Knowledge

Computing the permanent

Source 📝

6620: 6068: 6615:{\displaystyle \operatorname {per} {\begin{pmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{pmatrix}}^{(\alpha ,\beta )}={\det }^{p-1}(A_{11})\operatorname {per} {\begin{pmatrix}A_{11}^{-1}&A_{11}^{-1}A_{12}\\A_{21}A_{11}^{-1}&A_{22}-A_{21}A_{11}^{-1}A_{12}\end{pmatrix}}^{((p-1){\vec {1}}_{n}-\beta ,(p-1){\vec {1}}_{n}-\alpha )}\left(\prod _{i=1}^{n}\alpha _{1,i}!\right)\left(\prod _{j=1}^{n}\beta _{1,j}!\right)(-1)^{n_{1}+\sum _{i=1}^{n}\alpha _{1,i}}} 2397: 5219: 4593: 7219:, to represent the permanent of positive-semidefinite matrices as the expected value of a specific random variable. The latter is then approximated by its sample mean. This algorithm, for a certain set of positive-semidefinite matrices, approximates their permanent in polynomial time up to an additive error, which is more reliable than that of the standard classical polynomial-time algorithm by Gurvits. 4693:-th columns are identical too.) The closure of that operator defined as the limit of its sequential application together with the transpose transformation (utilized each time the operator leaves the matrix intact) is also an operator mapping, when applied to classes of matrices, one class to another. While the compression operator maps the class of 1-semi-unitary matrices to itself and the classes of 5831: 2074: 4886: 4324: 5492: 2777: 5468:
denotes the n-vector all whose entries equal unity. This identity is an exact analog of the classical formula expressing a matrix's minor through a minor of its inverse and hence demonstrates (once more) a kind of duality between the determinant and the permanent as relative immanants. (Actually its
4697:
and 2-semi-unitary ones, the compression-closure of the 1-semi-unitary class (as well as the class of matrices received from unitary ones through replacing one row by an arbitrary row vector — the permanent of such a matrix is, via the Laplace expansion, the sum of the permanents of 1-semi-unitary
2392:{\displaystyle {\begin{aligned}\operatorname {per} (A)&=(-1)^{n}\sum _{{J_{1}},\ldots ,{J_{p-1}}}\det(A_{J_{1}})\dotsm \det(A_{J_{p-1}})\\\det(A)&=(-1)^{n}\sum _{{J_{1}},\ldots ,{J_{p-1}}}\operatorname {per} (A_{J_{1}})\dotsm \operatorname {per} (A_{J_{p-1}})\end{aligned}}} 5214:{\displaystyle \operatorname {per} (A^{(\alpha ,\beta )})=\det ^{p-1}(A)\operatorname {per} (A^{-1})^{((p-1){\vec {1}}_{n}-\beta ,(p-1){\vec {1}}_{n}-\alpha )}\left(\prod _{i=1}^{n}\alpha _{i}!\right)\left(\prod _{j=1}^{n}\beta _{j}!\right)(-1)^{n+\sum _{i=1}^{n}\alpha _{i}}} 4588:{\displaystyle \operatorname {per} {\begin{pmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{pmatrix}}=\operatorname {det} ^{2}(A_{11})\operatorname {per} {\begin{pmatrix}A_{11}^{-1}&A_{11}^{-1}A_{12}\\A_{21}A_{11}^{-1}&A_{22}-A_{21}A_{11}^{-1}A_{12}\end{pmatrix}}} 3063: 752: 3182: 4645:+ 1)-matrix correspondingly, hence having introduced a compression operator (analogical to the Gaussian modification applied for calculating the determinant) that "preserves" the permanent in characteristic 3. (Analogically, it would be worth noting that the 5826:{\textstyle \operatorname {haf} ^{2}(A^{(\alpha ,\alpha )})=\det ^{p-1}(A)\operatorname {haf} ^{2}(A^{-1})^{((p-1){\vec {1}}_{n}-\alpha ,(p-1){\vec {1}}_{n}-\alpha )}\left(\prod _{i=1}^{n}\alpha _{i}!\right)^{2}(-1)^{n(p-1)/2+n+\sum _{i=1}^{n}\alpha _{i}}} 1882: 2529: 1326:
had asked the question of when it is possible to change the signs of some of the entries of a 01 matrix A so that the determinant of the new matrix is the permanent of A. Not all 01 matrices are "convertible" in this manner; in fact it is known
3732: 237: 3904: 266:σ while in this formula each product is unsigned. The formula may be directly translated into an algorithm that naively expands the formula, summing over all permutations and within the sum multiplying out each matrix entry. This requires 2887: 1495:
has a perfect matching, there are an odd number of edges directed along C (and thus an odd number with the opposite orientation). It was also shown that these graphs are exactly those that do not contain a subgraph homeomorphic to
49:
The permanent is defined similarly to the determinant, as a sum of products of sets of matrix entries that lie in distinct rows and columns. However, where the determinant weights each of these products with a ±1 sign based on the
1240: 3508: 576: 3350: 2919: 898:). The methods to find the formula are quite different, being related to the combinatorics of the Muir algebra, and to finite difference theory respectively. Another way, connected with invariant theory is via the 6061: 4875: 1105: 4086: 4698:
matrices and, accordingly, polynomial-time computable) is yet unknown and tensely related to the general problem of the permanent's computational complexity in characteristic 3 and the chief question of
4212: 587: 2079: 7026: 1393: 7205: 7172: 3070: 4713:
Besides, the problem of finding and classifying any possible analogs of the permanent-preserving compressions existing in characteristic 3 for other prime characteristics was formulated (
2457: 1592: 1751: 2781:
with the sum taken over the same set of indexes. Moreover, in characteristic zero a similar convolution sum expression involving both the permanent and the determinant yields the
7093: 6787: 3988: 3247: 5432:(if some row's or column's multiplicity equals zero it would mean that the row or column was removed, and thus this notion is a generalization of the notion of submatrix), and 7128: 807: 7174:, but this is considered an infeasible class in general. It is NP-hard to approximate permanents of PSD matrices within a subexponential factor, and it is conjectured to be 5466: 2495: 2059: 4706:), if such a compression-closure is the set of all square matrices over a field of characteristic 3 or, at least, contains a matrix class the permanent's computation on is 6965: 1493: 6709: 1664: 852: 416: 7607: 6736: 4226:
polynomial in characteristic 2: while computing it on the unitary matrices is polynomial-time feasible, the problem is #2-P-complete for the k-semi-unitary ones for any
3609: 2001: 5332: 1419: 135: 3768: 452: 362: 6642: 5977: 5948: 4771: 3824: 1690: 1527: 1141: 6662: 5915: 5888: 5861: 4791: 4313: 4286: 4259: 3564: 3382: 5418: 5379: 2914: 1912: 1619: 479: 389: 318: 7055: 6859: 2788: 7370:
Chakhmakhchyan, Levon; Cerf, Nicolas; Garcia-Patron, Raul (2017), "A quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices",
6939: 6919: 6899: 6879: 6756: 6682: 5487: 5352: 5289: 5269: 5249: 4743: 4156: 4129: 4109: 4008: 3950: 3930: 3817: 3788: 3604: 3528: 3418: 3267: 3209: 2522: 2021: 1972: 1952: 1932: 1735: 1467: 1439: 1349: 872: 2772:{\displaystyle \operatorname {haf} ^{2}(A)=(-1)^{n}\sum _{{J_{1}},\ldots ,{J_{p-1}}}\det(A_{J_{1}})\dotsm \det(A_{J_{p-1}})(-1)^{|J_{1}|+\dots +|J_{(p-1)/2}|}} 910:). The formula generalizes to infinitely many others, as found by all these authors, although it is not clear if they are any faster than the basic one. See ( 6805:
from the set of all perfect matchings in a given bipartite graph: in other words, a fully polynomial almost uniform sampler (FPAUS). This can be done using a
1146: 8019: 3423: 487: 7574:
Jerrum, M.; Sinclair, A.; Vigoda, E. (2001), "A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries",
3280: 7928: 4234:) and it was proven that in characteristic 3 there is a simple formula relating the permanents of a square matrix and its partial inverse (for 262:. This formula differs from the corresponding formula for the determinant only in that, in the determinant, each product is multiplied by the 7914: 7869: 7844: 7718: 7439: 923: 7861: 5982: 4796: 7593: 7249: 6810: 1286:
computes the number of perfect matchings in polynomial time by changing the signs of a carefully chosen subset of the entries in the
290: 7666: 7524: 4016: 886:
Another formula that appears to be as fast as Ryser's (or perhaps even twice as fast) is to be found in the two Ph.D. theses; see (
7727:
Little, C. H. C. (1974), "An extension of Kasteleyn's method of enumerating the 1-factors of planar graphs", in Holton, D. (ed.),
7575: 4161: 3058:{\displaystyle \operatorname {ham} (A)=\sum _{J\subseteq \{2,\dots ,n\}}\det(A_{J})\operatorname {per} (A_{\bar {J}})(-1)^{|J|}.} 747:{\displaystyle \operatorname {perm} (A)=(-1)^{n}\sum _{S\subseteq \{1,\dots ,n\}}(-1)^{|S|}\prod _{i=1}^{n}\sum _{j\in S}a_{ij}.} 100:
The development of both exact and approximate algorithms for computing the permanent of a matrix is an active area of research.
8039: 7738: 7499:, Ph.D. Thesis, Department of Statistics, Loyola College, Madras, India, vol. T073, Indian Statistical Institute, Calcutta 66: 4613:− 1 rows expressible as linear combinations of another (disjoint) subset of k rows to the computation of the permanent of an ( 4649:
polynomial in characteristic 2 does possess its invariant matrix compressions as well, taking into account the fact that ham(
7807: 6802: 70: 4710:(like the class of 2-semi-unitary matrices) then the permanent is computable in polynomial time in this characteristic. 1307: 6970: 4214:, the permanent of a 1-semi-unitary matrix is computable in polynomial time over fields of characteristic 3, while for 85:. This puts the computation of the permanent in a class of problems believed to be even more difficult to compute than 3177:{\displaystyle \operatorname {ham} (A)=\sum _{J\subseteq \{2,\dots ,n\}}\det(A_{J})\operatorname {det} (A_{\bar {J}})} 7546: 3392:-matrix with the entry of indexes 1,1 replaced by 0. Moreover, it may, in turn, be further generalized for a unitary 2065: 1354: 7649:
Kogan, Grigoriy (1996), "Computing permanents over fields of characteristic 3: Where and why it becomes difficult",
7177: 7144: 1445:
who showed that such matrices are precisely those that are the biadjacency matrix of bipartite graphs that have a
7886: 7460: 7330:
Meiburg, Alexander (2023), "Inapproximability of Positive Semidefinite Permanents and Quantum State Tomography",
6828:
of the permanent, by using the FPAUS in combination with a well-known reduction from sampling to counting due to
7134: 6825: 6818: 6806: 2406: 1877:{\displaystyle \operatorname {per} (A)=(-1)^{n}\sum _{J\subseteq \{1,\dots ,n\}}\det(A_{J})\det(A_{\bar {J}}),} 1311: 1543: 8024: 6771: 1275: 263: 51: 35: 1306:) is the number of perfect matchings. This technique can be generalized to graphs that contain no subgraph 8029: 7469: 7211:
are imposed, there are more efficient algorithms known. One randomized algorithm is based on the model of
7060: 1738: 17: 7491: 7138: 8034: 6798: 3955: 3214: 1295: 899: 7698: 7389: 7208: 7098: 6775: 1446: 760: 62: 39: 5435: 3727:{\textstyle \operatorname {ham_{K}} (A)=\sum _{\sigma \in H_{n}(K)}\prod _{i=1}^{n}a_{i,\sigma (i)}} 2462: 2026: 7474: 5836:
And, as an even wider generalization for the partial inverse case in a prime characteristic p, for
4699: 6944: 1472: 232:{\displaystyle \operatorname {perm} (A)=\sum _{\sigma \in S_{n}}\prod _{i=1}^{n}a_{i,\sigma (i)}.} 7998: 7980: 7945: 7824: 7688: 7672: 7599: 7563: 7405: 7379: 7341: 6687: 1624: 1537: 1271: 812: 394: 6714: 3899:{\displaystyle \operatorname {per} (A^{-1})\operatorname {det} ^{2}(A)=\operatorname {per} (A);} 1977: 5298: 1398: 7975: 7910: 7865: 7840: 7714: 7662: 7589: 7435: 5918: 4316: 3797: 3737: 421: 331: 6627: 5953: 5924: 4756: 2882:{\textstyle \operatorname {ham} (A)=\sum _{\sigma \in H_{n}}\prod _{i=1}^{n}a_{i,\sigma (i)}} 1669: 1499: 1113: 917:
The simplest known formula of this type (when the characteristic of the field is not two) is
7990: 7937: 7900: 7892: 7816: 7767: 7747: 7654: 7638: 7581: 7555: 7533: 7479: 7427: 7397: 7351: 6647: 5893: 5866: 5839: 4776: 4707: 4646: 4291: 4264: 4237: 4223: 4219: 3537: 3355: 3185: 2782: 1263: 903: 78: 74: 7314: 5396: 5357: 2892: 1890: 1597: 457: 367: 296: 7758:
Marcus, M.; Minc, H. (1961), "On the relation between the determinant and the permanent",
7031: 6835: 1693: 1267: 243: 86: 58: 7789: 7422:
Gurvits, Leonid (2005), "On the complexity of mixed discriminants and related problems",
6824:
It is possible to approximately count the number of perfect matchings in a graph via the
1323: 7702: 7393: 6786:
is the value of the permanent and ε > 0 is arbitrary. In other words, there exists a
65:, it is generally believed that the permanent cannot be computed in polynomial time. In 7923: 7891:, Lecture Notes in Computer Science, vol. 318, Springer-Verlag, pp. 233–242, 7878: 7626: 7622: 7458:
Allender, Eric; Gore, Vivec (1994), "A uniform circuit lower bound for the permanent",
7216: 7212: 6924: 6904: 6884: 6864: 6741: 6667: 5472: 5337: 5274: 5254: 5234: 4728: 4694: 4141: 4114: 4094: 3993: 3935: 3915: 3910: 3802: 3773: 3589: 3513: 3403: 3277:-matrix), because each minor of such a matrix coincides with its algebraic complement: 3252: 3194: 3189: 2507: 2006: 1957: 1937: 1917: 1720: 1452: 1424: 1334: 1235:{\displaystyle \delta =(\delta _{1}=1,\delta _{2},\dots ,\delta _{n})\in \{\pm 1\}^{n}} 857: 31: 8013: 7941: 7751: 7642: 7629:(1986), "Random generation of combinatorial structures from a uniform distribution", 1283: 7676: 7567: 7409: 7133:
Another class of matrices for which the permanent is of particular interest, is the
3793:
This formula also implies the following identities over fields of characteristic 3:
7949: 7603: 7332: 6814: 1287: 1279: 8002: 6797:
The most difficult step in the computation is the construction of an algorithm to
7853: 7618: 1303: 1299: 282: 255: 43: 7611: 7401: 7356: 4597:
and it allows to polynomial-time reduce the computation of the permanent of an
3770:
is the set of n-permutations whose each cycle contains at least one element of
7736:
Little, C. H. C. (1975), "A characterization of convertible (0, 1)-matrices",
7731:, Lecture Notes in Mathematics, vol. 403, Springer-Verlag, pp. 63–72 7559: 7537: 7483: 3503:{\displaystyle \operatorname {ham_{K}} (U)=\operatorname {det} ^{2}(U+I_{/K})} 571:{\displaystyle \operatorname {perm} (A)=\sum _{k=0}^{n-1}(-1)^{k}\Sigma _{k}.} 89:. It is known that computing the permanent is impossible for logspace-uniform 42:
is a problem that is thought to be more difficult than the computation of the
7896: 7772: 7658: 1710:. First, there is one using symbolic calculations with partial derivatives. 875: 7585: 4111:
is the matrix whose entries are the cubes of the corresponding entries of
3345:{\displaystyle \operatorname {ham} (U)=\operatorname {det} ^{2}(U+I_{/1})} 7881:(1988), "NC algorithms for computing the number of perfect matchings in K 1291: 7431: 3184:
what therefore provides an opportunity to polynomial-time calculate the
7828: 7508:, Ph.D. Dissertation, vol. 223, California Institute of Technology 7426:, Lecture Notes in Computer Science, vol. 3618, pp. 447–458, 7837:
Symmetric Functionals on Random Matrices and Random Matchings Problems
2504:
The former formula possesses an analog for the hafnian of a symmetric
7994: 7905: 7805:
Reich, Simeon (1971), "Another solution of an old problem of pólya",
1696:
to compute the permanent modulo any number that is not a power of 2.
