Knowledge

Computable function

Source 📝

4239: 68:, computable functions are exactly the functions that can be calculated using a mechanical (that is, automatic) calculation device given unlimited amounts of time and storage space. More precisely, every model of computation that has ever been imagined can compute only computable functions, and all computable functions can be computed by any of several models of computation that are apparently very different, such as 1625:. In this case, and in the case of the primitive recursive functions, well-ordering is obvious, but some "refers-to" relations are nontrivial to prove as being well-orderings. Any function defined recursively in a well-ordered way is computable: each value can be computed by expanding a tree of recursive calls to the function, and this expansion must terminate after a finite number of calls, because otherwise 555:) telling how to compute the function. The models of computation listed above give different interpretations of what a procedure is and how it is used, but these interpretations share many properties. The fact that these models give equivalent classes of computable functions stems from the fact that each model is capable of reading and mimicking a procedure for any of the other models, much as a 1741:, asked whether there is an effective procedure to determine which mathematical statements (coded as natural numbers) are true. Turing and Church independently showed in the 1930s that this set of natural numbers is not computable. According to the Church–Turing thesis, there is no effective procedure (with an algorithm) which can perform these computations. 569:"There must be exact instructions (i.e. a program), finite in length, for the procedure." Thus every computable function must have a finite program that completely describes how the function is to be computed. It is possible to compute the function by just following the instructions; no guessing or special insight is required. 1802:. As with the concept of a computable function relative computability can be given equivalent definitions in many different models of computation. This is commonly accomplished by supplementing the model of computation with an additional primitive operation which asks whether a given integer is a member of 1641:
proof system, every provably total function is indeed total, but the converse is not true: in every first-order proof system that is strong enough and sound (including Peano arithmetic), one can prove (in another proof system) the existence of total functions that cannot be proven total in the proof
926:
A key property of a formal language is the level of difficulty required to decide whether a given word is in the language. Some coding system must be developed to allow a computable function to take an arbitrary word in the language as input; this is usually considered routine. A language is called
1419:
The Church–Turing thesis is sometimes used in proofs to justify that a particular function is computable by giving a concrete description of a procedure for the computation. This is permitted because it is believed that all such uses of the thesis can be removed by the tedious process of writing a
299:
Although these models use different representations for the functions, their inputs, and their outputs, translations exist between any two models, and so every model describes essentially the same class of functions, giving rise to the opinion that formal computability is both natural and not too
1645:
If the total computable functions are enumerated via the Turing machines that produces them, then the above statement can be shown, if the proof system is sound, by a similar diagonalization argument to that used above, using the enumeration of provably total functions given earlier. One uses a
41:, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete 637:
Although the procedure may use only a finite amount of storage space during a successful computation, there is no bound on the amount of space that is used. It is assumed that additional storage space can be given to the procedure whenever the procedure asks for
99:
computed (i.e. computed within a reasonable amount of time). In fact, for some effectively calculable functions it can be shown that any algorithm that computes them will be very inefficient in the sense that the running time of the algorithm increases
53:. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the 1856:
Although the Church–Turing thesis states that the computable functions include all functions with algorithms, it is possible to consider broader classes of functions that relax the requirements that algorithms must possess. The field of
1694:
Every computable function has a finite procedure giving explicit, unambiguous instructions on how to compute it. Furthermore, this procedure has to be encoded in the finite alphabet used by the computational model, so there are only
1450:: one can enumerate all the provably total functions by enumerating all their corresponding proofs, that prove their computability. This can be done by enumerating all the proofs of the proof system and ignoring irrelevant ones. 623:) is ever found, it must be the correct value. It is not necessary for the computing agent to distinguish correct outcomes from incorrect ones because the procedure is defined as correct if and only if it produces an outcome. 592:)." Intuitively, the procedure proceeds step by step, with a specific rule to cover what to do at each step of the calculation. Only finitely many steps can be carried out before the value of the function is returned. 647:
given an input from its domain, possibly relying on unbounded storage space, it can give the corresponding output by following a procedure (program, algorithm) that is formed by a finite number of exact unambiguous
390: 190: 607:, then the procedure might go on forever, never halting. Or it might get stuck at some point (i.e., one of its instructions cannot be executed), but it must not pretend to produce a value for 1473:
For definitions of this type to avoid circularity or infinite regress, it is necessary that recursive calls to the same function within a definition be to arguments that are smaller in some
1462:, each value is defined by a fixed first-order formula of other, previously defined values of the same function or other functions, which might be simply constants. A subset of these is the 1404:
is a computable function. Because these three properties are not formally stated, the Church–Turing thesis cannot be proved. The following facts are often taken as evidence for the thesis:
300:
narrow. These functions are sometimes referred to as "recursive", to contrast with the informal term "computable", a distinction stemming from a 1934 discussion between Kleene and Gödel.
923:
is a subset of the collection of all words on a fixed alphabet. For example, the collection of all binary strings that contain exactly 3 ones is a language over the binary alphabet.
1201: 973:
if the word is not in the language. Thus a language is computable just in case there is a procedure that is able to correctly tell whether arbitrary words are in the language.
915:
on an alphabet is a finite sequence of symbols from the alphabet; the same symbol may be used more than once. For example, binary strings are exactly the words on the alphabet
634:
The procedure is required to halt after finitely many steps in order to produce an output, but it may take arbitrarily many steps before halting. No time limitation is assumed.
2618: 512: 478: 425: 250: 1615: 319:
and return a single natural number (just as above). They are the smallest class of partial functions that includes the constant, successor, and projection functions, and is
631:
The procedure must theoretically work for arbitrarily large arguments. It is not assumed that the arguments are smaller than the number of atoms in the Earth, for example.
534: 447: 219: 259:
As counterparts to this informal description, there exist multiple formal, mathematical definitions. The class of computable functions can be defined in many equivalent
3293: 1565: 1530: 1680:
enumeration) by invoking the Turing machine that computes it according to the n-th proof. Such a Turing machine is guaranteed to halt if the proof system is sound.
565:
gives the following characteristics of a procedure for computing a computable function; similar characterizations have been given by Turing , Rogers , and others.
1840:
of the empty set. This is equivalent to sets defined by both a universal and existential formula in the language of second order arithmetic and to some models of
1495: 3376: 2517: 2108: 95:. This term has since come to be identified with the computable functions. The effective computability of these functions does not imply that they can be 127:
on the set of computable functions. In computational complexity theory, the problem of determining the complexity of a computable function is known as a
1408:
Many equivalent models of computation are known, and they all give the same definition of computable function (or a weaker version, in some instances).
