: 857: 853: 849: 847: 843: 837: 834: 832: 829: 827: 824: 823: 820: 817: 815: 812: 809: 807: 804: 801: 800: 797: 794: 792: 789: 787: 784: 783: 781: 776: 775: 753: 747: 744: 742: 739: 737: 734: 733: 730: 727: 725: 722: 719: 717: 714: 711: 710: 707: 704: 702: 699: 697: 694: 693: 691: 686: 683: 649:Main article: 646: 643: 641: 638: 595: 589: 586: 583: 581: 578: 577: 574: 571: 569: 566: 565: 562: 559: 556: 554: 551: 550: 547: 544: 541: 539: 536: 535: 533: 528: 522: 517: 491: 485: 482: 479: 477: 474: 472: 469: 466: 464: 461: 458: 457: 454: 451: 449: 446: 444: 441: 439: 436: 435: 433: 428: 425: 396: 390: 387: 385: 382: 380: 377: 376: 373: 370: 368: 365: 363: 360: 359: 356: 353: 351: 348: 346: 343: 342: 340: 326: 323: 310: 290: 270: 267: 264: 261: 258: 255: 252: 249: 246: 243: 240: 237: 234: 231: 228: 204: 191:The rank of a 182:rank-deficient 112: 109: 53:generated (or 32:linear algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6699: 6688: 6685: 6684: 6682: 6667: 6659: 6658: 6655: 6649: 6646: 6644: 6643:Sparse matrix 6641: 6639: 6636: 6634: 6631: 6629: 6626: 6625: 6623: 6621: 6617: 6611: 6608: 6606: 6603: 6601: 6598: 6596: 6593: 6591: 6588: 6586: 6583: 6582: 6580: 6578:constructions 6577: 6573: 6567: 6566:Outermorphism 6564: 6562: 6559: 6557: 6554: 6552: 6549: 6547: 6544: 6542: 6539: 6537: 6534: 6532: 6529: 6527: 6526:Cross product 6524: 6522: 6519: 6518: 6516: 6514: 6510: 6504: 6501: 6499: 6496: 6494: 6493:Outer product 6491: 6489: 6486: 6484: 6481: 6479: 6476: 6474: 6473:Orthogonality 6471: 6470: 6468: 6466: 6462: 6456: 6453: 6451: 6450:Cramer's rule 6448: 6446: 6443: 6441: 6438: 6436: 6433: 6431: 6428: 6426: 6423: 6421: 6420:Decomposition 6418: 6416: 6413: 6412: 6410: 6408: 6404: 6399: 6389: 6386: 6384: 6381: 6379: 6376: 6374: 6371: 6369: 6366: 6364: 6361: 6359: 6356: 6354: 6351: 6349: 6346: 6344: 6341: 6339: 6336: 6334: 6331: 6329: 6326: 6324: 6321: 6319: 6316: 6314: 6311: 6309: 6306: 6304: 6301: 6299: 6296: 6295: 6293: 6289: 6283: 6280: 6278: 6275: 6274: 6271: 6267: 6260: 6255: 6253: 6248: 6246: 6241: 6240: 6237: 6231: 6228: 6226: 6223: 6220: 6216: 6210: 6206: 6201: 6200: 6196: 6190: 6188:3-540-94099-5 6184: 6180: 6176: 6172: 6167: 6163: 6161:0-387-24766-1 6157: 6153: 6149: 6145: 6141: 6140:Roman, Steven 6137: 6133: 6127: 6123: 6119: 6115: 6111: 6107: 6101: 6097: 6093: 6092:Hefferon, Jim 6089: 6085: 6083:0-387-90093-4 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6049: 6045: 6041: 6037: 6033: 6029: 6028: 6024: 6015: 6009: 6005: 5998: 5995: 5991: 5985: 5981: 5974: 5971: 5967: 5963: 5959: 5955: 5951: 5947: 5946: 5938: 5935: 5931: 5930:Halmos (1974) 5926: 5923: 5919: 5914: 5911: 5907: 