7820: 7985: 7693: 7384: 7346: 7260: 6056:{\textstyle {\sum _{i=1}^{n}\alpha _{i}=\sum _{j=1}^{n}\beta _{j}}} 4870:{\textstyle {\sum _{i=1}^{n}\alpha _{i}=\sum _{j=1}^{n}\beta _{j}}} 2061:, while the determinant of the empty submatrix is defined to be 1. 1100:{\displaystyle \operatorname {perm} (A)={\frac {1}{2^{n-1}}}\left,} 7544:
Glynn, David G. (2013), "Permanent formulae from the Veronesean",
7651:
Proceedings of 37th Conference on Foundations of Computer Science
90: 46:
of a matrix despite the apparent similarity of the definitions.
7973:
Barvinok, A. (2017), "Approximating permanents and hafnians",
7888:
Proc. 1st Scandinavian Workshop on Algorithm Theory (SWAT '88)
5291:, both vectors having all their entries from the set {0, ..., 1441:. The characterization of "convertible" matrices was given by 581:
It may be rewritten in terms of the matrix entries as follows
7709:
van Lint, Jacobus Hendricus; Wilson, Richard Michale (2001),
7316:
Shtetl Optimized: Introducing some British people to P vs. NP
7130:
can be approximated by applying the same method recursively.
4230:> 0). The latter result was essentially extended in 2017 ( 4081:{\displaystyle \operatorname {per} ^{2}(U)=\det(U+V)\det(-U)} 1449:: an orientation of the edges such that for every even cycle 7522:
Glynn, David G. (2010), "The permanent of a square matrix",
6684:
generate the corresponding row/column multiplicity vectors
4207:{\displaystyle \operatorname {rank} (A^{\textsf {T}}A-I)=k} 7517:, Caltech-CS-TR-96-04, California Institute of Technology 4749:-vectors (having all their entries from the set {0, ..., 2064:
The expansion above can be generalized in an arbitrary
6973: 6210: 6084: 5985: 5495: 4799: 4441: 4339: 3612: 2791: 2399:
where in both formulas the sum is taken over all the (
1717:= 3 there is the following formula for an n×n-matrix 7926:(1979), "The complexity of computing the permanent", 7180: 7147: 7101: 7063: 7034: 6947: 6927: 6907: 6887: 6867: 6838: 6829: 6788:
fully polynomial-time randomized approximation scheme
6744: 6717: 6690: 6670: 6650: 6630: 6071: 5956: 5927: 5896: 5869: 5842: 5475: 5438: 5399: 5360: 5340: 5301: 5277: 5257: 5237: 4889: 4779: 4759: 4731: 4327: 4294: 4267: 4240: 4164: 4144: 4117: 4097: 4019: 3996: 3958: 3938: 3918: 3827: 3805: 3776: 3740: 3592: 3540: 3516: 3426: 3406: 3358: 3283: 3255: 3217: 3197: 3073: 2922: 2916:
is the set of n-permutations having only one cycle):
2895: 2532: 2510: 2465: 2409: 2077: 2029: 2009: 1980: 1960: 1940: 1920: 1893: 1754: 1723: 1672: 1627: 1600: 1546: 1502: 1475: 1455: 1427: 1401: 1357: 1337: 1149: 1116: 926: 860: 815: 763: 590: 490: 460: 424: 397: 370: 334: 299: 138: 7729:
Proc. 2nd Australian Conf. Combinatorial Mathematics
6791: 1540:
2, the permanent is the same as the determinant, as
3067:In characteristic 2 the latter equality turns into 1278:as the number of perfect matchings in a graph. For 7685:Some facts on Permanents in Finite Characteristics 7515:A finite-difference sieve to compute the permanent 7506:Finite-difference Algorithms for Counting Problems 7199: 7166: 7122: 7087: 7049: 7021:{\textstyle \rho ={\frac {M(G)}{M(G\setminus e)}}} 7020: 6959: 6933: 6913: 6893: 6873: 6853: 6817:whose distribution is close to uniform, and whose 6758:'s partial inverse in the equality's right side). 6750: 6730: 6703: 6676: 6656: 6636: 6614: 6055: 5971: 5942: 5909: 5882: 5855: 5825: 5481: 5460: 5412: 5373: 5346: 5326: 5283: 5263: 5243: 5213: 4869: 4785: 4765: 4737: 4587: 4307: 4280: 4253: 4206: 4150: 4123: 4103: 4080: 4010:is the identity matrix of the corresponding size, 4002: 3982: 3944: 3924: 3898: 3811: 3782: 3762: 3726: 3598: 3558: 3522: 3502: 3412: 3376: 3344: 3261: 3241: 3203: 3176: 3057: 2908: 2881: 2771: 2516: 2489: 2451: 2391: 2053: 2015: 1995: 1966: 1946: 1926: 1906: 1876: 1729: 1684: 1658: 1613: 1586: 1521: 1487: 1461: 1433: 1413: 1387: 1343: 1234: 1135: 1099: 866: 846: 801: 746: 570: 473: 446: 410: 383: 356: 312: 231: 7424:Mathematical Foundations of Computer Science 2005 7235: 6624:where the common row/column multiplicity vectors 281:The best known general exact algorithm is due to 54:, the permanent weights them all with a +1 sign. 7835:Rempała, Grzegorz A.; Wesolowski, Jacek (2008), 6166: 5541: 4928: 4063: 4045: 3126: 2975: 2652: 2623: 2234: 2198: 2169: 1845: 1826: 1379: 242:The sum here extends over all elements σ of the 6941:and counting how many of them are matchings in 6770:are nonnegative, the permanent can be computed 6738:, s,t = 1,2, for its blocks (the same concerns 1388:{\displaystyle \operatorname {per} T(A)=\det A} 887: 7860:, The Carus Mathematical Monographs, Vol. 14, 7246: 7200:{\displaystyle {\textsf {BPP}}^{\textsf {NP}}} 7167:{\displaystyle {\textsf {BPP}}^{\textsf {NP}}} 4717:), while giving the following identity for an 7271: 4877:, valid in an arbitrary prime characteristic 4714: 4703: 4231: 1274:, and the permanent of any 0-1 matrix can be 81:for matrices in which all entries are 0 or 1 8: 7780:Nijenhuis, Albert; Wilf, Herbert S. (1978), 5469:own analogue for the hafnian of a symmetric 3121: 3103: 2970: 2952: 2484: 2466: 2048: 2030: 1821: 1803: 1223: 1213: 657: 639: 94: 7577:Proc. 33rd Symposium on Theory of Computing 1270:is counted by the permanent of the graph's 895: 6967:, one can obtain an estimate of the ratio 6861:denote the number of perfect matchings in 2501:− 1 subsets, some of them possibly empty. 2071:as the following pair of dual identities: 1328: 882:Balasubramanian–Bax–Franklin–Glynn formula 293:formula that can be given as follows: Let 18:Computation of the permananent of a matrix 7984: 7904: 7771: 7692: 7473: 7383: 7355: 7345: 7191: 7190: 7189: 7184: 7183: 7182: 7179: 7158: 7157: 7156: 7151: 7150: 7149: 7146: 7100: 7062: 7033: 6980: 6972: 6946: 6926: 6906: 6886: 6866: 6837: 6743: 6722: 6716: 6695: 6689: 6669: 6649: 6629: 6598: 6588: 6577: 6564: 6559: 6526: 6516: 6505: 6476: 6466: 6455: 6429: 6418: 6417: 6386: 6375: 6374: 6354: 6340: 6327: 6322: 6312: 6299: 6284: 6279: 6269: 6255: 6242: 6237: 6222: 6217: 6205: 6189: 6170: 6165: 6143: 6129: 6117: 6103: 6091: 6079: 6070: 6046: 6036: 6025: 6012: 6002: 5991: 5986: 5984: 5962: 5957: 5955: 5933: 5928: 5926: 5901: 5895: 5874: 5868: 5847: 5841: 5815: 5805: 5794: 5773: 5754: 5735: 5721: 5711: 5700: 5673: 5662: 5661: 5630: 5619: 5618: 5598: 5585: 5569: 5544: 5516: 5500: 5494: 5474: 5452: 5441: 5440: 5437: 5404: 5398: 5365: 5359: 5339: 5306: 5300: 5276: 5256: 5236: 5203: 5193: 5182: 5171: 5144: 5134: 5123: 5100: 5090: 5079: 5053: 5042: 5041: 5010: 4999: 4998: 4978: 4965: 4931: 4903: 4888: 4860: 4850: 4839: 4826: 4816: 4805: 4800: 4798: 4778: 4758: 4730: 4571: 4558: 4553: 4543: 4530: 4515: 4510: 4500: 4486: 4473: 4468: 4453: 4448: 4436: 4421: 4405: 4384: 4372: 4358: 4346: 4334: 4326: 4299: 4293: 4272: 4266: 4245: 4239: 4180: 4179: 4178: 4163: 4143: 4116: 4096: 4024: 4018: 3995: 3965: 3964: 3963: 3957: 3937: 3917: 3857: 3841: 3826: 3804: 3775: 3745: 3739: 3703: 3693: 3682: 3661: 3650: 3624: 3613: 3611: 3591: 3546: 3545: 3539: 3515: 3487: 3486: 3464: 3438: 3427: 3425: 3405: 3364: 3363: 3357: 3329: 3328: 3306: 3282: 3254: 3224: 3223: 3222: 3216: 3196: 3159: 3158: 3136: 3096: 3072: 3045: 3037: 3036: 3008: 3007: 2985: 2945: 2921: 2900: 2894: 2858: 2848: 2837: 2825: 2814: 2790: 2762: 2752: 2736: 2727: 2713: 2707: 2698: 2697: 2667: 2662: 2638: 2633: 2608: 2603: 2587: 2582: 2581: 2571: 2537: 2531: 2509: 2464: 2452:{\displaystyle {J_{1}},\ldots ,{J_{p-1}}} 2436: 2431: 2415: 2410: 2408: 2368: 2363: 2336: 2331: 2303: 2298: 2282: 2277: 2276: 2266: 2213: 2208: 2184: 2179: 2154: 2149: 2133: 2128: 2127: 2117: 2078: 2076: 2028: 2008: 1982: 1981: 1979: 1959: 1939: 1919: 1898: 1892: 1856: 1855: 1836: 1796: 1786: 1753: 1722: 1671: 1638: 1626: 1605: 1599: 1565: 1545: 1507: 1501: 1474: 1454: 1426: 1400: 1356: 1336: 1226: 1201: 1182: 1163: 1148: 1121: 1115: 1080: 1070: 1060: 1049: 1039: 1028: 1013: 1003: 992: 977: 954: 945: 925: 859: 826: 814: 790: 774: 762: 732: 716: 706: 695: 684: 676: 675: 632: 622: 589: 559: 549: 524: 513: 489: 465: 459: 435: 423: 402: 396: 375: 369: 345: 333: 304: 298: 205: 195: 184: 172: 161: 137: 57:While the determinant can be computed in 7286: 7141:, they can be computed within the class 1587:{\displaystyle (-1)\equiv 1{\pmod {2}}.