1322:. Every such function is computable. It is not known whether there are arbitrarily long runs of fives in the decimal expansion of π, so we don't know 145:
Computability of a function is an informal notion. One way to describe it is to say that a function is computable if its value can be obtained by an
900: 3690: 3848: 2636: 3703: 3026: 3288: 3708: 3698: 3435: 2641: 3186: 2632: 3844: 2470: 1964: 1939: 338:
Equivalently, computable functions can be formalized as functions which can be calculated by an idealized computing agent such as a
3941: 3685: 2510: 2101: 1365:. Thus, "Print 0, 1, 4, 6, 13" is a trivial algorithm to compute Σ(0), Σ(1), Σ(2), Σ(3), Σ(4); similarly, for any given value of 3246: 2939: 2680: 352: 152: 660: 124: 113: 4268: 4202: 3904: 3667: 3662: 3487: 2908: 2592: 4263: 4197: 3980: 3897: 3610: 3541: 3418: 2660: 1428:
Given a function (or, similarly, a set), one may be interested not only if it is computable, but also whether this can be
3268: 877:
on the natural numbers can be identified with a corresponding set of finite sequences of natural numbers, the notions of
794:
is in the set. Thus a set is computably enumerable if and only if it is the domain of some computable function. The word
252:. In agreement with this definition, the remainder of this article presumes that computable functions take finitely many 4122: 3948: 3634: 2867: 1689: 1463: 1250:
The following examples illustrate that a function may be computable though it is not known which algorithm computes it.
328: 3273: 3605: 3344: 2602: 2503: 2094: 4000: 3995: 2293: 1714:
functions on the natural numbers is uncountable so most are not computable. Concrete examples of such functions are
627:
Enderton goes on to list several clarifications of these 3 requirements of the procedure for a computable function:
3929: 3519: 2913: 2881: 2572: 2486: 81: 58: 54: 2646: 4219: 4168: 4065: 3563: 3524: 3001: 1905: 4060: 2675: 1391: 65: 3990: 3529: 3381: 3364: 3087: 2567: 2475: 1829: 283: 3892: 3869: 3830: 3716: 3657: 3303: 3223: 3067: 3011: 2624: 1910: 1127: 304: 272: 1178: 4182: 3909: 3887: 3854: 3747: 3593: 3578: 3551: 3502: 3386: 3321: 3146: 3112: 3107: 2981: 2812: 2789: 2429: 1895: 1799: 1755: 1447: 1412: 109: 4112: 3965: 3757: 3475: 3211: 3117: 2976: 2961: 2842: 2817: 2424: 2419: 2011: 1880: 1719: 320: 4238: 1723: 1134: 663:
studies functions with prescribed bounds on the time and/or space allowed in a successful computation.
1699:
many computable functions. For example, functions may be encoded using a string of bits (the alphabet
4085: 4047: 3924: 3728: 3568: 3492: 3470: 3298: 3256: 3155: 3122: 2986: 2774: 2685: 2414: 1734: 1459: 1175: 1028: 486: 452: 399: 324: 260: 224: 140: 42: 1570: 4214: 4105: 4090: 4027: 3914: 3864: 3790: 3735: 3672: 3465: 3460: 3408: 3176: 3165: 2837: 2737: 2665: 2656: 2652: 2587: 2582: 1629:
would lead to an infinite descending sequence of calls, violating the assumption of well-ordering.
1618: 1794:) when it satisfies the definition of a computable function with modifications allowing access to 1626: 517: 430: 202: 4243: 4012: 3975: 3960: 3953: 3936: 3722: 3588: 3514: 3497: 3450: 3263: 3172: 3006: 2991: 2951: 2903: 2888: 2876: 2832: 2807: 2577: 2526: 2028: 1833: 1474: 1467: 559:
is able to read instructions in one computer language and emit instructions in another language.
101: 3740: 3196: 392:
can be calculated if and only if there exists a computer program with the following properties:
1993: 551:
The basic characteristic of a computable function is that there must be a finite procedure (an
4178: 3985: 3795: 3785: 3677: 3558: 3393: 3369: 3150: 3134: 3039: 3016: 2893: 2862: 2827: 2722: 2557: 2434: 2006: 1960: 1935: 1870: 1759: 1707: 1433: 1035: 874: 4192: 4187: 4080: 4037: 3859: 3820: 3815: 3800: 3626: 3583: 3480: 3278: 3228: 2802: 2764: 2398: 2288: 2220: 2210: 2117: 2051: 2020: 1900: 1885: 1875: 1858: 1841: 1535: 1500: 1436: 1400:
states that any function computable from a procedure possessing the three properties listed
562: 347: 343: 308: 293: 146: 128: 73: 50: 34: 2323: 4173: 4163: 4117: 4100: 4055: 4017: 3919: 3839: 3646: 3573: 3546: 3534: 3440: 3354: 3328: 3283: 3251: 3052: 2854: 2797: 2747: 2712: 2670: 2393: 2383: 2340: 2330: 2313: 2303: 2261: 2256: 2251: 2235: 2215: 2193: 2188: 2183: 2171: 2166: 2161: 2156: 1730: 1209: 904: 894: 277: 253: 77: 584:, then after a finite number of discrete steps the procedure must terminate and produce 4158: 4137: 4095: 4075: 3970: 3825: 3423: 3413: 3403: 3398: 3332: 3206: 3082: 2971: 2966: 2944: 2545: 2388: 2276: 2198: 2151: 1763: 1622: 1480: 1349:, there exists an algorithm that computes the finite sequence Σ(0), Σ(1), Σ(2), ..., Σ( 1165: 786: 339: 316: 267: 69: 46: 4257: 4132: 3810: 3317: 3102: 3092: 3062: 3047: 2717: 2032: 1890: 1738: 332: 88: 654:
if given an input which is not in its domain it either never halts or it gets stuck.
17: 4032: 3879: 3780: 3772: 3652: 3600: 3509: 3445: 3428: 3359: 3218: 3077: 2779: 2562: 1696: 1141: 4142: 4022: 3201: 3191: 3138: 2822: 2742: 2727: 2607: 2552: 2266: 2176: 1837: 1715: 1342: 120: 3072: 2927: 2898: 2704: 2378: 2203: 2072: 1706:
The real numbers are uncountable so most real numbers are not computable. See
287: 37:. Computable functions are the formalized analogue of the intuitive notion of 1722:, or any function that outputs the digits of a noncomputable number, such as 192:
is computable if and only if there is an effective procedure that, given any
4224: 4127: 3180: 3097: 3057: 3021: 2957: 2769: 2759: 2732: 2373: 2068: 1638: 1015:
has the same etymology as in computably enumerable sets of natural numbers.
828: 552: 546: 105: 38: 1286:
is either the constant 1 function, which is computable, or else there is a
4209: 4007: 3455: 3160: 2754: 2368: 2363: 2308: 2131: 1711: 1353:) — in contrast to the fact that there is no algorithm that computes the 1076: 556: 1861:
studies models of computation that go beyond normal Turing computation.
1848:
in which any set can be used as an argument to an E-recursive function.