5902: 5899: 5895: 5890: 5887: 5883: 5879: 5875: 5871: 5870: 5862: 5860: 5856: 5852: 5846: 5843: 5840:p. 48, § 1.16 5839: 5834: 5832: 5828: 5824: 5819: 5816: 5809: 5786: 5783: 5780: 5774: 5771: 5768: 5762: 5759: 5753: 5750: 5730: 5707: 5704: 5698: 5695: 5692: 5686: 5680: 5677: 5657: 5637: 5634: 5611: 5605: 5602: 5599: 5593: 5590: 5584: 5581: 5561: 5553: 5534: 5528: 5525: 5521: 5514: 5511: 5505: 5502: 5493: 5490: 5484: 5481: 5477: 5470: 5467: 5464: 5458: 5455: 5452: 5449: 5439: 5436: 5421: 5415: 5409: 5406: 5403: 5400: 5397: 5391: 5385: 5382: 5379: 5376: 5373: 5367: 5364: 5358: 5355: 5352: 5349: 5341: 5335: 5332: 5328: 5324: 5299: 5289: 5286: 5279: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5251: 5247: 5245: 5243: 5238: 5237:for details. 5236: 5232: 5228: 5220: 5218: 5216: 5212: 5208: 5204: 5199: 5197: 5193: 5188: 5186: 5178: 5176: 5174: 5169: 5167: 5163: 5159: 5158:linear system 5155: 5150: 5139: 5135: 5131: 5127: 5119: 5103: 5095: 5091: 5087: 5081: 5078: 5075: 5069: 5064: 5060: 5053: 5050: 5047: 5039: 5035: 5028: 5025: 5022: 5008: 5001: 4998: 4995: 4984: 4976: 4973: 4970: 4964: 4958: 4955: 4943: 4934: 4908: 4898: 4890: 4876: 4871: 4866: 4857: 4853: 4848: 4840: 4829: 4811: 4808: 4788: 4785: 4777: 4766: 4756: 4751: 4735: 4721: 4714: 4711: 4708: 4702: 4696: 4693: 4690: 4676: 4672: 4666: 4663: 4660: 4654: 4643: 4636: 4633: 4625: 4617: 4609: 4606: 4602: 4598: 4564: 4558: 4555: 4552: 4546: 4540: 4537: 4534: 4528: 4525: 4522: 4516: 4513: 4505: 4491: 4485: 4482: 4479: 4473: 4470: 4467: 4461: 4455: 4452: 4449: 4443: 4440: 4434: 4431: 4428: 4422: 4419: 4413: 4410: 4401: 4395: 4389: 4384: 4380: 4365: 4359: 4356: 4350: 4347: 4344: 4341: 4338: 4332: 4326: 4323: 4320: 4314: 4308: 4305: 4296: 4292: 4282: 4278: 4269: 4267: 4263: 4260: 4256: 4252: 4245: 4241: 4224: 4219: 4213: 4208: 4201: 4194: 4190: 4183: 4178: 4175: 4172: 4169: 4156: 4152: 4142: 4138: 4125: 4111: 4105: 4099: 4096: 4093: 4087: 4084: 4078: 4075: 4062: 4058: 4049: 4035: 4029: 4023: 4020: 4017: 4011: 4008: 4002: 3999: 3986: 3982: 3973: 3959: 3950: 3944: 3941: 3938: 3932: 3926: 3923: 3914: 3908: 3905: 3899: 3896: 3889:matrix, then 3887: 3883: 3874: 3859: 3850: 3846: 3837: 3834: 3833:full row rank 3818: 3811: 3808: 3792: 3785: 3782: 3778: 3775: 3771: 3765: 3761: 3743: 3737: 3734: 3731: 3722: 3716: 3710: 3707: 3691: 3688: 3683: 3679: 3674: 3673: 3672: 3669: 3666: 3662: 3658: 3648: 3644: 3631: 3629: 3627: 3623: 3619: 3595: 3592: 3589: 3563: 3559: 3551: 3549: 3543: 3527: 3509: 3505: 3495: 3489: 3477: 3475: 3458: 3454: 3447: 3444: 3441: 3433: 3429: 3417: 3415: 3414:for details. 