} 7958:CRC Concise Encyclopedia of Mathematics 7493:Combinatorics and Diagonals of Matrices 7261:CRC Concise Encyclopedia of Mathematics 7227: 7111: 7076: 7006: 6951: 1697: 1479: 757:Ryser's formula can be evaluated using 82: 7282: 1442: 7301: 7297: 6830:Jerrum, Valiant & Vazirani (1986) 4138:) that, if we define a square matrix 4135: 1742: 1703: 911: 907: 286: 7: 7885:-free graphs and related problems", 7683:Knezevic, Anna; Cohen, Greg (2017), 7207:-hard If further constraints on the 7088:{\displaystyle \rho M(G\setminus e)} 6792:Jerrum, Sinclair & Vigoda (2001) 6778:polynomial time, up to an error of ε 3574:-matrix with the entries of indexes 1702:There are various formulae given by 73:states that computing permanents is 7862:Mathematical Association of America 6881:. Roughly, for any particular edge 1934:induced by the rows and columns of 1737:, involving the matrix's principal 1706:for the computation modulo a prime 1573: 1282:(regardless of bipartiteness), the 891: 4222:. (A parallel theory concerns the 3983:{\displaystyle U^{\textsf {T}}U=I} 3625: 3621: 3617: 3614: 3439: 3435: 3431: 3428: 3242:{\displaystyle U^{\textsf {T}}U=I} 556: 399: 364:be the product of the row-sums of 25: 7525:European Journal of Combinatorics 5334:denotes the matrix received from 289:). Ryser's method is based on an 7513:Bax, Eric; Franklin, J. (1996), 7215:and it uses the tools proper to 6921:, by sampling many matchings in 6063:, there holds also the identity 1110:where the outer sum is over all 8020:Computational complexity theory 7760:Illinois Journal of Mathematics 7739:Journal of Combinatorial Theory 7547:Designs, Codes and Cryptography 7236:Rempała & Wesolowski (2008) 7123:{\displaystyle M(G\setminus e)} 4685:-th rows are identical and its 4665:having three equal rows or, if 2459:that are partitions of the set 1594:It can also be computed modulo 1566: 802:{\displaystyle O(2^{n-1}n^{2})} 67:computational complexity theory 7960:, Chapman & Hall/CRC, 2002 7713:, Cambridge University Press, 7135:positive-semidefinite matrices 7117: 7105: 7082: 7070: 7044: 7038: 7012: 7000: 6992: 6986: 6848: 6842: 6556: 6546: 6441: 6423: 6413: 6401: 6380: 6370: 6358: 6355: 6195: 6182: 6156: 6144: 5770: 5758: 5751: 5741: 5685: 5667: 5657: 5645: 5624: 5614: 5602: 5599: 5595: 5578: 5562: 5556: 5534: 5529: 5517: 5509: 5461:{\displaystyle {\vec {1}}_{n}} 5446: 5319: 5307: 5168: 5158: 5065: 5047: 5037: 5025: 5004: 4994: 4982: 4979: 4975: 4958: 4949: 4943: 4921: 4916: 4904: 4896: 4427: 4414: 4195: 4171: 4075: 4066: 4060: 4048: 4039: 4033: 3890: 3884: 3872: 3866: 3850: 3834: 3757: 3751: 3719: 3713: 3673: 3667: 3640: 3634: 3497: 3473: 3454: 3448: 3339: 3315: 3296: 3290: 3171: 3164: 3151: 3142: 3129: 3086: 3080: 3046: 3038: 3033: 3023: 3020: 3013: 3000: 2991: 2978: 2935: 2929: 2874: 2868: 2804: 2798: 2763: 2749: 2737: 2728: 2714: 2699: 2694: 2684: 2681: 2655: 2646: 2626: 2568: 2558: 2552: 2546: 2490:{\displaystyle \{1,\dots ,n\}} 2382: 2356: 2344: 2324: 2263: 2253: 2243: 2237: 2227: 2201: 2192: 2172: 2114: 2104: 2094: 2088: 2054:{\displaystyle \{1,\dots ,n\}} 1987: 1868: 1861: 1848: 1842: 1829: 1783: 1773: 1767: 1761: 1653: 1631: 1577: 1567: 1556: 1547: 1373: 1367: 1331:) that there is no linear map 1207: 1156: 939: 933: 841: 819: 796: 767: 685: 677: 672: 662: 619: 609: 603: 597: 546: 536: 503: 497: 441: 428: 351: 338: 221: 215: 151: 145: 104:Definition and naive algorithm 1: 7808:American Mathematical Monthly 7942:10.1016/0304-3975(79)90044-6 7929:Theoretical Computer Science 7752:10.1016/0095-8956(75)90048-9 7643:10.1016/0304-3975(86)90174-X 7631:Theoretical Computer Science 7490:Balasubramanian, K. (1980), 7247:van Lint & Wilson (2001) 6960:{\displaystyle G\setminus e} 1488:{\displaystyle G\setminus C} 418:be the sum of the values of 7272:Nijenhuis & Wilf (1978) 6704:{\displaystyle \alpha _{s}} 4715:Knezevic & Cohen (2017) 4704:Knezevic & Cohen (2017) 4232:Knezevic & Cohen (2017) 4218:> 1 the problem becomes 3932:, that is, a square matrix 1659:{\displaystyle O(n^{4k-3})} 1533:Computation modulo a number 847:{\displaystyle O(2^{n-1}n)} 411:{\displaystyle \Sigma _{k}} 8056: 7402:10.1103/PhysRevA.96.022329 7357:10.1007/s00453-023-01169-1 6731:{\displaystyle \beta _{t}} 4669:> 2, a pair of indexes 1996:{\displaystyle {\bar {J}}} 1290:of the graph, so that the 809:arithmetic operations, or 258:of the numbers 1, 2, ..., 7858:Combinatorial Mathematics 7711:A Course in Combinatorics 7560:10.1007/s10623-012-9618-1 7538:10.1016/j.ejc.2010.01.010 7484:10.1137/s0097539792233907 7461:SIAM Journal on Computing 5327:{\displaystyle M^{(x,y)}} 4605:-matrix with a subset of 1414:{\displaystyle n\times n} 34:, the computation of the 27:Problem in linear algebra 7936:(2), Elsevier: 189–201, 7897:10.1007/3-540-19487-8_27 7782:Combinatorial Algorithms 7659:10.1109/SFCS.1996.548469 7312:See open problem (4) at 6807:Markov chain Monte Carlo 3763:{\displaystyle H_{n}(K)} 3530:is a subset of {1, ..., 1329:Marcus & Minc (1961) 1312:complete bipartite graph 447:{\displaystyle P(A_{k})} 357:{\displaystyle P(A_{k})} 95:Allender & Gore 1994 7839:, Springer, p. 4, 7792:(1913), "Aufgabe 424", 7137:. Using a technique of 6762:Approximate computation 6637:{\displaystyle \alpha } 5972:{\displaystyle {n_{1}}} 5943:{\displaystyle {n_{1}}} 4766:{\displaystyle \alpha } 4158:as k-semi-unitary when 2785:polynomial (defined as 1685:{\displaystyle k\geq 2} 1522:{\displaystyle K_{3,3}} 1276:interpreted in this way 1136:{\displaystyle 2^{n-1}} 896:Bax & Franklin 1996 854:by processing the sets 273:arithmetic operations. 264:sign of the permutation 8040:Computational problems 7773:10.1215/ijm/1255630882 7201: 7168: 7124: 7089: 7051: 7022: 6961: 6935: 6915: 6895: 6875: 6855: 6809:algorithm that uses a 6752: 6732: 6705: 6678: 6658: 6657:{\displaystyle \beta } 6638: 6616: 6593: 6521: 6471: 6057: 6041: 6007: 5973: 5944: 5911: 5910:{\displaystyle A_{11}} 5884: 5883:{\displaystyle A_{22}} 5857: 5856:{\displaystyle A_{11}} 5827: 5810: 5716: 5489:and an odd prime p is 5483: 5462: 5414: 5375: 5348: 5328: 5285: 5265: 5245: 5215: 5198: 5139: 5095: 4871: 4855: 4821: 4787: 4786:{\displaystyle \beta } 4767: 4739: 4702:: as it was shown in ( 4589: 4309: 4308:{\displaystyle A_{11}} 4282: 4281:{\displaystyle A_{22}} 4255: 4254:{\displaystyle A_{11}} 4208: 4152: 4125: 4105: 4082: 4004: 3984: 3946: 3926: 3900: 3813: 3784: 3764: 3728: 3698: 3600: 3582:replaced by 0 for all 3560: 3559:{\displaystyle I_{/K}} 3524: 3504: 3414: 3378: 3377:{\displaystyle I_{/1}} 3346: 3263: 3243: 3205: 3178: 3059: 2910: 2883: 2853: 2773: 2518: 2491: 2453: 2393: 2055: 2017: 1997: 1968: 1948: 1928: 1908: 1878: 1731: 1686: 1660: 1615: 1588: 1523: 1489: 1463: 1435: 1415: 1389: 1345: 1236: 1137: 1101: 1065: 1044: 1008: 868: 848: 803: 748: 711: 572: 535: 475: 448: 412: 385: 358: 314: 233: 200: 7586:10.1145/380752.380877 7202: 7169: 7125: 7090: 7052: 7023: 6962: 6936: 6916: 6896: 6876: 6856: 6753: 6733: 6706: 6679: 6659: 6639: 6617: 6573: 6501: 6451: 6058: 6021: 5987: 5974: 5945: 5912: 5885: 5858: 5828: 5790: 5696: 5484: 5463: 5415: 5413:{\displaystyle y_{j}} 5376: 5374:{\displaystyle x_{i}} 5349: 5329: 5286: 5266: 5246: 5216: 5178: 5119: 5075: 4872: 4835: 4801: 4788: 4768: 4740: 4590: 4310: 4283: 4256: 4209: 4153: 4126: 4106: 4083: 4005: 3985: 3947: 3927: 3901: 3814: 3785: 3765: 3729: 3678: 3601: 3561: 3525: 3505: 3415: 3379: 3347: 3264: 3244: 3206: 3179: 3060: 2911: 2909:{\displaystyle H_{n}} 2884: 2833: 2774: 2519: 2492: 2454: 2394: 2056: 2018: 2003:is the complement of 1998: 1969: 1949: 1929: 1909: 1907:{\displaystyle A_{J}} 1879: 1732: 1687: 1661: 1616: 1614:{\displaystyle 2^{k}} 1589: 1524: 1490: 1464: 1436: 1416: 1390: 1346: 1296:skew-symmetric matrix 1237: 1138: 1102: 1045: 1024: 988: 900:polarization identity 869: 849: 804: 749: 691: 573: 509: 476: 474:{\displaystyle A_{k}} 449: 413: 386: 384:{\displaystyle A_{k}} 359: 315: 313:{\displaystyle A_{k}} 234: 180: 7653:, pp. 108–114, 7580:, pp. 712–721, 7178: 7145: 7099: 7061: 7050:{\displaystyle M(G)} 7032: 6971: 6945: 6925: 6905: 6885: 6865: 6854:{\displaystyle M(G)} 6836: 6813:to define and run a 6766:When the entries of 6742: 6715: 6688: 6668: 6648: 6628: 6069: 5983: 5954: 5925: 5894: 5867: 5840: 5493: 5473: 5436: 5397: 5358: 5338: 5299: 5275: 5255: 5235: 4887: 4797: 4777: 4757: 4729: 4325: 4292: 4265: 4238: 4162: 4142: 