1646:
Turing machine that enumerates the relevant proofs, and for every input
3805: 2597: 2358: 2024: 1729:
Similarly, most subsets of the natural numbers are not computable. The
1230: 2318: 2079:, Series 2, Volume 42 (1937), p.230–265. Reprinted in M. Davis (ed.), 2073:
On Computable Numbers, With an Application to the Entscheidungsproblem
2495: 2465: 2460: 2335: 2086: 1411:
No stronger model of computation which is generally considered to be
1477:
on the function's domain. For instance, for the Ackermann function
798:
is used because the following are equivalent for a nonempty subset
256:
as arguments and produce a value which is a single natural number.
3349: 2695: 2540: 2455: 2450: 2271: 1844:. Even more general recursion theories have been studied, such as 312: 197: 2283: 2141: 1983:(Studies in Logic and the Foundation of Mathematics, 2000), p. 4 1420:
formal procedure for the function in some model of computation.
2499: 2090: 651:
it returns such output (halts) in a finite number of steps; and
2298: 2230: 2225: 2146: 2136: 642:
To summarise, based on this view a function is computable if:
514:
is undefined, then the program never terminates on the input
1470:, which is recursively defined but not primitive recursive. 1439:). A function that can be proven to be computable is called 1401: 1377:
or produced by anyone) to compute Σ(0), Σ(1), Σ(2), ..., Σ(
385:{\displaystyle f:\mathbb {N} ^{k}\rightarrow \mathbb {N} } 185:{\displaystyle f:\mathbb {N} ^{k}\rightarrow \mathbb {N} } 1981:
Computable Structures and the Hyperarithmetical Hierarchy
427:
is defined, then the program will terminate on the input
2063:
Theory of recursive functions and effective computation
303:
For example, one can formalize computable functions as
27:
Mathematical function that can be computed by a program
87:
Before the precise definition of computable function,
1573: 1538: 1503: 1483: 1181: 847:
then the function can be viewed as an enumeration of
520: 489: 455: 433: 402: 355: 227: 205: 155: 1341:
computable sequence of natural numbers (such as the
4151: 4046: 3878: 3771: 3623: 3316: 3239: 3133: 3037: 2926: 2853: 2788: 2703: 2694: 2616: 2533: 2443: 2407: 2351: 2244: 2124: 2009:(1935). "Konstruktion nichtrekursiver Funktionen". 1959:(Second ed.). USA: Elsevier. p. 208,262. 827:is infinite then the function can be assumed to be 1609: 1559: 1524: 1489: 1195: 528: 506: 472: 441: 419: 384: 244: 213: 184: 116:study functions that can be computed efficiently. 1754:The notion of computability of a function can be 1345:Σ) is computable. E.g., for each natural number 821:is the range of a total computable function. If 1934:(Second ed.). USA: Elsevier. p. 209. 1832:studies those sets that can be computed from a 1031:; e.g., any finite sequence of natural numbers. 2077:Proceedings of the London Mathematical Society 1733:was the first such set to be constructed. The 1684:Uncomputable functions and unsolvable problems 1282:) = 0 otherwise, is computable. (The function 1270:consecutive fives in the decimal expansion of 885:can be defined from their analogues for sets. 108:) with the length of the input. The fields of 2511: 2102: 8: 1633:Total functions that are not provably total 689:) if there is a computable, total function 221:of natural numbers, will produce the value 3337: 2932: 2700: 2518: 2504: 2496: 2109: 2095: 2087: 1330:. Nevertheless, we know that the function 1572: 1537: 1502: 1482: 1454:Relation to recursively defined functions 1180: 521: 519: 496: 488: 462: 454: 434: 432: 409: 401: 378: 377: 368: 364: 363: 354: 234: 226: 206: 204: 178: 177: 168: 164: 163: 154: 1023:The following functions are computable: 901:computability theory in computer science 1922: 1446:The set of provably total functions is 813:is the domain of a computable function. 541:Characteristics of computable functions 2058:(North-Holland 1977) pp. 527–566. 1432:in a particular proof system (usually 1196:{\displaystyle \color {Blue}f\circ g} 1182: 7: 1957:A Mathematical Introduction to Logic 1932:A Mathematical Introduction to Logic 988:) if there is a computable function 939:) if there is a computable function 762:) if there is a computable function 2048:. Cambridge University Press, 1980. 1005:is defined if and only if the word 962:if the word is in the language and 750:A set of natural numbers is called 123:can be used to define an abstract 33:are the basic objects of study in 25: 2471:Probabilistically checkable proof 2083:, Raven Press, Hewlett, NY, 1965. 1996:(1995). Accessed 9 November 2022. 695:such that for any natural number 4237: 1266:) = 1 if there is a sequence of 522: 497: 463: 435: 410: 235: 207: 507:{\displaystyle f(\mathbf {x} )} 473:{\displaystyle f(\mathbf {x} )} 420:{\displaystyle f(\mathbf {x} )} 245:{\displaystyle f(\mathbf {x} )} 125:computational complexity theory 2056:Handbook of Mathematical Logic 2054:Elements of recursion theory. 1610:{\displaystyle (p,q)<(x,y)} 1604: 1592: 1586: 1574: 1554: 1542: 1519: 1507: 883:computably enumerable relation 864:will include every element of 603:which is not in the domain of 501: 493: 480:stored in the computer memory. 467: 459: 414: 406: 374: 239: 231: 174: 149:. With more rigor, a function 1: 4198:History of mathematical logic 1497:, whenever the definition of 1464:primitive recursive functions 1373:(even though it may never be 1156:are computable, then so are: 1011:is in the language. The term 677:of natural numbers is called 667:Computable sets and relations 595:"If the procedure is given a 572:"If the procedure is given a 91:often used the informal term 4123:Primitive recursive function 1690:List of undecidable problems 1247:and many more combinations. 