3413: 3408: 3404: 3398: 3394: 3376: 3372: 3368: 3362: 3345: 3333: 3321: 3301: 3291: 3288: 3285: 3280: 3251: 3241: 3238: 3235: 3230: 3196: 3184: 3172: 3160: 3148: 3125: 3108: 3098: 3095: 3092: 3087: 3050: 3040: 3037: 3034: 3029: 3010: 3003: 2983: 2980: 2977: 2974: 2950: 2947: 2944: 2920: 2917: 2914: 2906: 2889: 2879: 2876: 2873: 2868: 2831: 2821: 2818: 2815: 2810: 2791: 2780: 2779: 2778: 2771: 2767: 2757: 2753: 2732: 2729: 2726: 2723: 2699: 2697: 2691: 2675: 2673: 2658: 2649: 2645: 2623: 2613: 2610: 2607: 2602: 2592: 2587: 2564: 2562: 2560: 2552: 2536: 2534: 2520: 2500: 2480: 2477: 2474: 2471: 2465: 2459: 2437: 2433: 2424: 2420: 2416: 2413: 2406: 2390: 2378: 2376: 2371: 2366: 2362: 2349: 2347: 2311: 2307: 2304: 2297: 2294: 2287: 2284: 2273: 2269: 2266: 2260: 2256: 2252: 2249: 2242: 2239: 2232: 2229: 2222: 2212: 2205: 2194: 2190: 2173: 2170: 2165: 2153: 2149: 2145: 2142: 2139: 2134: 2122: 2118: 2114: 2109: 2097: 2093: 2083: 2076: 2070: 2057: 2052: 2048:, the vector 2045: 2042: 2032: 2022: 2015: 2011: 2008: 1998: 1992: 1985: 1979: 1975: 1958: 1950: 1947: 1939: 1927: 1923: 1919: 1916: 1913: 1908: 1896: 1892: 1888: 1883: 1871: 1867: 1860: 1857: 1852: 1842: 1837: 1833: 1829: 1826: 1823: 1818: 1808: 1803: 1799: 1795: 1790: 1780: 1775: 1771: 1767: 1764: 1755: 1745: 1738: 1733: 1727: 1723: 1720: 1713: 1710: 1703: 1700: 1691: 1685: 1681: 1674: 1667: 1650: 1645: 1641: 1628: 1626: 1624: 1580: 1529:th column of 1515: 1511: 1501: 1497: 1475: 1471: 1460: 1456: 1449: 1435: 1431: 1418: 1416: 1414: 1410: 1409:orthogonality 1406: 1402: 1397: 1394: 1390: 1386: 1382: 1377: 1375: 1367: 1362: 1360: 1358: 1354: 1350: 1346: 1342: 1334: 1332: 1310: 1302: 1296: 1291: 1286: 1279: 1274: 1269: 1262: 1259: 1254: 1249: 1243: 1234: 1230: 1221: 1217: 1213: 1208: 1204: 1200: 1197: 1193: 1187: 1181: 1176: 1171: 1164: 1159: 1154: 1147: 1142: 1137: 1131: 1120: 1116: 1107: 1103: 1099: 1094: 1090: 1085: 1082: 1072: 1066: 1063: 1058: 1055: 1050: 1043: 1038: 1033: 1026: 1021: 1016: 1010: 1001: 997: 988: 984: 980: 975: 971: 967: 964: 960: 954: 948: 943: 938: 931: 926: 921: 914: 909: 904: 898: 889: 885: 876: 872: 868: 863: 859: 855: 851: 848: 841: 835: 830: 825: 818: 813: 810: 805: 802: 795: 790: 785: 779: 751: 745: 740: 735: 728: 723: 720: 715: 712: 705: 700: 695: 689: 684: 681: 668: 666: 662: 658: 652: 644: 639: 637: 633: 629: 619: 593: 587: 584: 579: 572: 567: 560: 557: 552: 545: 542: 537: 531: 526: 515: 507: 489: 483: 480: 475: 470: 467: 462: 459: 452: 447: 442: 437: 431: 426: 423: 414: 412: 394: 388: 383: 378: 371: 366: 361: 354: 349: 344: 338: 324: 322: 308: 288: 256: 253: 247: 244: 241: 229: 226: 218: 194: 189: 187: 183: 179: 174: 168: 164: 159: 153: 145: 137: 133: 125: 120: 118: 110: 108: 105: 