4115: 4095: 4017: 3994: 3956: 3936: 3916: 3825: 3803: 3774: 3738: 3610: 3590: 3538: 3514: 3424: 3404: 3356: 3281: 3253: 3215: 3195: 3071: 2920: 2893: 2789: 2530: 2508: 2463: 2407: 2075: 2027: 2007: 1978: 1958: 1938: 1918: 1914:is the submatrix of 1891: 1752: 1721: 1670: 1625: 1598: 1544: 1500: 1473: 1453: 1447:Pfaffian orientation 1425: 1399: 1355: 1335: 1147: 1114: 924: 888:Balasubramanian 1980 858: 813: 761: 588: 488: 458: 422: 395: 368: 332: 297: 136: 108:The permanent of an 71:a theorem of Valiant 63:Gaussian elimination 7854:Ryser, Herbert John 7703:2017arXiv171001783K 7432:10.1007/11549345_39 7394:2017PhRvA..96b2329C 7139:Stockmeyer counting 6335: 6292: 6250: 6230: 4566: 4523: 4481: 4461: 4134:It was also shown ( 291:inclusion–exclusion 7924:Valiant, Leslie G. 7879:Vazirani, Vijay V. 7504:Bax, Eric (1998), 7197: 7164: 7120: 7085: 7047: 7018: 6957: 6931: 6911: 6891: 6871: 6851: 6748: 6728: 6701: 6674: 6654: 6634: 6612: 6348: 6318: 6275: 6233: 6213: 6137: 6053: 5969: 5940: 5907: 5880: 5853: 5823: 5479: 5458: 5410: 5371: 5344: 5324: 5281: 5261: 5241: 5211: 4867: 4783: 4763: 4735: 4585: 4579: 4549: 4506: 4464: 4444: 4392: 4305: 4278: 4251: 4204: 4148: 4121: 4101: 4078: 4000: 3980: 3942: 3922: 3896: 3809: 3780: 3760: 3724: 3677: 3596: 3556: 3520: 3500: 3410: 3374: 3342: 3259: 3239: 3201: 3188:polynomial of any 3174: 3125: 3055: 2974: 2906: 2879: 2832: 2769: 2622: 2514: 2487: 2449: 2389: 2387: 2317: 2168: 2051: 2013: 1993: 1964: 1944: 1924: 1904: 1874: 1825: 1727: 1682: 1656: 1611: 1584: 1519: 1485: 1459: 1431: 1411: 1385: 1341: 1272:biadjacency matrix 1232: 1133: 1097: 982: 864: 844: 799: 744: 727: 661: 568: 471: 454:over all possible 444: 408: 381: 354: 310: 229: 179: 7976:Discrete Analysis 7916:978-3-540-19487-3 7871:978-1-61444-014-7 7846:978-0-387-75145-0 7794:Arch. Math. Phys. 7720:978-0-521-00601-9 7441:978-3-540-28702-5 7340:(12): 3828–3854, 7193: 7186: 7160: 7153: 7016: 6934:{\displaystyle G} 6914:{\displaystyle G} 6894:{\displaystyle e} 6874:{\displaystyle G} 6826:self-reducibility 6751:{\displaystyle A} 6677:{\displaystyle A} 6426: 6383: 5670: 5627: 5555: 5482:{\displaystyle A} 5449: 5347:{\displaystyle M} 5284:{\displaystyle y} 5264:{\displaystyle x} 5244:{\displaystyle M} 5050: 5007: 4942: 4738:{\displaystyle A} 4647:Hamiltonian cycle 4224:Hamiltonian cycle 4182: 4151:{\displaystyle A} 4124:{\displaystyle U} 4104:{\displaystyle V} 4003:{\displaystyle I} 3967: 3945:{\displaystyle U} 3925:{\displaystyle U} 3812:{\displaystyle A} 3783:{\displaystyle K} 3646: 3599:{\displaystyle K} 3523:{\displaystyle K} 3413:{\displaystyle U} 3262:{\displaystyle I} 3226: 3204:{\displaystyle U} 3186:Hamiltonian cycle 3167: 3092: 3016: 2941: 2810: 2783:Hamiltonian cycle 2577: 2517:{\displaystyle A} 2272: 2123: 2016:{\displaystyle J} 1990: 1967:{\displaystyle J} 1947:{\displaystyle A} 1927:{\displaystyle A} 1864: 1792: 1730:{\displaystyle A} 1692:. However, it is 1462:{\displaystyle C} 1434:{\displaystyle A} 1344:{\displaystyle T} 1294:of the resulting 1264:perfect matchings 973: 966: 867:{\displaystyle S} 712: 628: 320:be obtained from 157: 52:parity of the set 16:(Redirected from 8047: 8005: 7995:10.19086/da.1244 7988: 7961: 7952: 7919: 7908: 7874: 7849: 7831: 7801: 7785: 7784:, Academic Press 7776: 7775: 7754: 7732: 7723: 7705: 7696: 7679: 7645: 7614: 7570: 7540: 7532:(7): 1887–1891, 7518: 7509: 7500: 7498: 7486: 7477: 7468:(5): 1026–1049, 7445: 7444: 7419: 7413: 7412: 7387: 7367: 7361: 7360: 7359: 7349: 7327: 7321: 7320: 7310: 7304: 7295: 7289: 7280: 7274: 7269: 7263: 7258: 7252: 7244: 7238: 7234:As of 2008, see 7232: 7206: 7204: 7203: 7198: 7196: 7195: 7194: 7188: 7187: 7173: 7171: 7170: 7165: 7163: 7162: 7161: 7155: 7154: 7129: 7127: 7126: 7121: 7094: 7092: 7091: 7086: 7056: 7054: 7053: 7048: 7027: 7025: 7024: 7019: 7017: 7015: 6995: 6981: 6966: 6964: 6963: 6958: 6940: 6938: 6937: 6932: 6920: 6918: 6917: 6912: 6900: 6898: 6897: 6892: 6880: 6878: 6877: 6872: 6860: 6858: 6857: 6852: 6757: 6755: 6754: 6749: 6737: 6735: 6734: 6729: 6727: 6726: 6710: 6708: 6707: 6702: 6700: 6699: 6683: 6681: 6680: 6675: 6663: 6661: 6660: 6655: 6643: 6641: 6640: 6635: 6621: 6619: 6618: 6613: 6611: 6610: 6609: 6608: 6592: 6587: 6569: 6568: 6545: 6541: 6537: 6536: 6520: 6515: 6495: 6491: 6487: 6486: 6470: 6465: 6445: 6444: 6434: 6433: 6428: 6427: 6419: 6391: 6390: 6385: 6384: 6376: 6353: 6352: 6345: 6344: 6334: 6326: 6317: 6316: 6304: 6303: 6291: 6283: 6274: 6273: 6260: 6259: 6249: 6241: 6229: 6221: 6194: 6193: 6181: 6180: 6169: 6160: 6159: 6142: 6141: 6134: 6133: 6122: 6121: 6108: 6107: 6096: 6095: 6062: 6060: 6059: 6054: 6052: 6051: 6050: 6040: 6035: 6017: 6016: 6006: 6001: 5978: 5976: 5975: 5970: 5968: 5967: 5966: 5949: 5947: 5946: 5941: 5939: 5938: 5937: 5916: 5914: 5913: 5908: 5906: 5905: 5889: 5887: 5886: 5881: 5879: 5878: 5862: 5860: 5859: 5854: 5852: 5851: 5832: 5830: 5829: 5824: 5822: 5821: 5820: 5819: 5809: 5804: 5777: 5740: 5739: 5734: 5730: 5726: 5725: 5715: 5710: 5689: 5688: 5678: 5677: 5672: 5671: 5663: 5635: 5634: 5629: 5628: 5620: 5593: 5592: 5574: 5573: 5554: 5540: 5533: 5532: 5505: 5504: 5488: 5486: 5485: 5480: 5467: 5465: 5464: 5459: 5457: 5456: 5451: 5450: 5442: 5419: 5417: 5416: 5411: 5409: 5408: 5380: 5378: 5377: 5372: 5370: 5369: 5353: 5351: 5350: 5345: 5333: 5331: 5330: 5325: 5323: 5322: 5290: 5288: 5287: 5282: 5271:and an m-vector 5270: 5268: 5267: 5262: 5250: 5248: 5247: 5242: 5220: 5218: 5217: 5212: 5210: 5209: 5208: 5207: 5197: 5192: 5157: 5153: 5149: 5148: 5138: 5133: 5113: 5109: 5105: 5104: 5094: 5089: 5069: 5068: 5058: 5057: 5052: 5051: 5043: 5015: 5014: 5009: 5008: 5000: 4973: 4972: 4941: 4927: 4920: 4919: 4876: 4874: 4873: 4868: 4866: 4865: 4864: 4854: 4849: 4831: 4830: 4820: 4815: 4792: 4790: 4789: 4784: 4772: 4770: 4769: 4764: 4744: 4742: 4741: 4736: 4594: 4592: 4591: 4586: 4584: 4583: 4576: 4575: 4565: 4557: 4548: 4547: 4535: 4534: 4522: 4514: 4505: 4504: 4491: 4490: 4480: 4472: 4460: 4452: 4426: 4425: 4410: 4409: 4397: 4396: 4389: 4388: 4377: 4376: 4363: 4362: 4351: 4350: 4314: 4312: 4311: 4306: 4304: 4303: 4287: 4285: 4284: 4279: 4277: 4276: 4260: 4258: 4257: 4252: 4250: 4249: 4217: 4213: 4211: 4210: 4205: 4185: 4184: 4183: 4157: 4155: 4154: 4149: 4130: 4128: 4127: 4122: 4110: 4108: 4107: 4102: 4087: 4085: 4084: 4079: 4029: 4028: 4009: 4007: 4006: 4001: 3989: 3987: 3986: 3981: 3970: 3969: 3968: 3951: 3949: 3948: 3943: 3931: 3929: 3928: 3923: 3905: 3903: 3902: 3897: 3862: 3861: 3849: 3848: 3818: 3816: 3815: 3810: 3789: 3787: 3786: 3781: 3769: 3767: 3766: 3761: 3750: 3749: 3733: 3731: 3730: 3725: 3723: 3722: 3697: 3692: 3676: 3666: 3665: 3630: 3629: 3628: 3606:, and we define 3605: 3603: 3602: 3597: 3566:is the identity 3565: 3563: 3562: 3557: 3555: 3554: 3550: 3529: 3527: 3526: 3521: 3509: 3507: 3506: 3501: 3496: 3495: 3491: 3469: 3468: 3444: 3443: 3442: 3419: 3417: 3416: 3411: 3384:is the identity 3383: 3381: 3380: 3375: 3373: 3372: 3368: 3351: 3349: 3348: 3343: 3338: 3337: 3333: 3311: 3310: 3269:is the identity 3268: 3266: 3265: 3260: 3248: 3246: 3245: 3240: 3229: 3228: 3227: 3211:(i.e. such that 3210: 3208: 3207: 3202: 3183: 3181: 3180: 3175: 3170: 3169: 3168: 3160: 3141: 3140: 3124: 3064: 3062: 3061: 3056: 3051: 3050: 3049: 3041: 3019: 3018: 3017: 3009: 2990: 2989: 2973: 2915: 2913: 2912: 2907: 2905: 2904: 2888: 2886: 2885: 2880: 2878: 2877: 2852: 2847: 2831: 2830: 2829: 2778: 2776: 2775: 2770: 2768: 2767: 2766: 2761: 2760: 2756: 2731: 2717: 2712: 2711: 2702: 2680: 2679: 2678: 2677: 2645: 2644: 2643: 2642: 2621: 2620: 2619: 2618: 2593: 2592: 2591: 2576: 2575: 2542: 2541: 2523: 2521: 2520: 2515: 2496: 2494: 2493: 2488: 2458: 2456: 2455: 2450: 2448: 2447: 2446: 2421: 2420: 2419: 2398: 2396: 2395: 2390: 2388: 2381: 2380: 2379: 2378: 2343: 2342: 2341: 2340: 2316: 2315: 2314: 2313: 2288: 2287: 2286: 2271: 2270: 2226: 2225: 2224: 2223: 2191: 2190: 2189: 2188: 2167: 2166: 2165: 2164: 2139: 2138: 2137: 2122: 2121: 2060: 2058: 2057: 2052: 2022: 2020: 2019: 2014: 2002: 2000: 1999: 1994: 1992: 1991: 1983: 1973: 1971: 1970: 1965: 1953: 1951: 1950: 1945: 1933: 1931: 1930: 1925: 1913: 1911: 1910: 1905: 1903: 1902: 1883: 1881: 1880: 1875: 1867: 1866: 1865: 1857: 1841: 1840: 1824: 1791: 1790: 1736: 1734: 1733: 1728: 1716: 1709: 1691: 1689: 1688: 1683: 1665: 1663: 1662: 1657: 1652: 1651: 1620: 1618: 1617: 