1027:Each function with a finite 529:{\displaystyle \mathbf {x} } 442:{\displaystyle \mathbf {x} } 214:{\displaystyle \mathbf {x} } 1994:Computability and Recursion 1745:Extensions of computability 1458:In a function defined by a 1369:, such a trivial algorithm 903:, it is common to consider 841:is the range of a function 82:general recursive functions 59:general recursive functions 55:Turing-computable functions 4285: 3187:Schröder–Bernstein theorem 2914:Monadic predicate calculus 2573:Foundations of mathematics 2487:List of complexity classes 1955:Enderton, Herbert (2002). 1930:Enderton, Herbert (2002). 1836:number of iterates of the 1687: 1389: 1337:Each finite segment of an 892: 768:such that for each number 544: 138: 4233: 4220:Philosophy of mathematics 4169:Automated theorem proving 3340: 3294:Von Neumann–Bernays–Gödel 2935: 2484: 1906:Super-recursive algorithm 1806:. We can also talk about 1466:. Another example is the 2476:Interactive proof system 1830:Hyperarithmetical theory 945:such that for each word 804:of the natural numbers: 661:computational complexity 114:computational complexity 3870:Self-verifying theories 3691:Tarski's axiomatization 2642:Tarski's undefinability 2637:incompleteness theorems 1911:Semicomputable function 1825:Higher recursion theory 1789:computable relative to 1128:greatest common divisor 911:is an arbitrary set. A 615:." Thus if a value for 346:. Formally speaking, a 4244:Mathematics portal 3855:Proof of impossibility 3503:propositional variable 2813:Propositional calculus 2430:Arithmetical hierarchy 1979:C. J. Ash, J. Knight, 1896:Arithmetical hierarchy 1750:Relative computability 1611: 1561: 1560:{\displaystyle A(p,q)} 1526: 1525:{\displaystyle A(x,y)} 1491: 1448:recursively enumerable 1413:effectively calculable 1326:of those functions is 1197: 982:recursively enumerable 756:recursively enumerable 530: 508: 474: 443: 421: 386: 246: 215: 186: 110:feasible computability 93:effectively calculable 4269:Theory of computation 4113:Kolmogorov complexity 4066:Computably enumerable 3966:Model complete theory 3758:Principia Mathematica 2818:Propositional formula 2647:Banach–Tarski paradox 2425:Grzegorczyk hierarchy 2420:Exponential hierarchy 2352:Considered infeasible 2012:Mathematische Annalen 1881:Theory of computation 1720:Kolmogorov complexity 1612: 1562: 1527: 1492: 1198: 978:computably enumerable 752:computably enumerable 531: 509: 475: 444: 422: 387: 305:μ-recursive functions 273:μ-recursive functions 261:models of computation 247: 216: 187: 4264:Computability theory 4061:Church–Turing thesis 4048:Computability theory 3257:continuum hypothesis 2775:Square of opposition 2633:Gödel's completeness 2415:Polynomial hierarchy 2245:Suspected infeasible 1735:Entscheidungsproblem 1571: 1536: 1501: 1481: 1460:recursive definition 1398:Church–Turing thesis 1392:Church–Turing thesis 1386:Church–Turing thesis 1343:Busy Beaver function 1334:must be computable.) 1179: 518: 487: 453: 431: 400: 353: 284:Post–Turing machines 225: 203: 153: 141:Total Turing machine 66:Church–Turing thesis 43:model of computation 35:computability theory 31:Computable functions 18:Computable predicate 4215:Mathematical object 4106:P versus NP problem 4071:Computable function 3865:Reverse mathematics 3791:Logical consequence 3668:primitive recursive 3663:elementary function 3436:Free/bound variable 3289:Tarski–Grothendieck 2808:Logical connectives 2738:Logical equivalence 2588:Logical consequence 2444:Families of classes 2125:Considered feasible 2065:(McGraw–Hill 1967). 1619:lexicographic order 1357:Σ-sequence, i.e. Σ( 951:over the alphabet, 879:computable relation 853:, because the list 329:primitive recursion 147:effective procedure 4013:Transfer principle 3976:Semantics of logic 3961:Categorical theory 3937:Non-standard model 3451:Logical connective 2578:Information theory 2527:Mathematical logic 2118:Complexity classes 2025:10.1007/BF01472200 1846:E-recursion theory 1834:computable ordinal 1724:Chaitin's constant 1607: 1557: 1522: 1487: 1475:well-partial-order 1468:Ackermann function 1415:has been proposed. 1193: 1192: 1135:Bézout coefficient 526: 504: 470: 439: 417: 382: 242: 211: 182: 106:superexponentially 4251: 4250: 4183:Abstract category 3986:Theories of truth 3796:Rule of inference 3786:Natural deduction 3767: 3766: 3312: 3311: 3017:Cartesian product 2922: 2921: 2828:Many-valued logic 2803:Boolean functions 2686:Russell's paradox 2661:diagonal argument 2558:First-order logic 2493: 2492: 2435:Boolean hierarchy 2408:Class hierarchies 1871:Computable number 1852:Hyper-computation 1773:is defined to be 1708:computable number 1490:{\displaystyle A} 1036:constant function 875:finitary relation 580:in the domain of 311:that take finite 309:partial functions 294:Register machines 74:register machines 64:According to the 51:register machines 16:(Redirected from 4276: 4242: 4241: 4193:History of logic 4188:Category of sets 4081:Decision problem 3860:Ordinal analysis 3801:Sequent calculus 3699:Boolean algebras 3639: 3638: 3613: 3584:logical/constant 3338: 3324: 3247:Zermelo–Fraenkel 2998:Set operations: 2933: 2870: 2701: 2681:Löwenheim–Skolem 2568:Formal semantics 2520: 2513: 2506: 2497: 2111: 2104: 2097: 2088: 2044:Cutland, Nigel. 2037: 2036: 2003: 1997: 1990: 1984: 1977: 1971: 1970: 1952: 1946: 1945: 1927: 1901:Hypercomputation 1886:Recursion theory 1876:Effective method 1859:Hypercomputation 1842:Hypercomputation 1821:with its graph. 