97: 89: 82: 76: 72: 68: 60: 56: 52: 48: 41: 37: 33: 19: 6576:Vector space 6439: 6308:Vector space 6204: 6170: 6143: 6117: 6095: 6065: 6035: 6003: 5997: 5979: 5973: 5949: 5943: 5937: 5925: 5920:p. 71, § 4.3 5913: 5901: 5889: 5873: 5867: 5850: 5845: 5838:Roman (2005) 5823:Axler (2015) 5818: 5438: 5334: 5327:Halmos (1974 5288: 5254:Matroid rank 5239: 5227:tensor order 5224: 5200: 5189: 5182: 5170: 5162:controllable 5151: 5123: 5120:Applications 4932: 4754: 4616:real numbers 4399: 4393: 4387: 4294: 4290: 4280: 4276: 4264: 4254: 4250: 4248:denotes the 4243: 4239: 4154: 4150: 4140: 4136: 4130:is equal to 4126:The rank of 4060: 4056: 3984: 3980: 3885: 3881: 3848: 3844: 3832: 3806: 3773: 3769: 3763: 3759: 3685:matrix is a 3681: 3677: 3667: 3664: 3660: 3656: 3646: 3642: 3635: 3566:The rank of 3565: 3541: 3525: 3507: 3503: 3496: 3482:The rank of 3481: 3422:The rank of 3421: 3406: 3402: 3396: 3392: 3374: 3370: 3366: 3363: 3322: 3137: 3011:there exist 2792:there exist 2769: 2765: 2755: 2751: 2704:The rank of 2703: 2680:The rank of 2679: 2656: 2648:column space 2569:The rank of 2568: 2540: 2493:The rank of 2382: 2364: 2360: 2353: 2314:is a set of 2309: 2305: 2302: 2295: 2292: 2285: 2282: 2271: 2267: 2264: 2261: 2254: 2250: 2247: 2240: 2237: 2230: 2227: 2217: 2210: 2203: 2192: 2188: 2081: 2074: 2068: 2050: 2043: 2040: 2030: 2020: 2013: 2009: 2003: 1996: 1990: 1983: 1977: 1973: 1750: 1743: 1736: 1725: 1721: 1718: 1711: 1708: 1701: 1698: 1683: 1679: 1672: 1665: 1649:real numbers 1643: 1639: 1632: 1621:. (Also see 1577:and, by the 1513: 1509: 1499: 1495: 1473: 1469: 1458: 1454: 1447: 1433: 1429: 1422: 1413:real numbers 1398: 1378: 1371: 1338: 669: 654: 631: 627: 415: 328: 195:or operator 190: 185: 181: 177: 175: 166: 160: 143: 142:, while the 136:column space 123: 121: 114: 103: 95: 87: 83: 51:vector space 35: 29: 6556:Multivector 6521:Determinant 6478:Dot product 6323:Linear span 5932:p. 90, § 50 5207:smooth maps 5196:tensor rank 4940:(i.e., the 4750:null spaces 4624:Gram matrix 4284:matrix and 3781:zero matrix 3700:. That is, 3687:nonnegative 3618:tensor rank 3562:Tensor rank 2759:matrix and 2452:defined by 1537:columns of 1489:columns in 1335:Computation 416:The matrix 329:The matrix 124:column rank 77:encoded by 61:columns of 18:Column rank 6590:Direct sum 6425:Invertible 6328:Linear map 5849:Bourbaki, 5810:References 5215:derivative 5166:observable 4758:for which 4162:such that 3868:(that is, 3858:invertible 3817:surjective 3671:as above. 3632:Properties 3574:such that 3400:and a map 3386:such that 2967:such that 2712:such that 2262:Now, each 2056:orthogonal 1549:(which is 1507:such that 1445:, and let 193:linear map 6620:Numerical 6383:Transpose 6064:(1974) . 