1612: 1610: 1609: 1593: 1591: 1590: 1585: 1580: 1528: 1526: 1525: 1520: 1518: 1517: 1494: 1492: 1491: 1486: 1468: 1466: 1465: 1460: 1440: 1438: 1437: 1432: 1420: 1418: 1417: 1412: 1394: 1392: 1391: 1386: 1350: 1348: 1347: 1342: 1241: 1239: 1238: 1233: 1231: 1230: 1206: 1205: 1187: 1186: 1168: 1167: 1142: 1140: 1139: 1134: 1132: 1131: 1106: 1104: 1103: 1098: 1093: 1089: 1088: 1087: 1075: 1074: 1064: 1059: 1043: 1038: 1023: 1019: 1018: 1017: 1007: 1002: 981: 967: 965: 964: 946: 904:symmetric tensor 873: 871: 870: 865: 853: 851: 850: 845: 837: 836: 808: 806: 805: 800: 795: 794: 785: 784: 753: 751: 750: 745: 740: 739: 726: 710: 705: 690: 689: 688: 680: 660: 627: 626: 577: 575: 574: 569: 564: 563: 554: 553: 534: 523: 480: 478: 477: 472: 470: 469: 453: 451: 450: 445: 440: 439: 417: 415: 414: 409: 407: 406: 390: 388: 387: 382: 380: 379: 363: 361: 360: 355: 350: 349: 319: 317: 316: 311: 309: 308: 254:, i.e. over all 238: 236: 235: 230: 225: 224: 199: 194: 178: 177: 176: 129:) is defined as 21: 8055: 8054: 8050: 8049: 8048: 8046: 8045: 8044: 8010: 8009: 7972: 7969: 7967:Further reading 7964: 7955: 7922: 7917: 7884: 7877: 7872: 7852: 7847: 7834: 7821:10.2307/2316574 7804: 7788: 7779: 7757: 7735: 7726: 7721: 7708: 7682: 7669: 7648: 7627:Vazirani, Vijay 7623:Valiant, Leslie 7617: 7596: 7573: 7543: 7521: 7512: 7503: 7496: 7489: 7457: 7453: 7448: 7442: 7421: 7420: 7416: 7369: 7368: 7364: 7329: 7328: 7324: 7313: 7311: 7307: 7296: 7292: 7287:Vazirani (1988) 7281: 7277: 7270: 7266: 7259: 7255: 7245: 7241: 7233: 7229: 7225: 7181: 7176: 7175: 7148: 7143: 7142: 7097: 7096: 7059: 7058: 7030: 7029: 6996: 6982: 6969: 6968: 6943: 6942: 6923: 6922: 6903: 6902: 6883: 6882: 6863: 6862: 6834: 6833: 6821:is polynomial. 6811:Metropolis rule 6764: 6740: 6739: 6718: 6713: 6712: 6691: 6686: 6685: 6666: 6665: 6664:for the matrix 6646: 6645: 6626: 6625: 6594: 6560: 6555: 6522: 6500: 6496: 6472: 6450: 6446: 6416: 6373: 6347: 6346: 6336: 6308: 6295: 6293: 6265: 6262: 6261: 6251: 6231: 6206: 6204: 6185: 6164: 6136: 6135: 6125: 6123: 6113: 6110: 6109: 6099: 6097: 6087: 6080: 6078: 6067: 6066: 6042: 6008: 5981: 5980: 5958: 5952: 5951: 5929: 5923: 5922: 5897: 5892: 5891: 5870: 5865: 5864: 5843: 5838: 5837: 5811: 5750: 5717: 5695: 5691: 5690: 5660: 5617: 5594: 5581: 5565: 5512: 5496: 5491: 5490: 5471: 5470: 5439: 5434: 5433: 5424:-th column for 5400: 5395: 5394: 5361: 5356: 5355: 5336: 5335: 5302: 5297: 5296: 5273: 5272: 5253: 5252: 5233: 5232: 5199: 5167: 5140: 5118: 5114: 5096: 5074: 5070: 5040: 4997: 4974: 4961: 4899: 4885: 4884: 4856: 4822: 4795: 4794: 4775: 4774: 4755: 4754: 4727: 4726: 4578: 4577: 4567: 4539: 4526: 4524: 4496: 4493: 4492: 4482: 4462: 4437: 4417: 4401: 4391: 4390: 4380: 4378: 4368: 4365: 4364: 4354: 4352: 4342: 4335: 4323: 4322: 4295: 4290: 4289: 4268: 4263: 4262: 4241: 4236: 4235: 4215: 4174: 4160: 4159: 4140: 4139: 4113: 4112: 4093: 4092: 4020: 4015: 4014: 3992: 3991: 3959: 3954: 3953: 3934: 3933: 3914: 3913: 3853: 3837: 3823: 3822: 3801: 3800: 3772: 3771: 3741: 3736: 3735: 3699: 3657: 3620: 3608: 3607: 3588: 3587: 3541: 3536: 3535: 3512: 3511: 3482: 3460: 3434: 3422: 3421: 3402: 3401: 3359: 3354: 3353: 3324: 3302: 3279: 3278: 3251: 3250: 3218: 3213: 3212: 3193: 3192: 3154: 3132: 3069: 3068: 3032: 3003: 2981: 2918: 2917: 2896: 2891: 2890: 2854: 2821: 2787: 2786: 2732: 2703: 2693: 2663: 2658: 2634: 2629: 2604: 2583: 2567: 2533: 2528: 2527: 2506: 2505: 2461: 2460: 2432: 2411: 2405: 2404: 2386: 2385: 2364: 2359: 2332: 2327: 2299: 2278: 2262: 2246: 2231: 2230: 2209: 2204: 2180: 2175: 2150: 2129: 2113: 2097: 2073: 2072: 2025: 2024: 2005: 2004: 1976: 1975: 1956: 1955: 1936: 1935: 1916: 1915: 1894: 1889: 1888: 1851: 1832: 1782: 1750: 1749: 1719: 1718: 1714: 1707: 1668: 1667: 1634: 1623: 1622: 1601: 1596: 1595: 1542: 1541: 1535: 1503: 1498: 1497: 1471: 1470: 1451: 1450: 1423: 1422: 1397: 1396: 1353: 1352: 1333: 1332: 1319: 1268:bipartite graph 1260: 1257: 1248: 1222: 1197: 1178: 1159: 1145: 1144: 1117: 1112: 1111: 1076: 1066: 1009: 987: 983: 972: 968: 950: 922: 921: 884: 856: 855: 822: 811: 810: 786: 770: 759: 758: 728: 671: 618: 586: 585: 555: 545: 486: 485: 461: 456: 455: 431: 420: 419: 398: 393: 392: 371: 366: 365: 341: 330: 329: 300: 295: 294: 283:H. J. Ryser 279: 253: 244:symmetric group 201: 168: 134: 133: 128: 106: 59:polynomial time 28: 23: 22: 15: 12: 11: 5: 8053: 8051: 8043: 8042: 8037: 8032: 8027: 8025:Linear algebra 8022: 8012: 8011: 8008: 8007: 7968: 7965: 7963: 7962: 7953: 7920: 7915: 7882: 7875: 7870: 7850: 7845: 7832: 7815:(6): 649–650, 7802: 7786: 7777: 7766:(3): 376–381, 7755: 7746:(3): 187–208, 7733: 7724: 7719: 7706: 7680: 7667: 7646: 7615: 7595:978-1581133493 7594: 7571: 7554:(1–3): 39–47, 7541: 7519: 7510: 7501: 7487: 7475:10.1.1.51.3546 7454: 7452: 7449: 7447: 7446: 7440: 7414: 7362: 7322: 7319:, 22 July 2015 7305: 7290: 7275: 7264: 7253: 7239: 7226: 7224: 7221: 7217:quantum optics 7213:boson sampling 7119: 7116: 7113: 7110: 7107: 7104: 7084: 7081: 7078: 7075: 7072: 7069: 7066: 7046: 7043: 7040: 7037: 7014: 7011: 7008: 7005: 7002: 6999: 6994: 6991: 6988: 6985: 6979: 6976: 6956: 6953: 6950: 6930: 6910: 6890: 6870: 6850: 6847: 6844: 6841: 6763: 6760: 6747: 6725: 6721: 6698: 6694: 6673: 6653: 6633: 6607: 6604: 6601: 6597: 6591: 6586: 6583: 6580: 6576: 6572: 6567: 6563: 6558: 6554: 6551: 6548: 6544: 6540: 6535: 6532: 6529: 6525: 6519: 6514: 6511: 6508: 6504: 6499: 6494: 6490: 6485: 6482: 6479: 6475: 6469: 6464: 6461: 6458: 6454: 6449: 6443: 6440: 6437: 6432: 6425: 6422: 6415: 6412: 6409: 6406: 6403: 6400: 6397: 6394: 6389: 6382: 6379: 6372: 6369: 6366: 6363: 6360: 6357: 6351: 6343: 6339: 6333: 6330: 6325: 6321: 6315: 6311: 6307: 6302: 6298: 6294: 6290: 6287: 6282: 6278: 6272: 6268: 6264: 6263: 6258: 6254: 6248: 6245: 6240: 6236: 6232: 6228: 6225: 6220: 6216: 6212: 6211: 6209: 6203: 6200: 6197: 6192: 6188: 6184: 6179: 6176: 6173: 6168: 6163: 6158: 6155: 6152: 6149: 6146: 6140: 6132: 6128: 6124: 6120: 6116: 6112: 6111: 6106: 6102: 6098: 6094: 6090: 6086: 6085: 6083: 6077: 6074: 6049: 6045: 6039: 6034: 6031: 6028: 6024: 6020: 6015: 6011: 6005: 6000: 5997: 5994: 5990: 5965: 5961: 5936: 5932: 5904: 5900: 5890:being square, 5877: 5873: 5850: 5846: 5818: 5814: 5808: 5803: 5800: 5797: 5793: 5789: 5786: 5783: 5780: 5776: 5772: 5769: 5766: 5763: 5760: 5757: 5753: 5749: 5746: 5743: 5738: 5733: 5729: 5724: 5720: 5714: 5709: 5706: 5703: 5699: 5694: 5687: 5684: 5681: 5676: 5669: 5666: 5659: 5656: 5653: 5650: 5647: 5644: 5641: 5638: 5633: 5626: 5623: 5616: 5613: 5610: 5607: 5604: 5601: 5597: 5591: 5588: 5584: 5580: 5577: 5572: 5568: 5564: 5561: 5558: 5553: 5550: 5547: 5543: 5539: 5536: 5531: 5528: 5525: 5522: 5519: 5515: 5511: 5508: 5503: 5499: 5478: 5455: 5448: 5445: 5407: 5403: 5368: 5364: 5354:via repeating 5343: 5321: 5318: 5315: 5312: 5309: 5305: 5280: 5260: 5251:, an n-vector 5240: 5206: 5202: 5196: 5191: 5188: 5185: 5181: 5177: 5174: 5170: 5166: 5163: 5160: 5156: 5152: 5147: 5143: 5137: 5132: 5129: 5126: 5122: 5117: 5112: 5108: 5103: 5099: 5093: 5088: 5085: 5082: 5078: 5073: 5067: 5064: 5061: 5056: 5049: 5046: 5039: 5036: 5033: 5030: 5027: 5024: 5021: 5018: 5013: 5006: 5003: 4996: 4993: 4990: 4987: 4984: 4981: 4977: 4971: 4968: 4964: 4960: 4957: 4954: 4951: 4948: 4945: 4940: 4937: 4934: 4930: 4926: 4923: 4918: 4915: 4912: 4909: 4906: 4902: 4898: 4895: 4892: 4863: 4859: 4853: 4848: 4845: 4842: 4838: 4834: 4829: 4825: 4819: 4814: 4811: 4808: 4804: 4782: 4762: 4734: 4677:such that its 4653:) = 0 for any 4582: 4574: 4570: 4564: 4561: 4556: 4552: 4546: 4542: 4538: 4533: 4529: 4525: 4521: 4518: 4513: 4509: 4503: 4499: 4495: 4494: 4489: 4485: 4479: 4476: 4471: 4467: 4463: 4459: 4456: 4451: 4447: 4443: 4442: 4440: 4435: 4432: 4429: 4424: 4420: 4416: 4413: 4408: 4404: 4400: 4395: 4387: 4383: 4379: 4375: 4371: 4367: 4366: 4361: 4357: 4353: 4349: 4345: 4341: 4340: 4338: 4333: 4330: 4302: 4298: 4288:being square, 4275: 4271: 4248: 4244: 4203: 4200: 4197: 4194: 4191: 4188: 4177: 4173: 4170: 4167: 4147: 4120: 4100: 4089: 4088: 4077: 4074: 4071: 4068: 4065: 4062: 4059: 4056: 4053: 4050: 4047: 4044: 4041: 4038: 4035: 4032: 4027: 4023: 3999: 3979: 3976: 3973: 3962: 3941: 3921: 3907: 3906: 3895: 3892: 3889: 3886: 3883: 3880: 3877: 3874: 3871: 3868: 3865: 3860: 3856: 3852: 3847: 3844: 3840: 3836: 3833: 3830: 3808: 3779: 3759: 3756: 3753: 