1758:to an arbitrary 1702: 1676:-th function by 1616: 1614: 1613: 1608: 1566: 1564: 1563: 1558: 1531: 1529: 1528: 1523: 1496: 1494: 1493: 1488: 1437:Peano arithmetic 1273: 1246: 1202: 1200: 1199: 1194: 1010: 1004: 993: 972: 961: 950: 944: 918: 905:formal languages 889:Formal languages 869: 863: 852: 846: 840: 826: 820: 812: 803: 793: 784: 773: 767: 746: 740: 734: 723: 717: 711: 700: 694: 676: 535: 533: 532: 527: 525: 513: 511: 510: 505: 500: 479: 477: 476: 471: 466: 448: 446: 445: 440: 438: 426: 424: 423: 418: 413: 391: 389: 388: 383: 381: 373: 372: 367: 348:partial function 344:register machine 251: 249: 248: 243: 238: 220: 218: 217: 212: 210: 195: 191: 189: 188: 183: 181: 173: 172: 167: 129:function problem 21: 4284: 4283: 4279: 4278: 4277: 4275: 4274: 4273: 4254: 4253: 4252: 4247: 4236: 4229: 4174:Category theory 4164:Algebraic logic 4147: 4118:Lambda calculus 4056:Church encoding 4042: 4018:Truth predicate 3874: 3840:Complete theory 3763: 3632: 3628: 3624: 3619: 3611: 3331: and  3327: 3322: 3308: 3284:New Foundations 3252:axiom of choice 3235: 3197:Gödel numbering 3137: and  3129: 3033: 2918: 2868: 2849: 2798:Boolean algebra 2784: 2748:Equiconsistency 2713:Classical logic 2690: 2671:Halting problem 2659: and  2635: and  2623: and  2622: 2617:Theorems ( 2612: 2529: 2524: 2494: 2489: 2480: 2439: 2403: 2347: 2341:PSPACE-complete 2240: 2120: 2115: 2081:The Undecidable 2041: 2040: 2005: 2004: 2000: 1991: 1987: 1978: 1974: 1967: 1954: 1953: 1949: 1942: 1929: 1928: 1924: 1919: 1867: 1854: 1827: 1817:by identifying 1764:natural numbers 1752: 1747: 1731:halting problem 1700: 1692: 1686: 1671: 1658: 1635: 1623:natural numbers 1569: 1568: 1534: 1533: 1499: 1498: 1479: 1478: 1456: 1426: 1394: 1388: 1271: 1229: 1177: 1176: 1123: 1116: 1109: 1100: 1068: 1059: 1021: 1009: 1006: 1002: 995: 989: 970: 963: 959: 952: 949: 946: 940: 916: 897: 895:Formal language 891: 868: 865: 854: 851: 848: 842: 839: 836: 825: 822: 819: 816: 811: 808: 802: 799: 792: 789: 782: 775: 772: 769: 763: 745: 742: 739: 736: 732: 725: 722: 719: 716: 713: 709: 702: 699: 696: 690: 675: 672: 669: 657: 549: 543: 516: 515: 485: 484: 451: 450: 449:with the value 429: 428: 398: 397: 362: 351: 350: 317:natural numbers 282:Post machines ( 278:Lambda calculus 268:Turing machines 254:natural numbers 223: 222: 201: 200: 193: 162: 151: 150: 143: 137: 78:lambda calculus 70:Turing machines 47:Turing machines 28: 23: 22: 15: 12: 11: 5: 4282: 4280: 4272: 4271: 4266: 4256: 4255: 4249: 4248: 4234: 4231: 4230: 4228: 4227: 4222: 4217: 4212: 4207: 4206: 4205: 4195: 4190: 4185: 4176: 4171: 4166: 4161: 4159:Abstract logic 4155: 4153: 4149: 4148: 4146: 4145: 4140: 4138:Turing machine 4135: 4130: 4125: 4120: 4115: 4110: 4109: 4108: 4103: 4098: 4093: 4088: 4078: 4076:Computable set 4073: 4068: 4063: 4058: 4052: 4050: 4044: 4043: 4041: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4004: 4003: 3998: 3993: 3983: 3978: 3973: 3971:Satisfiability 3968: 3963: 3958: 3957: 3956: 3946: 3945: 3944: 3934: 3933: 3932: 3927: 3922: 3917: 3912: 3902: 3901: 3900: 3895: 3888:Interpretation 3884: 3882: 3876: 3875: 3873: 3872: 3867: 3862: 3857: 3852: 3842: 3837: 3836: 3835: 3834: 3833: 3823: 3818: 3808: 3803: 3798: 3793: 3788: 3783: 3777: 3775: 3769: 3768: 3765: 3764: 3762: 3761: 3753: 3752: 3751: 3750: 3745: 3744: 3743: 3738: 3733: 3713: 3712: 3711: 3709:minimal axioms 3706: 3695: 3694: 3693: 3682: 3681: 3680: 3675: 3670: 3665: 3660: 3655: 3642: 3640: 3621: 3620: 3618: 3617: 3616: 3615: 3603: 3598: 3597: 3596: 3591: 3586: 3581: 3571: 3566: 3561: 3556: 3555: 3554: 3549: 3539: 3538: 3537: 3532: 3527: 3522: 3512: 3507: 3506: 3505: 3500: 3495: 3485: 3484: 3483: 3478: 3473: 3468: 3463: 3458: 3448: 3443: 3438: 3433: 3432: 3431: 3426: 3421: 3416: 3406: 3401: 3399:Formation rule 3396: 3391: 3390: 3389: 3384: 3374: 3373: 3372: 3362: 3357: 3352: 3347: 3341: 3335: 3318:Formal systems 3314: 3313: 3310: 3309: 3307: 3306: 3301: 3296: 3291: 3286: 3281: 3276: 3271: 3266: 3261: 3260: 3259: 3254: 3243: 3241: 3237: 3236: 3234: 3233: 3232: 3231: 3221: 3216: 3215: 3214: 3207:Large cardinal 3204: 3199: 3194: 3189: 3184: 3170: 3169: 3168: 3163: 3158: 3143: 3141: 3131: 3130: 3128: 3127: 3126: 3125: 3120: 3115: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3044: 3042: 3035: 3034: 3032: 3031: 3030: 3029: 3024: 3019: 3014: 3009: 3004: 2996: 2995: 2994: 2989: 2979: 2974: 2972:Extensionality 2969: 2967:Ordinal number 2964: 2954: 2949: 2948: 2947: 2936: 2930: 2924: 2923: 2920: 2919: 2917: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2885: 2884: 2874: 2873: 2872: 2859: 2857: 2851: 2850: 2848: 2847: 2846: 2845: 2840: 2835: 2825: 2820: 2815: 2810: 2805: 2800: 2794: 2792: 2786: 2785: 2783: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2751: 2750: 2740: 2735: 2730: 2725: 2720: 2715: 2709: 2707: 2698: 2692: 2691: 2689: 2688: 2683: 2678: 2673: 2668: 2663: 2651:Cantor's  2649: 2644: 2639: 2629: 2627: 2614: 2613: 2611: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2549: 2548: 2537: 2535: 2531: 2530: 2525: 2523: 2522: 2515: 2508: 2500: 2491: 2490: 2485: 2482: 2481: 2479: 2478: 2473: 2468: 2463: 2458: 2453: 2447: 2445: 2441: 2440: 2438: 2437: 2432: 2427: 2422: 2417: 2411: 2409: 2405: 2404: 2402: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2355: 2353: 2349: 2348: 2346: 2345: 2344: 2343: 2333: 2328: 2327: 2326: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2280: 2279: 2277:co-NP-complete 2274: 2269: 2264: 2254: 2248: 2246: 2242: 2241: 2239: 2238: 2233: 2228: 2223: 2218: 2213: 2208: 2207: 2206: 2196: 2191: 2186: 2181: 2180: 2179: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2128: 