5966:218542661 5775:⁡ 5769:− 5754:⁡ 5699:⁡ 5693:− 5681:⁡ 5606:⁡ 5600:≤ 5585:⁡ 5529:⁡ 5506:⁡ 5500:→ 5485:⁡ 5459:⁡ 5410:⁡ 5404:⁡ 5386:⁡ 5380:⁡ 5374:≤ 5359:⁡ 5353:⁡ 5306:Φ 5300:ρ 5096:∗ 5082:⁡ 5065:∗ 5054:⁡ 5040:∗ 5029:⁡ 5002:⁡ 4988:¯ 4977:⁡ 4959:⁡ 4912:¯ 4715:⁡ 4697:⁡ 4667:⁡ 4637:⁡ 4559:⁡ 4541:⁡ 4535:≤ 4517:⁡ 4474:⁡ 4456:⁡ 4450:≤ 4435:⁡ 4414:⁡ 4383:Frobenius 4351:⁡ 4345:≤ 4339:− 4327:⁡ 4309:⁡ 4266:Sylvester 4100:⁡ 4079:⁡ 4024:⁡ 4003:⁡ 3945:⁡ 3927:⁡ 3915:≤ 3900:⁡ 3864:has rank 3823:has rank 3797:has rank 3791:injective 3770:full rank 3723:≤ 3711:⁡ 3593:⋅ 3459:∗ 3451:Σ 3340:⇔ 3289:… 3239:… 3191:⇔ 3179:⇔ 3167:⇔ 3155:⇔ 3096:… 3038:… 2948:× 2918:× 2877:… 2819:… 2690:row space 2644:dimension 2611:… 2430:→ 2143:⋯ 1917:⋯ 1827:⋯ 1260:− 1227:→ 1198:− 1113:→ 1064:− 1056:− 994:→ 965:− 882:→ 811:− 803:− 721:− 713:− 674:given by 630:) = rank( 618:transpose 585:− 558:− 543:− 506:transpose 481:− 468:− 460:− 263:Φ 257:⁡ 248:⁡ 236:Φ 230:⁡ 203:Φ 178:full rank 152:row space 132:dimension 69:" of the 47:dimension 6681:Category 6666:Category 6605:Subspace 6600:Quotient 6551:Bivector 6465:Bilinear 6407:Matrices 6282:Glossary 6179:Springer 6152:Springer 6142:(2005). 6094:(2020). 6074:Springer 6044:Springer 6034:(2015). 5248:See also 5209:between 4948:), then 3852:), then 3501:-minor ( 3369: : 3065:of size 2846:of size 2796:columns 2745:, where 1565:rows of 1194:→ 1086:→ 961:→ 852:→ 325:Examples 144:row rank 6277:Outline 6025:Sources 5851:Algebra 5192:tensors 4942:adjoint 4601:nullity 4298:, then 4158:matrix 4144:matrix 4068:, then 3992:, then 3879:is any 3779:Only a 3690:integer 3536:, then 3520:, then 2963:matrix 2933:matrix 2646:of the 2557:. The 1663:. Let 1503:matrix 1477:matrix 1453:, ..., 134:of the 130:is the 55:spanned 49:of the 45:is the 6561:Tensor 6373:Kernel 6303:Vector 6298:Scalar 6211:  6185:  6158:  6128:  6102:  6080:  6050:  6010:  5986:  5964:  5231:tensor 5194:, the 4274:is an 4237:where 4054:is an 3978:is an 3640:is an 3526:subset 2996:(when 2937:and a 2749:is an 2551:kernel 2280:. So, 2216:= ⋯ = 2002:+ ⋯ + 1971:where 1637:be an 1427:be an 1331:is 2. 1308:  665:pivots 281:where 40:matrix 34:, the 6430:Minor 6415:Block 6353:Basis 5962:S2CID 5321:from 5280:Notes 5185:rings 5164:, or 4580:when 4385:: if 4270:: if 3488:minor 3015:rows 2763:is a 2370:field 2301:, …, 2246:, …, 1749:, …, 1717:, …, 1690:basis 1688:be a 1678:, …, 1405:field 1383:. As 659:, by 626:rank( 217:image 102:rank 86:rank( 38:of a 6585:Dual 6440:Rank 6209:ISBN 6183:ISBN 6156:ISBN 6126:ISBN 6100:ISBN 6078:ISBN 6048:ISBN 6008:ISBN 5984:ISBN 5772:rank 5751:rank 5696:rank 5678:rank 