3748: 3744: 3721: 3718: 3715: 3712: 3709: 3706: 3702: 3696: 3691: 3688: 3685: 3681: 3675: 3672: 3669: 3664: 3660: 3656: 3653: 3649: 3645: 3642: 3639: 3636: 3633: 3627: 3623: 3619: 3616: 3595: 3553: 3549: 3544: 3519: 3499: 3494: 3490: 3485: 3481: 3478: 3475: 3472: 3467: 3463: 3459: 3456: 3453: 3450: 3447: 3441: 3437: 3433: 3430: 3409: 3371: 3367: 3362: 3341: 3336: 3332: 3327: 3323: 3320: 3317: 3314: 3309: 3305: 3301: 3298: 3295: 3292: 3289: 3286: 3258: 3238: 3235: 3232: 3221: 3200: 3173: 3166: 3163: 3157: 3153: 3150: 3147: 3144: 3139: 3135: 3131: 3128: 3123: 3120: 3117: 3114: 3111: 3108: 3105: 3102: 3099: 3095: 3091: 3088: 3085: 3082: 3079: 3076: 3054: 3048: 3044: 3040: 3035: 3031: 3028: 3025: 3022: 3015: 3012: 3006: 3002: 2999: 2996: 2993: 2988: 2984: 2980: 2977: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2944: 2940: 2937: 2934: 2931: 2928: 2925: 2903: 2899: 2876: 2873: 2870: 2867: 2864: 2861: 2857: 2851: 2846: 2843: 2840: 2836: 2828: 2824: 2820: 2817: 2813: 2809: 2806: 2803: 2800: 2797: 2794: 2765: 2759: 2755: 2751: 2748: 2745: 2742: 2739: 2735: 2730: 2726: 2723: 2720: 2716: 2710: 2706: 2701: 2696: 2692: 2689: 2686: 2683: 2676: 2673: 2670: 2666: 2661: 2657: 2654: 2651: 2648: 2641: 2637: 2632: 2628: 2625: 2617: 2614: 2611: 2607: 2602: 2599: 2596: 2590: 2586: 2580: 2574: 2570: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2540: 2536: 2524:and an odd p: 2513: 2486: 2483: 2480: 2477: 2474: 2471: 2468: 2445: 2442: 2439: 2435: 2430: 2427: 2424: 2418: 2414: 2384: 2377: 2374: 2371: 2367: 2362: 2358: 2355: 2352: 2349: 2346: 2339: 2335: 2330: 2326: 2323: 2320: 2312: 2309: 2306: 2302: 2297: 2294: 2291: 2285: 2281: 2275: 2269: 2265: 2261: 2258: 2255: 2252: 2249: 2247: 2245: 2242: 2239: 2236: 2233: 2232: 2229: 2222: 2219: 2216: 2212: 2207: 2203: 2200: 2197: 2194: 2187: 2183: 2178: 2174: 2171: 2163: 2160: 2157: 2153: 2148: 2145: 2142: 2136: 2132: 2126: 2120: 2116: 2112: 2109: 2106: 2103: 2100: 2098: 2096: 2093: 2090: 2087: 2084: 2081: 2080: 2066:characteristic 2050: 2047: 2044: 2041: 2038: 2035: 2032: 2012: 1989: 1986: 1963: 1943: 1923: 1901: 1897: 1885: 1884: 1873: 1870: 1863: 1860: 1854: 1850: 1847: 1844: 1839: 1835: 1831: 1828: 1823: 1820: 1817: 1814: 1811: 1808: 1805: 1802: 1799: 1795: 1789: 1785: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1726: 1698:Valiant (1979) 1681: 1678: 1675: 1655: 1650: 1647: 1644: 1641: 1637: 1633: 1630: 1608: 1604: 1583: 1579: 1576: 1572: 1569: 1564: 1561: 1558: 1555: 1552: 1549: 1534: 1531: 1516: 1513: 1510: 1506: 1484: 1481: 1478: 1458: 1430: 1410: 1407: 1404: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1340: 1317: 1262:The number of 1259: 1255: 1249: 1247: 1244: 1229: 1225: 1221: 1218: 1215: 1212: 1209: 1204: 1200: 1196: 1193: 1190: 1185: 1181: 1177: 1174: 1171: 1166: 1162: 1158: 1155: 1152: 1130: 1127: 1124: 1120: 1108: 1107: 1096: 1092: 1086: 1083: 1079: 1073: 1069: 1063: 1058: 1055: 1052: 1048: 1042: 1037: 1034: 1031: 1027: 1022: 1016: 1012: 1006: 1001: 998: 995: 991: 986: 980: 976: 971: 963: 960: 957: 953: 949: 944: 941: 938: 935: 932: 929: 883: 880: 863: 843: 840: 835: 832: 829: 825: 821: 818: 798: 793: 789: 783: 780: 777: 773: 769: 766: 755: 754: 743: 738: 735: 731: 725: 722: 719: 715: 709: 704: 701: 698: 694: 687: 683: 679: 674: 670: 667: 664: 659: 656: 653: 650: 647: 644: 641: 638: 635: 631: 625: 621: 617: 614: 611: 608: 605: 602: 599: 596: 593: 579: 578: 567: 562: 558: 552: 548: 544: 541: 538: 533: 530: 527: 522: 519: 516: 512: 508: 505: 502: 499: 496: 493: 468: 464: 443: 438: 434: 430: 427: 405: 401: 378: 374: 353: 348: 344: 340: 337: 307: 303: 278: 275: 249: 240: 239: 228: 223: 220: 217: 214: 211: 208: 204: 198: 193: 190: 187: 183: 175: 171: 167: 164: 160: 156: 153: 150: 147: 144: 141: 124: 105: 102: 83:Valiant (1979) 32:linear algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8052: 8041: 8038: 8036: 8033: 8031: 8030:Matrix theory 8028: 8026: 8023: 8021: 8018: 8017: 8015: 8004: 8000: 7996: 7992: 7987: 7982: 7978: 7977: 7971: 7970: 7966: 7959: 7956:"Permanent", 7954: 7951: 7947: 7943: 7939: 7935: 7931: 7930: 7925: 7921: 7918: 7912: 7907: 7902: 7898: 7894: 7890: 7889: 7880: 7876: 7873: 7867: 7863: 7859: 7855: 7851: 7848: 7842: 7838: 7833: 7830: 7826: 7822: 7818: 7814: 7810: 7809: 7803: 7799: 7795: 7791: 7787: 7783: 7778: 7774: 7769: 7765: 7761: 7756: 7753: 7749: 7745: 7741: 7740: 7734: 7730: 7725: 7722: 7716: 7712: 7707: 7704: 7700: 7695: 7690: 7686: 7681: 7678: 7674: 7670: 7668:0-8186-7594-2 7664: 7660: 7656: 7652: 7647: 7644: 7640: 7636: 7632: 7628: 7624: 7620: 7616: 7613: 7609: 7605: 7601: 7597: 7591: 7587: 7583: 7579: 7578: 7572: 7569: 7565: 7561: 7557: 7553: 7549: 7548: 7542: 7539: 7535: 7531: 7527: 7526: 7520: 7516: 7511: 7507: 7502: 7495: 7494: 7488: 7485: 7481: 7476: 7471: 7467: 7463: 7462: 7456: 7455: 7450: 7443: 7437: 7433: 7429: 7425: 7418: 7415: 7411: 7407: 7403: 7399: 7395: 7391: 7386: 7381: 7378:(2): 022329, 7377: 7373: 7366: 7363: 7358: 7353: 7348: 7343: 7339: 7335: 7334: 7326: 7323: 7318: 7317: 7309: 7306: 7303: 7299: 7294: 7291: 7288: 7284: 7283:Little (1974) 7279: 7276: 7273: 7268: 7265: 7262: 7257: 7254: 7251: 7248: 7243: 7240: 7237: 7231: 7228: 7222: 7220: 7218: 7214: 7210: 7140: 7136: 7131: 7114: 7108: 7102: 7079: 7073: 7067: 7064: 7041: 7035: 7028:. The number 7009: 7003: 6997: 6989: 6983: 6977: 6974: 6954: 6948: 6928: 6908: 6888: 6868: 6845: 6839: 6831: 6827: 6822: 6820: 6816: 6812: 6808: 6804: 6800: 6795: 6793: 6789: 6785: 6781: 6777: 6776:probabilistic 6773: 6772:approximately 6769: 6761: 6759: 6745: 6723: 6719: 6696: 6692: 6671: 6651: 6631: 6622: 6605: 6602: 6599: 6595: 6589: 6584: 6581: 6578: 6574: 6570: 6565: 6561: 6552: 6549: 6542: 6538: 6533: 6530: 6527: 6523: 6517: 6512: 6509: 6506: 6502: 6497: 6492: 6488: 6483: 6480: 6477: 6473: 6467: 6462: 6459: 6456: 6452: 6447: 6438: 6435: 6430: 6420: 6410: 6407: 6404: 6398: 6395: 6392: 6387: 6377: 6367: 6364: 6361: 6349: 6341: 6337: 6331: 6328: 6323: 6319: 6313: 6309: 6305: 6300: 6296: 6288: 6285: 6280: 6276: 6270: 6266: 6256: 6252: 6246: 6243: 6238: 6234: 6226: 6223: 6218: 6214: 6207: 6201: 6198: 6190: 6186: 6177: 6174: 6171: 6161: 6153: 6150: 6147: 6138: 6130: 6126: 6118: 6114: 6104: 6100: 6092: 6088: 6081: 6075: 6072: 6064: 6047: 6043: 6037: 6032: 6029: 6026: 6022: 6018: 6013: 6009: 6003: 5998: 5995: 5992: 5988: 5963: 5959: 5934: 5930: 5920: 5902: 5898: 5875: 5871: 5848: 5844: 5834: 5816: 5812: 5806: 5801: 5798: 5795: 5791: 5787: 5784: 5781: 5778: 5774: 5767: 5764: 5761: 5755: 5747: 5744: 5736: 5731: 5727: 5722: 5718: 5712: 5707: 5704: 5701: 5697: 5692: 5682: 5679: 5674: 5664: 5654: 5651: 5648: 5642: 5639: 5636: 5631: 5621: 5611: 5608: 5605: 5589: 5586: 5582: 5575: 5570: 5566: 5559: 5551: 5548: 5545: 5537: 5526: 5523: 5520: 5513: 5506: 5501: 5497: 5476: 5453: 5443: 5431: 5427: 5423: 5405: 5401: 5392: 5388: 5384: 5366: 5362: 5341: 5316: 5313: 5310: 5303: 5294: 5278: 5258: 5238: 5230: 5226: 5223:where for an 5221: 5204: 5200: 5194: 5189: 5186: 5183: 5179: 5175: 5172: 5164: 5161: 5154: 5150: 5145: 5141: 5135: 5130: 5127: 5124: 5120: 5115: 5110: 5106: 5101: 5097: 5091: 5086: 5083: 5080: 5076: 5071: 5062: 5059: 5054: 5044: 5034: 5031: 5028: 5022: 5019: 5016: 5011: 5001: 4991: 4988: 4985: 4969: 4966: 4962: 4955: 4952: 4946: 4938: 4935: 4932: 4924: 4913: 4910: 4907: 4900: 4893: 4890: 4882: 4880: 4861: 4857: 4851: 4846: 4843: 4840: 4836: 4832: 4827: 4823: 4817: 4812: 4809: 4806: 4802: 4780: 4760: 4752: 4748: 4732: 4724: 4720: 4716: 4711: 4709: 4708:#3-P-complete 4705: 4701: 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4652: 4648: 4644: 4640: 4636: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4600: 4595: 4580: 4572: 4568: 4562: 4559: 4554: 4550: 4544: 4540: 4536: 4531: 4527: 4519: 4516: 4511: 4507: 4501: 4497: 4487: 4483: 4477: 4474: 4469: 4465: 4457: 4454: 4449: 4445: 4438: 4433: 4430: 4422: 4418: 4411: 4406: 4402: 4398: 4393: 4385: 4381: 4373: 4369: 4359: 4355: 4347: 4343: 4336: 4331: 4328: 4320: 4318: 4300: 4296: 4273: 4269: 4246: 4242: 4233: 4229: 4225: 4221: 4220:#3-P-complete 4201: 4198: 4192: 4189: 4186: 4175: 4168: 4165: 4145: 4137: 4132: 4118: 4098: 4072: 4069: 4057: 4054: 4051: 4042: 4036: 4030: 4025: 4021: 4013: 4012: 4011: 3997: 3977: 3974: 3971: 3960: 3939: 3919: 3912: 3893: 3887: 3881: 3878: 3875: 3869: 3863: 3858: 3854: 3845: 3842: 3838: 