2126: 2122: 2121: 2116: 2114: 2113: 2106: 2099: 2091: 2085: 2084: 2066: 2059: 2052:Enderton, H.B. 2049: 2039: 2038: 1998: 1985: 1972: 1965: 1947: 1940: 1921: 1920: 1918: 1915: 1914: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1878: 1873: 1866: 1863: 1853: 1850: 1826: 1823: 1812:computable in 1780:(equivalently 1775:computable in 1751: 1748: 1746: 1743: 1737:, proposed by 1701:Σ = {0, 1 1688:Main article: 1685: 1682: 1667: 1654: 1634: 1631: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1585: 1582: 1579: 1576: 1556: 1553: 1550: 1547: 1544: 1541: 1521: 1518: 1515: 1512: 1509: 1506: 1486: 1455: 1452: 1441:provably total 1425: 1422: 1417: 1416: 1409: 1390:Main article: 1387: 1384: 1383: 1382: 1335: 1191: 1188: 1185: 1146: 1145: 1138: 1137:of two numbers 1131: 1130:of two numbers 1124: 1121: 1114: 1105: 1098: 1074: 1064: 1057: 1032: 1020: 1017: 1007: 1000: 976:A language is 968: 957: 947: 893:Main article: 890: 887: 866: 849: 837: 833: 832: 823: 817: 814: 809: 800: 790: 787:if and only if 780: 770: 743: 737: 730: 720: 714: 707: 697: 673: 668: 665: 656: 655: 652: 649: 644: 640: 639: 635: 632: 625: 624: 593: 570: 545:Main article: 542: 539: 538: 537: 524: 503: 499: 495: 492: 481: 469: 465: 461: 458: 437: 416: 412: 408: 405: 380: 376: 371: 366: 361: 358: 340:Turing machine 297: 296: 291: 280: 275: 270: 241: 237: 233: 230: 209: 180: 176: 171: 166: 161: 158: 136: 133: 89:mathematicians 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4281: 4270: 4267: 4265: 4262: 4261: 4259: 4246: 4245: 4240: 4232: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4204: 4201: 4200: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4156: 4154: 4150: 4144: 4141: 4139: 4136: 4134: 4133:Recursive set 4131: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4083: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4053: 4051: 4049: 4045: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4002: 3999: 3997: 3994: 3992: 3989: 3988: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3955: 3952: 3951: 3950: 3947: 3943: 3942:of arithmetic 3940: 3939: 3938: 3935: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3907: 3906: 3903: 3899: 3896: 3894: 3891: 3890: 3889: 3886: 3885: 3883: 3881: 3877: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3850: 3849:from ZFC 3846: 3843: 3841: 3838: 3832: 3829: 3828: 3827: 3824: 3822: 3819: 3817: 3814: 3813: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3778: 3776: 3774: 3770: 3760: 3759: 3755: 3754: 3749: 3748:non-Euclidean 3746: 3742: 3739: 3737: 3734: 3732: 3731: 3727: 3726: 3724: 3721: 3720: 3718: 3714: 3710: 3707: 3705: 3702: 3701: 3700: 3696: 3692: 3689: 3688: 3687: 3683: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3650: 3648: 3644: 3643: 3641: 3636: 3630: 3625:Example  3622: 3614: 3609: 3608: 3607: 3604: 3602: 3599: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3576: 3575: 3572: 3570: 3567: 3565: 3562: 3560: 3557: 3553: 3550: 3548: 3545: 3544: 3543: 3540: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3517: 3516: 3513: 3511: 3508: 3504: 3501: 3499: 3496: 3494: 3491: 3490: 3489: 3486: 3482: 3479: 3477: 3474: 3472: 3469: 3467: 3464: 3462: 3459: 3457: 3454: 3453: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3434: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3411: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3388: 3385: 3383: 3382:by definition 3380: 3379: 3378: 3375: 3371: 3368: 3367: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3342: 3339: 3336: 3334: 3330: 3325: 3319: 3315: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3269:Kripke–Platek 3267: 3265: 3262: 3258: 3255: 3253: 3250: 3249: 3248: 3245: 3244: 3242: 3238: 3230: 3227: 3226: 3225: 3222: 3220: 3217: 3213: 3210: 3209: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3182: 3178: 3174: 3171: 3167: 3164: 3162: 3159: 3157: 3154: 3153: 3152: 3148: 3145: 3144: 3142: 3140: 3136: 3132: 3124: 3121: 3119: 3116: 3114: 3113:constructible 3111: 3110: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3045: 3043: 3041: 3036: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2999: 2997: 2993: 2990: 2988: 2985: 2984: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2959: 2955: 2953: 2950: 2946: 2943: 2942: 2941: 2938: 2937: 2934: 2931: 2929: 2925: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2883: 2880: 2879: 2878: 2875: 2871: 2866: 2865: 2864: 2861: 2860: 2858: 2856: 2852: 2844: 2841: 2839: 2836: 2834: 2831: 2830: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2795: 2793: 2791: 2790:Propositional 2787: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2749: 2746: 2745: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2718:Logical truth 2716: 2714: 2711: 2710: 2708: 2706: 2702: 2699: 2697: 2693: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2658: 2654: 2650: 2648: 2645: 2643: 2640: 2638: 2634: 2631: 2630: 2628: 2626: 2620: 2615: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2547: 2544: 2543: 2542: 2539: 2538: 2536: 2532: 2528: 2521: 2516: 2514: 2509: 2507: 2502: 2501: 2498: 2488: 2483: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2448: 2446: 2442: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2412: 2410: 2406: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2356: 2354: 2350: 2342: 2339: 2338: 2337: 2334: 2332: 2329: 2325: 2322: 2321: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2259: 2258: 2255: 2253: 2250: 2249: 2247: 2243: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2205: 2202: 2201: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2178: 2175: 