5205:for 5203:rank 5079:rank 5051:rank 5026:rank 4999:rank 4974:rank 4956:rank 4930:and 4899:and 4712:rank 4694:rank 4664:rank 4634:rank 4584:and 4556:rank 4538:rank 4514:rank 4471:rank 4453:rank 4432:rank 4411:rank 4397:and 4348:rank 4324:rank 4306:rank 4097:rank 4076:rank 4021:rank 4000:rank 3942:rank 3924:rank 3897:rank 3831:has 3805:has 3758:min( 3708:rank 3663:) = 3560:and 1730:are 1633:Let 1423:Let 227:rank 167:rank 122:The 73:and 36:rank 5954:doi 5878:doi 5603:dim 5582:dim 5526:ker 5503:ker 5482:ker 5456:ker 5407:ker 5401:dim 5383:ker 5377:dim 5356:ker 5350:dim 5160:is 5152:In 4944:of 4891:If 4610:If 4394:ABC 4288:is 4050:If 3974:If 3918:min 3875:If 3856:is 3838:If 3815:is 3789:is 3726:min 3696:or 3654:by 3542:and 3490:in 3004:of 2692:of 2672:). 2650:of 2638:of 2553:of 2223:= 0 2077:= 0 2054:is 2046:= 0 1659:is 1625:.) 1441:be 620:of 608:of 309:img 289:dim 254:img 245:dim 169:of 154:of 146:of 138:of 126:of 94:rk( 92:or 30:In 6683:: 6181:. 6173:. 6154:. 6146:. 6124:. 6120:. 6076:. 6068:. 6046:. 6038:. 5960:, 5950:78 5948:, 5874:68 5872:, 5858:^ 5830:^ 5217:. 5168:. 4789:0. 4607:.) 4400:BC 4391:, 4388:AB 4293:× 4279:× 4253:× 4153:× 4139:× 4059:× 3983:× 3884:× 3847:= 3835:). 3809:). 3762:, 3680:× 3645:× 3628:. 3506:× 3405:→ 3395:→ 3373:→ 3320:. 3008:), 2768:× 2754:× 2696:. 2375:. 2363:× 2291:, 2236:, 2209:= 2174:0. 2085:, 1989:+ 1976:= 1757:: 1742:, 1707:, 1671:, 1517:. 1514:CR 1512:= 1498:× 1472:× 1432:× 636:. 242::= 173:. 158:. 107:. 6258:e 6251:t 6244:v 6217:. 6191:. 6164:. 6134:. 6108:. 6086:. 6056:. 6016:. 5956:: 5880:: 5802:. 5790:) 5787:C 5784:B 5781:A 5778:( 5766:) 5763:B 5760:A 5757:( 5731:A 5711:) 5708:C 5705:B 5702:( 5690:) 5687:B 5684:( 5658:B 5638:C 5635:B 5615:) 5612:M 5609:( 5597:) 5594:M 5591:A 5588:( 5562:M 5538:) 5535:B 5532:( 5522:/ 5518:) 5515:B 5512:A 5509:( 5497:) 5494:C 5491:B 5488:( 5478:/ 5474:) 5471:C 5468:B 5465:A 5462:( 5453:: 5450:C 5422:. 5419:) 5416:B 5413:( 5398:+ 5395:) 5392:A 5389:( 5371:) 5368:B 5365:A 5362:( 5309:) 5303:( 5146:k 5142:k 5104:. 5101:) 5092:A 5088:A 5085:( 5076:= 5073:) 5070:A 5061:A 5057:( 5048:= 5045:) 5036:A 5032:( 5023:= 5020:) 5014:T 5009:A 5005:( 4996:= 4993:) 4985:A 4980:( 4971:= 4968:) 4965:A 4962:( 4946:A 4938:A 4933:A 4928:A 4909:A 4893:A 4877:. 4872:2 4867:| 4862:x 4858:A 4854:| 4849:= 4845:x 4841:A 4835:T 4830:A 4823:T 4817:x 4812:= 4809:0 4786:= 4782:x 4778:A 4772:T 4767:A 4755:x 4736:. 4733:) 4727:T 4722:A 4718:( 4709:= 4706:) 4703:A 4700:( 4691:= 4688:) 4682:T 4677:A 4673:A 4670:( 4661:= 4658:) 4655:A 4649:T 4644:A 4640:( 4620:A 4612:A 4594:k 4590:k 4586:B 4582:A 4568:) 4565:B 4562:( 4553:+ 4550:) 4547:A 4544:( 4532:) 4529:B 4526:+ 4523:A 4520:( 4492:. 