3831: 3828: 3821: 3820: 3819: 3806: 3799: 3794: 3791: 3777: 3754: 3746: 3742: 3716: 3710: 3707: 3704: 3700: 3694: 3689: 3686: 3683: 3679: 3670: 3662: 3658: 3654: 3651: 3647: 3643: 3637: 3631: 3593: 3586:belonging to 3585: 3581: 3577: 3573: 3569: 3551: 3547: 3542: 3533: 3517: 3492: 3488: 3483: 3479: 3476: 3470: 3465: 3461: 3457: 3451: 3445: 3407: 3399: 3395: 3391: 3387: 3369: 3365: 3360: 3334: 3330: 3325: 3321: 3318: 3312: 3307: 3303: 3299: 3293: 3287: 3284: 3276: 3272: 3256: 3236: 3233: 3230: 3219: 3198: 3191: 3187: 3161: 3155: 3148: 3145: 3137: 3133: 3118: 3115: 3112: 3109: 3106: 3100: 3097: 3093: 3089: 3083: 3077: 3074: 3065: 3052: 3042: 3029: 3026: 3010: 3004: 2997: 2994: 2986: 2982: 2967: 2964: 2961: 2958: 2955: 2949: 2946: 2942: 2938: 2932: 2926: 2923: 2901: 2897: 2871: 2865: 2862: 2859: 2855: 2849: 2844: 2841: 2838: 2834: 2826: 2822: 2818: 2815: 2811: 2807: 2801: 2795: 2792: 2784: 2779: 2757: 2753: 2746: 2743: 2740: 2733: 2724: 2721: 2718: 2708: 2704: 2690: 2687: 2674: 2671: 2668: 2664: 2659: 2649: 2639: 2635: 2630: 2615: 2612: 2609: 2605: 2600: 2597: 2594: 2588: 2584: 2578: 2572: 2564: 2561: 2555: 2549: 2543: 2538: 2534: 2525: 2511: 2502: 2500: 2481: 2478: 2475: 2472: 2469: 2443: 2440: 2437: 2433: 2428: 2425: 2422: 2416: 2412: 2402: 2375: 2372: 2369: 2365: 2360: 2353: 2350: 2347: 2337: 2333: 2328: 2321: 2318: 2310: 2307: 2304: 2300: 2295: 2292: 2289: 2283: 2279: 2273: 2267: 2259: 2256: 2250: 2248: 2240: 2220: 2217: 2214: 2210: 2205: 2195: 2185: 2181: 2176: 2161: 2158: 2155: 2151: 2146: 2143: 2140: 2134: 2130: 2124: 2118: 2110: 2107: 2101: 2099: 2091: 2085: 2082: 2070: 2067: 2062: 2045: 2042: 2039: 2036: 2033: 2010: 1984: 1961: 1941: 1921: 1899: 1895: 1871: 1858: 1852: 1837: 1833: 1818: 1815: 1812: 1809: 1806: 1800: 1797: 1793: 1787: 1779: 1776: 1770: 1764: 1758: 1755: 1748: 1747: 1746: 1744: 1740: 1724: 1711: 1705: 1700: 1699: 1695: 1679: 1676: 1673: 1648: 1645: 1642: 1639: 1635: 1628: 1606: 1602: 1581: 1574: 1570: 1562: 1559: 1553: 1550: 1539: 1532: 1530: 1514: 1511: 1508: 1504: 1482: 1476: 1456: 1448: 1444: 1443:Little (1975) 1428: 1408: 1405: 1402: 1382: 1376: 1370: 1364: 1361: 1358: 1338: 1330: 1325: 1321: 1316: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1284:FKT algorithm 1281: 1280:planar graphs 1277: 1273: 1269: 1265: 1254: 1250: 1246:Special cases 1245: 1243: 1227: 1219: 1216: 1210: 1202: 1198: 1194: 1191: 1188: 1183: 1179: 1175: 1172: 1169: 1164: 1160: 1153: 1150: 1128: 1125: 1122: 1118: 1094: 1090: 1084: 1081: 1077: 1071: 1067: 1061: 1056: 1053: 1050: 1046: 1040: 1035: 1032: 1029: 1025: 1020: 1014: 1010: 1004: 999: 996: 993: 989: 984: 978: 974: 969: 961: 958: 955: 951: 947: 942: 936: 930: 927: 920: 919: 918: 915: 913: 909: 905: 901: 897: 893: 889: 881: 879: 877: 861: 838: 833: 830: 827: 823: 816: 791: 787: 781: 778: 775: 771: 764: 741: 736: 733: 729: 723: 720: 717: 713: 707: 702: 699: 696: 692: 681: 668: 665: 654: 651: 648: 645: 642: 636: 633: 629: 623: 615: 612: 606: 600: 594: 591: 584: 583: 582: 565: 560: 550: 542: 539: 531: 528: 525: 520: 517: 514: 510: 506: 500: 494: 491: 484: 483: 482: 466: 462: 436: 432: 425: 403: 376: 372: 346: 342: 335: 328:columns, let 327: 323: 305: 301: 292: 288: 284: 277:Ryser formula 276: 274: 272: 269: 265: 261: 257: 252: 248: 245: 226: 218: 212: 209: 206: 202: 196: 191: 188: 185: 181: 173: 169: 165: 162: 158: 154: 148: 142: 139: 132: 131: 130: 127: 123: 119: 115: 111: 103: 101: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 55: 53: 47: 45: 41: 37: 33: 19: 8035:Permutations 7974: 7957: 7933: 7927: 7887: 7857: 7836: 7812: 7806: 7797: 7793: 7781: 7763: 7759: 7743: 7742:, Series B, 7737: 7728: 7710: 7684: 7650: 7634: 7630: 7619:Jerrum, Mark 7576: 7551: 7545: 7529: 7523: 7514: 7505: 7492: 7465: 7459: 7423: 7417: 7375: 7372:Phys. Rev. A 7371: 7365: 7337: 7333:Algorithmica 7331: 7325: 7315: 7308: 7302:Reich (1971) 7298:Pólya (1913) 7293: 7278: 7267: 7256: 7242: 7230: 7132: 6823: 6815:Markov chain 6796: 6783: 6779: 6767: 6765: 6623: 6065: 5921:and of size 5835: 5429: 5425: 5421: 5390: 5386: 5385:-th row for 5382: 5292: 5228: 5224: 5222: 4883: 4878: 4750: 4746: 4722: 4718: 4712: 4690: 4686: 4682: 4678: 4674: 4670: 4666: 4662: 4658: 4654: 4650: 4642: 4638: 4634: 4630: 4626: 4622: 4618: 4614: 4610: 4606: 4602: 4598: 4596: 4321: 4227: 4136:Kogan (1996) 4133: 4090: 3908: 3795: 3792: 3583: 3579: 3575: 3571: 3567: 3531: 3397: 3393: 3389: 3385: 3274: 3270: 3066: 2780: 2526: 2503: 2498: 2403:− 1)-tuples 2400: 2068: 2063: 1886: 1743:Kogan (1996) 1713:Second, for 1712: 1704:Glynn (2010) 1701: 1536: 1529:, as above. 1324:George Pólya 1322: 1314: 1308:homeomorphic 1288:Tutte matrix 1261: 1252: 1109: 916: 885: 756: 580: 325: 324:by deleting 321: 280: 270: 267: 259: 256:permutations 250: 246: 241: 125: 121: 117: 113: 109: 107: 99: 56: 48: 29: 7637:: 169–188, 6819:mixing time 4700:P versus NP 1954:indexed by 1304:determinant 1300:square root 1251:Planar and 391:, and let 79:#P-complete 77:, and even 44:determinant 8014:Categories 7986:1601.07518 7694:1710.01783 7451:References 7385:1609.02416 7347:2111.03142 5919:invertible 5428:= 1, ..., 5420:times its 5389:= 1, ..., 5381:times its 4793:such that 4317:invertible 3952:such that 3798:invertible 1469:for which 1351:such that 912:Glynn 2013 908:Glynn 2010 93:circuits.( 7906:1813/6700 7790:Pólya, G. 7470:CiteSeerX 7112:∖ 7077:∖ 7065:ρ 7007:∖ 6975:ρ 6952:∖ 6803:uniformly 6790:(FPRAS) ( 6720:β 6693:α 6652:β 6632:α 6596:α 6575:∑ 6550:− 6524:β 6503:∏ 6474:α 6453:∏ 6439:α 6436:− 6424:→ 6408:− 6396:β 6393:− 6381:→ 6365:− 6329:− 6306:− 6286:− 6244:− 6224:− 6202:⁡ 6175:− 6154:β 6148:α 6076:⁡ 6044:β 6023:∑ 6010:α 5989:∑ 5813:α 5792:∑ 5765:− 5745:− 5719:α 5698:∏ 5683:α 5680:− 5668:→ 5652:− 5640:α 5637:− 5625:→ 5609:− 5587:− 5576:⁡ 5549:− 5527:α 5521:α 5507:⁡ 5447:→ 5201:α 5180:∑ 5162:− 5142:β 5121:∏ 5098:α 5077:∏ 5063:α 5060:− 5048:→ 5032:− 5020:β 5017:− 5005:→ 4989:− 4967:− 4956:⁡ 4936:− 4914:β 4908:α 4894:⁡ 4858:β 4837:∑ 4824:α 4803:∑ 4781:β 4761:α 4560:− 4537:− 4517:− 4475:− 4455:− 4434:⁡ 4412:⁡ 4332:⁡ 4190:− 4169:⁡ 4070:− 4031:⁡ 3882:⁡ 3864:⁡ 3843:− 3832:⁡ 3711:σ 3680:∏ 3655:∈ 3652:σ 3648:∑ 3632:⁡ 3471:⁡ 3446:⁡ 3313:⁡ 3288:⁡ 3165:¯ 3149:⁡ 3113:… 3101:⊆ 3094:∑ 3078:⁡ 3027:− 3014:¯ 2998:⁡ 2962:… 2950:⊆ 2943:∑ 2927:⁡ 2866:σ 2835:∏ 2819:∈ 2816:σ 2812:∑ 2796:⁡ 2744:− 2722:⋯ 2688:− 2672:− 2650:⋯ 2613:− 2598:… 2579:∑ 2562:− 2544:⁡ 2476:… 2441:− 2426:… 2373:− 2354:⁡ 2348:⋯ 2322:⁡ 2308:− 2293:… 2274:∑ 2257:− 2218:− 2196:⋯ 2159:− 2144:… 2125:∑ 2108:− 2086:⁡ 2040:… 1988:¯ 1862:¯ 1813:… 1801:⊆ 1794:∑ 1777:− 1759:⁡ 1677:≥ 1646:− 1560:≡ 1551:− 1480:∖ 1421:matrices 1406:× 1362:⁡ 1217:± 1211:∈ 1199:δ 1192:… 1180:δ 1161:δ 1151:δ 1126:− 1068:δ 1047:∑ 1026:∏ 1011:δ 990:∏ 979:δ 975:∑ 959:− 931:⁡ 894:); also ( 876:Gray code 831:− 779:− 721:∈ 714:∑ 693:∏ 666:− 649:… 637:⊆ 630:∑ 613:− 595:⁡ 557:Σ 540:− 529:− 511:∑ 495:⁡ 400:Σ 213:σ 182:∏ 166:∈ 163:σ 159:∑ 143:⁡ 36:permanent 7856:(1963), 7677:39024286 7612:TR00-079 7568:36911503 7410:54194194 7209:spectrum 7095:, where 7057:is then 6782:, where 5231:-matrix 4745:and two 4689:-th and 4681:-th and 4661:-matrix 3909:for any 3796:for any 3400:-matrix 1621:in time 1395:for all 1292:Pfaffian 1143:vectors 892:Bax 1998 7950:1637832 7829:2316574 7800:(3): 27 7699:Bibcode 7604:8368245 7390:Bibcode 6801:almost 4725:matrix 4695:unitary 4629:)- or ( 3911:unitary 3190:unitary 1694:UP-hard 1310:to the 1302:of its 878:order. 481:. Then 285: ( 116:matrix 75:#P-hard 8003:397350 8001:  7948:  7913:  7868:  7843:  7827:  7717:  7675:  7665:  7610:  7602:  7592:  7566:  7472:  7438:  7408:  6832:. Let 6799:sample 5979:, and 5917:being 5295:− 1}, 4753:− 1}) 4637:+ 1)×( 4315:being 4091:where 3990:where 3734:where 3510:where 3352:where 3249:where 2889:where 1974:, and 1887:where 1739:minors 1538:Modulo 902:for a 40:matrix 7999:S2CID 7981:arXiv 7946:S2CID 7825:JSTOR 7689:arXiv 7673:S2CID 7600:S2CID 7564:S2CID 7497:(PDF) 7406:S2CID 7380:arXiv 7342:arXiv 7250:p. 99 7223:Notes 2497:into 1298:(the 1266:in a 1258:-free 38:of a 7911:ISBN 7866:ISBN 7841:ISBN 7715:ISBN 7663:ISBN 7608:ECCC 7590:ISBN 7436:ISBN 6711:and 6644:and 5393:and 4773:and 4261:and 4166:rank 1745:): 1666:for 928:perm 890:), ( 592:perm 492:perm 287:1963 140:perm 112:-by- 7991:doi 7938:doi 7901:hdl 7893:doi 7883:3,3 7817:doi 7768:doi 7748:doi 7655:doi 7639:doi 7582:doi 7556:doi 7534:doi 7480:doi 7428:doi 7398:doi 7352:doi 7185:BPP 7152:BPP 6901:in 6794:). 