2174: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2129: 2127: 2123: 2119: 2112: 2107: 2105: 2100: 2098: 2093: 2092: 2089: 2082: 2078: 2074: 2070: 2067: 2064: 2060: 2057: 2053: 2050: 2047: 2046:Computability 2043: 2042: 2034: 2030: 2026: 2022: 2018: 2014: 2013: 2008: 2002: 1999: 1995: 1989: 1986: 1982: 1976: 1973: 1968: 1966:0-12-238452-0 1962: 1958: 1951: 1948: 1943: 1941:0-12-238452-0 1937: 1933: 1926: 1923: 1916: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1891:Turing degree 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1864: 1862: 1860: 1851: 1849: 1847: 1843: 1839: 1835: 1831: 1824: 1822: 1820: 1816: 1815: 1809: 1805: 1801: 1797: 1793: 1792: 1786: 1784: 1779: 1778: 1772: 1769:. A function 1768: 1765: 1761: 1757: 1749: 1744: 1742: 1740: 1739:David Hilbert 1736: 1732: 1727: 1725: 1721: 1717: 1713: 1710:. The set of 1709: 1704: 1698: 1691: 1683: 1681: 1679: 1675: 1670: 1666: 1662: 1657: 1653: 1649: 1643: 1640: 1632: 1630: 1628: 1627:Kőnig's lemma 1624: 1620: 1601: 1598: 1595: 1589: 1583: 1580: 1577: 1551: 1548: 1545: 1539: 1516: 1513: 1510: 1504: 1484: 1476: 1471: 1469: 1465: 1461: 1453: 1451: 1449: 1444: 1442: 1438: 1435: 1431: 1423: 1421: 1414: 1410: 1407: 1406: 1405: 1403: 1399: 1393: 1385: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1269: 1265: 1261: 1257: 1254:The function 1253: 1252: 1251: 1248: 1244: 1240: 1236: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1189: 1186: 1183: 1173: 1172: 1168: 1163: 1159: 1155: 1151: 1143: 1140:The smallest 1139: 1136: 1132: 1129: 1125: 1120: 1113: 1108: 1104: 1097: 1093: 1089: 1085: 1081: 1078: 1075: 1072: 1067: 1063: 1056: 1052: 1048: 1044: 1040: 1037: 1033: 1030: 1026: 1025: 1024: 1018: 1016: 1014: 998: 992: 987: 986:semidecidable 983: 979: 974: 966: 955: 943: 938: 934: 930: 924: 922: 914: 910: 906: 902: 896: 888: 886: 884: 880: 876: 873:Because each 871: 861: 857: 845: 830: 815: 807: 806: 805: 797: 788: 778: 766: 761: 760:semidecidable 757: 753: 748: 728: 705: 693: 688: 684: 680: 666: 664: 662: 659:The field of 653: 650: 648:instructions; 646: 645: 643: 636: 633: 630: 629: 628: 622: 618: 614: 610: 606: 602: 598: 594: 591: 587: 583: 579: 575: 571: 568: 567: 566: 564: 560: 558: 554: 548: 540: 490: 482: 456: 403: 395: 394: 393: 369: 359: 356: 349: 345: 341: 336: 334: 330: 326: 322: 318: 314: 310: 306: 301: 295: 292: 289: 285: 281: 279: 276: 274: 271: 269: 266: 265: 264: 262: 257: 255: 228: 199: 169: 159: 156: 148: 142: 134: 132: 130: 126: 122: 117: 115: 111: 107: 103: 102:exponentially 98: 94: 90: 85: 83: 79: 75: 71: 67: 62: 60: 56: 52: 48: 44: 40: 36: 32: 19: 4235: 4070: 4033:Ultraproduct 3880:Model theory 3845:Independence 3781:Formal proof 3773:Proof theory 3756: 3729: 3686:real numbers 3658:second-order 3569:Substitution 3446:Metalanguage 3387:conservative 3360:Axiom schema 3304:Constructive 3274:Morse–Kelley 3240:Set theories 3219:Aleph number 3212:inaccessible 3118:Grothendieck 3002:intersection 2889:Higher-order 2877:Second-order 2823:Truth tables 2780:Venn diagram 2563:Formal proof 2080: 2076: 2062: 2055: 2045: 2016: 2010: 2007:Péter, Rózsa 2001: 1988: 1980: 1975: 1956: 1950: 1931: 1925: 1855: 1845: 1828: 1818: 1813: 1811: 1807: 1803: 1795: 1790: 1788: 1782: 1781: 1776: 1774: 1770: 1766: 1753: 1728: 1705: 1693: 1677: 1673: 1668: 1664: 1660: 1655: 1651: 1647: 1644: 1636: 1621:on pairs of 1472: 1457: 1445: 1440: 1429: 1427: 1418: 1397: 1395: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1338: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1267: 1263: 1259: 1255: 1249: 1242: 1238: 1234: 1225: 1221: 1217: 1213: 1205: 1170: 1166: 1161: 1157: 1153: 1149: 1147: 1142:prime factor 1118: 1111: 1106: 1102: 1095: 1091: 1087: 1083: 1079: 1070: 1065: 1061: 1054: 1050: 1046: 1042: 1038: 1022: 1012: 996: 990: 985: 981: 977: 975: 964: 953: 941: 936: 932: 928: 925: 920: 912: 908: 898: 882: 878: 872: 859: 855: 843: 834: 795: 776: 764: 759: 755: 751: 749: 726: 703: 691: 686: 682: 678: 670: 658: 641: 626: 620: 616: 612: 608: 604: 600: 596: 589: 585: 581: 577: 573: 561: 550: 337: 307:, which are 302: 298: 288:tag machines 263:, including 258: 144: 118: 96: 92: 86: 63: 30: 29: 4143:Type theory 4091:undecidable 4023:Truth value 3910:equivalence 3589:non-logical 3202:Enumeration 3192:Isomorphism 3139:cardinality 3123:Von Neumann 3088:Ultrafilter 3053:Uncountable 2987:equivalence 2904:Quantifiers 2894:Fixed-point 2863:First-order 2743:Consistency 2728:Proposition 2705:Traditional 2676:Lindström's 2666:Compactness 2608:Type theory 2553:Cardinality 2324:#P-complete 2262:NP-complete 2177:NL-complete 2061:Rogers, H. 1838:Turing jump 1785:-computable 1756:relativized 1716:Busy beaver 1617:w.r.t. the 1434:first order 1424:Provability 1144:of a number 980:(synonyms: 931:(synonyms: 785:is defined 754:(synonyms: 681:(synonyms: 325:composition 121:Blum axioms 97:efficiently 4258:Categories 3954:elementary 3647:arithmetic 3515:Quantifier 3493:functional 3365:Expression 3083:Transitive 3027:identities 3012:complement 2945:hereditary 2928:Set theory 2379:ELEMENTARY 2204:P-complete 2069:Turing, A. 1992:R. Soare, 1917:References 1532:refers to 1361:) for all 1290:such that 1268:at least n 1258:such that 1110:) := 1069:) := 1013:enumerable 994:such that 929:computable 796:enumerable 741:is not in 679:computable 333:μ operator 331:, and the 139:See also: 135:Definition 39:algorithms 4225:Supertask 4128:Recursion 4086:decidable 3920:saturated 3898:of models 3821:deductive 3816:axiomatic 3736:Hilbert's 3723:Euclidean 3704:canonical 3627:axiomatic 3559:Signature 3488:Predicate 3377:Extension 3299:Ackermann 3224:Operation 3103:Universal 3093:Recursive 3068:Singleton 3063:Inhabited 3048:Countable 3038:Types of 3022:power set 2992:partition 2909:Predicate 2855:Predicate 2770:Syllogism 2760:Soundness 2733:Inference 2723:Tautology 2625:paradoxes 2374:2-EXPTIME 2033:121107217 2019:: 42–60. 