4489:) 4486:C 4483:B 4480:A 4477:( 4468:+ 4465:) 4462:B 4459:( 4447:) 4444:C 4441:B 4438:( 4429:+ 4426:) 4423:B 4420:A 4417:( 4366:. 4363:) 4360:B 4357:A 4354:( 4342:n 4336:) 4333:B 4330:( 4321:+ 4318:) 4315:A 4312:( 4295:k 4291:n 4286:B 4281:n 4277:m 4272:A 4261:. 4255:r 4251:r 4244:r 4240:I 4225:, 4220:] 4214:0 4209:0 4202:0 4195:r 4191:I 4184:[ 4179:= 4176:Y 4173:A 4170:X 4160:Y 4155:n 4151:n 4146:X 4141:m 4137:m 4132:r 4128:A 4112:. 4109:) 4106:A 4103:( 4094:= 4091:) 4088:A 4085:C 4082:( 4066:m 4061:m 4057:l 4052:C 4036:. 4033:) 4030:A 4027:( 4018:= 4015:) 4012:B 4009:A 4006:( 3990:n 3985:k 3981:n 3976:B 3960:. 3957:) 3954:) 3951:B 3948:( 3939:, 3936:) 3933:A 3930:( 3921:( 3912:) 3909:B 3906:A 3903:( 3886:k 3882:n 3877:B 3870:A 3866:n 3862:A 3854:A 3849:n 3845:m 3840:A 3829:A 3825:m 3821:A 3813:f 3803:A 3799:n 3795:A 3787:f 3776:. 3766:) 3764:n 3760:m 3744:. 3741:) 3738:n 3735:, 3732:m 3729:( 3720:) 3717:A 3714:( 3698:n 3694:m 3682:n 3678:m 3668:x 3665:A 3661:x 3659:( 3657:f 3652:f 3647:n 3643:m 3638:A 3614:r 3610:c 3596:r 3590:c 3580:k 3576:A 3572:k 3568:A 3546:p 3538:p 3534:p 3530:n 3522:p 3518:p 3514:n 3508:p 3504:p 3499:p 3492:A 3484:A 3473:. 3455:V 3448:U 3445:= 3442:A 3424:A 3407:W 3403:X 3397:X 3393:V 3388:f 3384:X 3380:k 3375:W 3371:V 3367:f 3349:) 3346:5 3343:( 3337:) 3334:1 3331:( 3318:C 3302:k 3297:c 3292:, 3286:, 3281:1 3276:c 3252:k 3247:c 3242:, 3236:, 3231:1 3226:c 3214:C 3200:) 3197:5 3194:( 3188:) 3185:4 3182:( 3176:) 3173:3 3170:( 3164:) 3161:2 3158:( 3152:) 3149:1 3146:( 3134:. 3132:k 3128:A 3123:, 3109:k 3104:r 3099:, 3093:, 3088:1 3083:r 3071:A 3067:n 3051:k 3046:r 3041:, 3035:, 3030:1 3025:r 3013:k 3006:A 2998:k 2984:R 2981:C 2978:= 2975:A 2965:R 2951:n 2945:k 2935:C 2921:k 2915:m 2904:, 2890:k 2885:c 2880:, 2874:, 2869:1 2864:c 2852:A 2848:m 2832:k 2827:c 2822:, 2816:, 2811:1 2806:c 2794:k 2789:, 2787:k 2783:A 2775:k 2770:n 2766:k 2761:R 2756:k 2752:m 2747:C 2733:R 2730:C 2727:= 2724:A 2714:A 2710:k 2706:A 2694:A 2686:A 2682:A 2670:A 2666:f 2662:A 2657:F 2652:A 2640:A 2624:k 2619:c 2614:, 2608:, 2603:2 2598:c 2593:, 2588:1 2583:c 2571:A 2555:f 2547:n 2543:f 2521:f 2501:A 2481:. 2478:x 2475:A 2472:= 2469:) 2466:x 2463:( 2460:f 2438:m 2434:F 2425:n 2421:F 2417:: 2414:f 2391:A 2373:F 2365:n 2361:m 2356:A 2344:A 2340:A 2336:A 2332:r 2328:A 2324:A 2320:A 2316:r 2310:r 2306:x 2303:A 2299:2 2296:x 2293:A 2289:1 2286:x 2283:A 2278:A 2272:i 2268:x 2265:A 2255:r 2251:x 2248:A 2244:2 2241:x 2238:A 2234:1 2231:x 2228:A 2220:r 2218:c 2214:2 2211:c 2207:1 2204:c 2199:A 2193:i 2189:x 2171:= 2166:r 2161:x 2154:r 2150:c 2146:+ 2140:+ 2135:2 2130:x 2123:2 