6774:in 6199:per 6167:det 6073:per 5833:). 5567:haf 5542:det 5498:haf 4953:per 4929:det 4891:per 4621:)×( 4609:or 4431:per 4403:det 4329:per 4319:): 4064:det 4046:det 4022:per 3879:per 3855:det 3829:per 3534:}, 3462:det 3420:as 3304:det 3285:ham 3146:det 3127:det 3075:ham 2995:per 2976:det 2924:ham 2793:ham 2653:det 2624:det 2535:haf 2351:per 2319:per 2235:det 2199:det 2170:det 2083:per 2023:in 1846:det 1827:det 1756:per 1571:mod 1380:det 1359:per 1318:3,3 1256:3,3 914:). 874:in 126:i,j 120:= ( 91:ACC 61:by 30:In 8016:: 7997:, 7989:, 7979:, 7944:, 7932:, 7909:, 7899:, 7864:, 7823:, 7813:78 7811:, 7798:20 7796:, 7762:, 7744:18 7697:, 7687:, 7671:, 7661:, 7635:43 7633:, 7625:; 7621:; 7606:, 7598:, 7588:, 7562:, 7552:68 7550:, 7530:31 7528:, 7478:, 7466:23 7464:, 7434:, 7404:, 7396:, 7388:, 7376:96 7374:, 7350:, 7338:85 7336:, 7300:, 7285:, 7192:NP 7159:NP 6342:12 6324:11 6314:21 6301:22 6281:11 6271:21 6257:12 6239:11 6219:11 6191:11 6131:22 6119:21 6105:12 6093:11 5903:11 5876:22 5863:, 5849:11 4881:: 4641:− 4633:− 4625:− 4617:− 4573:12 4555:11 4545:21 4532:22 4512:11 4502:21 4488:12 4470:11 4450:11 4423:11 4386:22 4374:21 4360:12 4348:11 4301:11 4274:22 4247:11 4131:. 3790:. 1320:. 1242:. 268:n! 97:) 87:NP 69:, 8006:. 7993:: 7983:: 7940:: 7934:8 7903:: 7895:: 7819:: 7770:: 7764:5 7750:: 7701:: 7691:: 7657:: 7641:: 7584:: 7558:: 7536:: 7482:: 7430:: 7400:: 7392:: 7382:: 7354:: 7344:: 7118:) 7115:e 7109:G 7106:( 7103:M 7083:) 7080:e 7074:G 7071:( 7068:M 7045:) 7042:G 7039:( 7036:M 7013:) 7010:e 7004:G 7001:( 6998:M 6993:) 6990:G 6987:( 6984:M 6978:= 6955:e 6949:G 6929:G 6909:G 6889:e 6869:G 6849:) 6846:G 6843:( 6840:M 6784:M 6780:M 6768:A 6746:A 6724:t 6697:s 6672:A 6606:i 6603:, 6600:1 6590:n 6585:1 6582:= 6579:i 6571:+ 6566:1 6562:n 6557:) 6553:1 6547:( 6543:) 6539:! 6534:j 6531:, 6528:1 6518:n 6513:1 6510:= 6507:j 6498:( 6493:) 6489:! 6484:i 6481:, 6478:1 6468:n 6463:1 6460:= 6457:i 6448:( 6442:) 6431:n 6421:1 6414:) 6411:1 6405:p 6402:( 6399:, 6388:n 6378:1 6371:) 6368:1 6362:p 6359:( 6356:( 6350:) 6338:A 6332:1 6320:A 6310:A 6297:A 6289:1 6277:A 6267:A 6253:A 6247:1 6235:A 6227:1 6215:A 6208:( 6196:) 6187:A 6183:( 6178:1 6172:p 6162:= 6157:) 6151:, 6145:( 6139:) 6127:A 6115:A 6101:A 6089:A 6082:( 6048:j 6038:n 6033:1 6030:= 6027:j 6019:= 6014:i 6004:n 5999:1 5996:= 5993:i 5964:1 5960:n 5950:x 5935:1 5931:n 5899:A 5872:A 5845:A 5817:i 5807:n 5802:1 5799:= 5796:i 5788:+ 5785:n 5782:+ 5779:2 5775:/ 5771:) 5768:1 5762:p 5759:( 5756:n 5752:) 5748:1 5742:( 5737:2 5732:) 5728:! 5723:i 5713:n 5708:1 5705:= 5702:i 5693:( 5686:) 5675:n 5665:1 5658:) 5655:1 5649:p 5646:( 5643:, 5632:n 5622:1 5615:) 5612:1 5606:p 5603:( 5600:( 5596:) 5590:1 5583:A 5579:( 5571:2 5563:) 5560:A 5557:( 5552:1 5546:p 5538:= 5535:) 5530:) 5524:, 5518:( 5514:A 5510:( 5502:2 5477:A 5454:n 5444:1 5430:m 5426:j 5422:j 5406:j 5402:y 5391:n 5387:i 5383:i 5367:i 5363:x 5342:M 5320:) 5317:y 5314:, 5311:x 5308:( 5304:M 5293:p 5279:y 5259:x 5239:M 5229:m 5227:× 5225:n 5205:i 5195:n 5190:1 5187:= 5184:i 5176:+ 5173:n 5169:) 5165:1 5159:( 5155:) 5151:! 5146:j 5136:n 5131:1 5128:= 5125:j 5116:( 5111:) 5107:! 5102:i 5092:n 5087:1 5084:= 5081:i 5072:( 5066:) 5055:n 5045:1 5038:) 5035:1 5029:p 5026:( 5023:, 5012:n 5002:1 4995:) 4992:1 4986:p 4983:( 4980:( 4976:) 4970:1 4963:A 4959:( 4950:) 4947:A 4944:( 4939:1 4933:p 4925:= 4922:) 4917:) 4911:, 4905:( 4901:A 4897:( 4879:p 4862:j 4852:n 4847:1 4844:= 4841:j 4833:= 4828:i 4818:n 4813:1 4810:= 4807:i 4751:p 4747:n 4733:A 4723:n 4721:× 4719:n 4691:j 4687:i 4683:j 4679:i 4675:j 4673:, 4671:i 4667:n 4663:A 4659:n 4657:× 4655:n 4651:A 4643:k 4639:n 4635:k 4631:n 4627:k 4623:n 4619:k 4615:n 4611:k 4607:k 4603:n 4601:× 4599:n 4581:) 4569:A 4563:1 4551:A 4541:A 4528:A 4520:1 4508:A 4498:A 4484:A 4478:1 4466:A 4458:1 4446:A 4439:( 4428:) 4419:A 4415:( 4407:2 4399:= 4394:) 4382:A 4370:A 4356:A 4344:A 4337:( 4297:A 4270:A 4243:A 4228:k 4216:k 4202:k 4199:= 4196:) 4193:I 4187:A 4181:T 4176:A 4172:( 4146:A 4119:U 4099:V 4076:) 4073:U 4067:( 4061:) 4058:V 4055:+ 4052:U 4049:( 4043:= 4040:) 4037:U 4034:( 4026:2 3998:I 3978:I 3975:= 3972:U 3966:T 3961:U 3940:U 3920:U 3894:; 3891:) 3888:A 3885:( 3876:= 3873:) 3870:A 3867:( 3859:2 3851:) 3846:1 3839:A 3835:( 3807:A 3778:K 3758:) 3755:K 3752:( 3747:n 3743:H 3720:) 3717:i 3714:( 3708:, 3705:i 3701:a 3695:n 3690:1 3687:= 3684:i 3674:) 3671:K 3668:( 3663:n 3659:H 3644:= 3641:) 3638:A 3635:( 3626:K 3622:m 3618:a 3615:h 3594:K 3584:k 3580:k 3578:, 3576:k 3572:n 3570:× 3568:n 3552:K 3548:/ 3543:I 3532:n 3518:K 3498:) 3493:K 3489:/ 3484:I 3480:+ 3477:U 3474:( 3466:2 3458:= 3455:) 3452:U 3449:( 3440:K 3436:m 3432:a 3429:h 3408:U 3398:n 3396:× 3394:n 3390:n 3388:× 3386:n 3370:1 3366:/ 3361:I 3340:) 3335:1 3331:/ 3326:I 3322:+ 3319:U 3316:( 3308:2 3300:= 3297:) 3294:U 3291:( 3275:n 3273:× 3271:n 3257:I 3237:I 3234:= 3231:U 3225:T 3220:U 3199:U 3172:) 3162:J 3156:A 3152:( 3143:) 3138:J 3134:A 3130:( 3122:} 3119:n 3116:, 3110:, 3107:2 3104:{ 3098:J 3090:= 3087:) 3084:A 3081:( 3053:. 3047:| 3043:J 3039:| 3034:) 3030:1 3024:( 3021:) 3011:J 3005:A 3001:( 2992:) 2987:J 2983:A 2979:( 2971:} 2968:n 2965:, 2959:, 2956:2 2953:{ 2947:J 2939:= 2936:) 2933:A 2930:( 2902:n 2898:H 2875:) 2872:i 2869:( 2863:, 2860:i 2856:a 2850:n 2845:1 2842:= 2839:i 2827:n 2823:H 2808:= 2805:) 2802:A 2799:( 2764:| 2758:2 2754:/ 2750:) 2747:1 2741:p 2738:( 2734:J 2729:| 2725:+ 2719:+ 2715:| 2709:1 2705:J 2700:| 2695:) 2691:1 2685:( 2682:) 2675:1 2669:p 2665:J 2660:A 2656:( 2647:) 2640:1 2636:J 2631:A 2627:( 2616:1 2610:p 2606:J 2601:, 2595:, 2589:1 2585:J 2573:n 2569:) 2565:1 2559:( 2556:= 2553:) 2550:A 2547:( 2539:2 2512:A 2499:p 2485:} 2482:n 2479:, 2473:, 2470:1 2467:{ 2444:1 2438:p 2434:J 2429:, 2423:, 2417:1 2413:J 2401:p 2383:) 2376:1 2370:p 2366:J 2361:A 2357:( 2345:) 2338:1 2334:J 2329:A 2325:( 2311:1 2305:p 2301:J 2296:, 2290:, 2284:1 2280:J 2268:n 2264:) 2260:1 2254:( 2251:= 2244:) 2241:A 2238:( 2228:) 2221:1 2215:p 2211:J 2206:A 2202:( 2193:) 2186:1 2182:J 2177:A 2173:( 2162:1 2156:p 2152:J 2147:, 2141:, 2135:1 2131:J 2119:n 2115:) 2111:1 2105:( 2102:= 2095:) 2092:A 2089:( 2069:p 2049:} 2046:n 2043:, 2037:, 2034:1 2031:{ 2011:J 1985:J 1962:J 1942:A 1922:A 1900:J 1896:A 1872:, 1869:) 1859:J 1853:A 1849:( 1843:) 1838:J 1834:A 1830:( 1822:} 1819:n 1816:, 1810:, 1807:1 1804:{ 1798:J 1788:n 1784:) 1780:1 1774:( 1771:= 1768:) 1765:A 1762:( 1741:( 1725:A 1715:p 1708:p 1680:2 1674:k 1654:) 1649:3 1643:k 1640:4 1636:n 1632:( 1629:O 1607:k 1603:2 1582:. 1578:) 1575:2 1568:( 1563:1 1557:) 1554:1 1548:( 1515:3 1512:, 1509:3 1505:K 1483:C 1477:G 1457:C 1429:A 1409:n 1403:n 1383:A 1377:= 1374:) 1371:A 1368:( 1365:T 1339:T 1327:( 1315:K 1253:K 1228:n 1224:} 1220:1 1214:{ 1208:) 1203:n 1195:, 1189:, 1184:2 1176:, 1173:1 1170:= 1165:1 1157:( 1154:= 1129:1 1123:n 1119:2 1095:, 1091:] 1085:j 1082:i 1078:a 1072:i 1062:n 1057:1 1054:= 1051:i 1041:n 1036:1 1033:= 1030:j 1021:) 1015:k 1005:n 1000:1 997:= 994:k 985:( 970:[ 962:1 956:n 952:2 948:1 943:= 940:) 937:A 934:( 906:( 862:S 842:) 839:n 834:1 828:n 824:2 820:( 817:O 797:) 792:2 788:n 782:1 776:n 772:2 768:( 765:O 742:. 737:j 734:i 730:a 724:S 718:j 708:n 703:1 700:= 697:i 686:| 682:S 678:| 673:) 669:1 663:( 658:} 655:n 652:, 646:, 643:1 640:{ 634:S 624:n 620:) 616:1 610:( 607:= 604:) 601:A 598:( 566:. 561:k 551:k 547:) 543:1 537:( 532:1 526:n 521:0 518:= 515:k 507:= 504:) 501:A 498:( 467:k 463:A 442:) 437:k 433:A 429:( 426:P 404:k 377:k 373:A 352:) 347:k 343:A 339:( 336:P 326:k 322:A 306:k 302:A 271:n 260:n 251:n 247:S 227:. 222:) 219:i 216:( 210:, 207:i 203:a 197:n 192:1 189:= 186:i 174:n 170:S 155:= 152:) 149:A 146:( 122:a 118:A 114:n 110:n 20:)

Index

Computation of the permananent of a matrix
linear algebra
permanent
matrix
determinant
parity of the set
polynomial time
Gaussian elimination
computational complexity theory
a theorem of Valiant
#P-hard
#P-complete
Valiant (1979)
NP
ACC
Allender & Gore 1994
symmetric group
permutations
sign of the permutation
H. J. Ryser
1963
inclusion–exclusion
Gray code
Balasubramanian 1980
Bax 1998
Bax & Franklin 1996
polarization identity
symmetric tensor
Glynn 2010
Glynn 2013

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.