1697:countably 1663:) (where 1314:) = 0 if 1298:) = 1 if 1187:∘ 937:decidable 933:recursive 835:If a set 829:injective 687:decidable 683:recursive 553:algorithm 547:Algorithm 375:→ 175:→ 104:(or even 4210:Logicism 4203:timeline 4179:Concrete 4038:Validity 4008:T-schema 4001:Kripke's 3996:Tarski's 3991:semantic 3981:Strength 3930:submodel 3925:spectrum 3893:function 3741:Tarski's 3730:Elements 3717:geometry 3673:Robinson 3594:variable 3579:function 3552:spectrum 3542:Sentence 3498:variable 3441:Language 3394:Relation 3355:Automata 3345:Alphabet 3329:language 3183:-jection 3161:codomain 3147:Function 3108:Universe 3078:Infinite 2982:Relation 2765:Validity 2755:Argument 2653:theorem, 2369:EXPSPACE 2364:NEXPTIME 2132:DLOGTIME 2071:(1937), 1865:See also 1712:finitary 1642:system. 1082: : 1077:Addition 1041: : 1019:Examples 921:language 909:alphabet 862:(1), ... 563:Enderton 557:compiler 57:and the 45:such as 4152:Related 3949:Diagram 3847: ( 3826:Hilbert 3811:Systems 3806:Theorem 3684:of the 3629:systems 3409:Formula 3404:Grammar 3320: ( 3264:General 2977:Forcing 2962:Element 2882:Monadic 2657:paradox 2598:Theorem 2534:General 2359:EXPTIME 2267:NP-hard 1567:, then 1231:arg max 1220:), min( 917:{0, 1} 599:-tuple 576:-tuple 3915:finite 3678:Skolem 3631:  3606:Theory 3574:Symbol 3564:String 3547:atomic 3424:ground 3419:closed 3414:atomic 3370:ground 3333:syntax 3229:binary 3156:domain 3073:Finite 2838:finite 2696:Logics 2655:  2603:Theory 2466:NSPACE 2461:DSPACE 2336:PSPACE 2031:  1963:  1938:  1810:being 1800:oracle 1798:as an 1650:calls 1430:proven 1371:exists 1355:entire 1274:, and 1212:, max( 1029:domain 718:is in 671:A set 323:under 321:closed 313:tuples 3905:Model 3653:Peano 3510:Proof 3350:Arity 3279:Naive 3166:image 3098:Fuzzy 3058:Empty 3007:union 2952:Class 2593:Model 2583:Lemma 2541:Axiom 2456:NTIME 2451:DTIME 2272:co-NP 2029:S2CID 1639:sound 1637:In a 1402:above 1375:known 1324:which 1302:< 1210:unary 1034:Each 971:) = 0 960:) = 1 907:. An 858:(0), 733:) = 0 710:) = 1 342:or a 198:tuple 4028:Type 3831:list 3635:list 3612:list 3601:Term 3535:rank 3429:open 3323:list 3135:Maps 3040:sets 2899:Free 2869:list 2619:list 2546:list 2284:TFNP 1961:ISBN 1936:ISBN 1703:}). 1678:this 1590:< 1396:The 1306:and 1152:and 1126:The 1060:,... 919:. A 913:word 881:and 724:and 286:and 119:The 112:and 80:and 3715:of 3697:of 3645:of 3177:Sur 3151:Map 2958:Ur- 2940:Set 2399:ALL 2299:QMA 2289:FNP 2231:APX 2226:BQP 2221:BPP 2211:ZPP 2142:ACC 2021:doi 2017:111 1787:or 1762:of 1760:set 1672:is 1228:), 1208:is 1204:if 1148:If 899:In 735:if 712:if 638:it. 611:at 483:If 396:If 315:of 49:or 4260:: 4101:NP 3725:: 3719:: 3649:: 3326:), 3181:Bi 3173:In 2394:RE 2384:PR 2331:IP 2319:#P 2314:PP 2309:⊕P 2304:PH 2294:AM 2257:NP 2252:UP 2236:FP 2216:RP 2194:CC 2189:SC 2184:NC 2172:NL 2167:FL 2162:RL 2157:SL 2147:TC 2137:AC 2075:. 2027:. 2015:. 1726:. 1718:, 1443:. 1381:). 1339:un 1318:≥ 1245:)} 1237:≤ 1174:, 1169:* 1164:, 1160:+ 1133:A 1117:+ 1090:, 1086:→ 1049:, 1045:→ 984:, 935:, 870:. 774:, 758:, 747:. 701:, 685:, 335:. 327:, 290:). 131:. 84:. 76:, 72:, 61:. 4181:/ 4096:P 3851:) 3637:) 3633:( 3530:∀ 3525:! 3520:∃ 3481:= 3476:↔ 3471:→ 3466:∧ 3461:∨ 3456:¬ 3179:/ 3175:/ 3149:/ 2960:) 2956:( 2843:∞ 2833:3 2621:) 2519:e 2512:t 2505:v 2389:R 2199:P 2152:L 2110:e 2103:t 2096:v 2035:. 2023:: 1969:. 1944:. 1819:g 1814:g 1808:f 1804:A 1796:A 1791:A 1783:A 1777:A 1771:f 1767:A 1674:n 1669:n 1665:f 1661:n 1659:( 1656:n 1652:f 1648:n 1605:) 1602:y 1599:, 1596:x 1593:( 1587:) 1584:q 1581:, 1578:p 1575:( 1555:) 1552:q 1549:, 1546:p 1543:( 1540:A 1520:) 1517:y 1514:, 1511:x 1508:( 1505:A 1485:A 1379:n 1367:n 1363:n 1359:n 1351:n 1347:n 1332:f 1328:f 1320:k 1316:n 1312:n 1310:( 1308:f 1304:k 1300:n 1296:n 1294:( 1292:f 1288:k 1284:f 1280:n 1278:( 1276:f 1272:π 1264:n 1262:( 1260:f 1256:f 1243:x 1241:( 1239:f 1235:y 1233:{ 1226:g 1224:, 1222:f 1218:g 1216:, 1214:f 1206:f 1190:g 1184:f 1171:g 1167:f 1162:g 1158:f 1154:g 1150:f 1122:2 1119:n 1115:1 1112:n 1107:2 1103:n 1101:, 1099:1 1096:n 1094:( 1092:f 1088:N 1084:N 1080:f 1073:. 1071:n 1066:k 1062:n 1058:1 1055:n 1053:( 1051:f 1047:N 1043:N 1039:f 1008:w 1003:) 1001:w 999:( 997:f 991:f 969:w 967:( 965:f 958:w 956:( 954:f 948:w 942:f 867:B 860:f 856:f 850:B 844:f 838:B 831:. 824:B 818:B 810:B 801:B 791:n 783:) 781:n 779:( 777:f 771:n 765:f 744:A 738:n 731:n 729:( 727:f 721:A 715:n 708:n 706:( 704:f 698:n 692:f 674:A 621:x 619:( 617:f 613:x 609:f 605:f 601:x 597:k 590:x 588:( 586:f 582:f 578:x 574:k 536:. 523:x 502:) 498:x 494:( 491:f 468:) 464:x 460:( 457:f 436:x 415:) 411:x 407:( 404:f 379:N 370:k 365:N 360:: 357:f 240:) 236:x 232:( 229:f 208:x 196:- 194:k 179:N 170:k 165:N 160:: 157:f 20:)

Index

Computable predicate
computability theory
algorithms
model of computation
Turing machines
register machines
Turing-computable functions
general recursive functions
Church–Turing thesis
Turing machines
register machines
lambda calculus
general recursive functions
mathematicians
exponentially
superexponentially
feasible computability
computational complexity
Blum axioms
computational complexity theory
function problem
Total Turing machine
effective procedure
tuple
natural numbers
models of computation
Turing machines
μ-recursive functions
Lambda calculus
Post–Turing machines

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.