2119:c 2115:+ 2110:1 2105:x 2098:1 2094:c 2082:v 2075:v 2069:v 2064:A 2060:A 2051:v 2044:v 2041:A 2036:A 2031:v 2026:A 2021:v 2014:r 2010:x 2006:r 2004:c 2000:2 1997:x 1994:2 1991:c 1987:1 1984:x 1981:1 1978:c 1974:v 1959:, 1955:v 1951:A 1948:= 1945:) 1940:r 1935:x 1928:r 1924:c 1920:+ 1914:+ 1909:2 1904:x 1897:2 1893:c 1889:+ 1884:1 1879:x 1872:1 1868:c 1864:( 1861:A 1858:= 1853:r 1848:x 1843:A 1838:r 1834:c 1830:+ 1824:+ 1819:2 1814:x 1809:A 1804:2 1800:c 1796:+ 1791:1 1786:x 1781:A 1776:1 1772:c 1768:= 1765:0 1753:r 1751:c 1747:2 1744:c 1740:1 1737:c 1726:r 1722:x 1719:A 1715:2 1712:x 1709:A 1705:1 1702:x 1699:A 1694:A 1684:r 1680:x 1676:2 1673:x 1669:1 1666:x 1661:r 1657:A 1653:r 1644:n 1640:m 1635:A 1619:A 1615:A 1611:A 1607:A 1603:A 1599:A 1595:A 1591:A 1587:r 1583:A 1575:A 1571:R 1567:R 1563:r 1559:A 1555:A 1551:C 1547:A 1543:R 1539:C 1535:r 1531:A 1527:i 1523:i 1519:R 1510:A 1505:R 1500:n 1496:r 1491:C 1487:r 1483:A 1479:C 1474:r 1470:m 1465:A 1459:r 1455:c 1451:1 1448:c 1443:r 1439:A 1434:n 1430:m 1425:A 1329:A 1311:. 1303:] 1297:0 1292:0 1287:0 1280:3 1275:1 1270:0 1263:5 1255:0 1250:1 1244:[ 1235:1 1231:R 1222:1 1218:R 1214:+ 1209:2 1205:R 1201:2 1188:] 1182:0 1177:0 1172:0 1165:3 1160:1 1155:0 1148:1 1143:2 1138:1 1132:[ 1121:3 1117:R 1108:3 1104:R 1100:+ 1095:2 1091:R 1073:] 1067:3 1059:1 1051:0 1044:3 1039:1 1034:0 1027:1 1022:2 1017:1 1011:[ 1002:3 998:R 989:3 985:R 981:+ 976:1 972:R 968:3 955:] 949:0 944:5 939:3 932:3 927:1 922:0 915:1 910:2 905:1 899:[ 890:2 886:R 877:2 873:R 869:+ 864:1 860:R 856:2 842:] 836:0 831:5 826:3 819:1 814:3 806:2 796:1 791:2 786:1 780:[ 752:] 746:0 741:5 736:3 729:1 724:3 716:2 706:1 701:2 696:1 690:[ 685:= 682:A 672:A 634:) 632:A 628:A 622:A 614:A 610:A 594:] 588:2 580:2 573:0 568:0 561:1 553:1 546:1 538:1 532:[ 527:= 521:T 516:A 490:] 484:2 476:0 471:1 463:1 453:2 448:0 443:1 438:1 432:[ 427:= 424:A 395:] 389:1 384:1 379:0 372:1 367:1 362:0 355:1 350:0 345:1 339:[ 269:) 266:) 260:( 251:( 239:) 233:( 219:: 171:A 156:A 148:A 140:A 128:A 104:A 98:) 96:A 90:) 88:A 79:A 63:A 43:A 20:)

Index

Column rank
linear algebra
matrix
dimension
vector space
spanned
linearly independent
nondegenerateness
system of linear equations
linear transformation
Alternative definitions
dimension
column space
row space
§ Proofs that column rank = row rank
linear map
image
linearly independent
transpose
transpose
Gaussian elimination
row echelon form
elementary row operations
pivots
floating point
LU decomposition
singular value decomposition
QR decomposition
rank-revealing QR factorization
§ Rank from row echelon forms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.