Knowledge (XXG)

Direct sum of modules

Source 📝

4860: 1801: 107:
We give the construction first in these two cases, under the assumption that we have only two objects. Then we generalize to an arbitrary family of arbitrary modules. The key elements of the general construction are more clearly identified by considering these two cases in depth.
5496:, we see that the Banach space direct sum and the Hilbert space direct sum are not necessarily the same. But if there are only finitely many summands, then the Banach space direct sum is isomorphic to the Hilbert space direct sum, although the norm will be different. 4596: 4684: 5238: 1669: 2729:. The extension is done by defining equivalence classes of pairs of objects, which allows certain pairs to be treated as inverses. The construction, detailed in the article on the Grothendieck group, is "universal", in that it has the 1955: 5159: 2982: 2147: 5490: 2561: 4466: 4409: 2075: 3181: 836:
One should notice a clear similarity between the definitions of the direct sum of two vector spaces and of two abelian groups. In fact, each is a special case of the construction of the direct sum of two
1203: 3893: 3261: 2219: 2677: 5532: 4009: 478: 5354: 3105: 4134: 3062: 3018: 3536: 1273: 1327: 49:
into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a
3709: 5166: 3328: 1427: 3130:(1934), page 151. Wedderburn makes clear the distinction between a direct sum and a direct product of algebras: For the direct sum the field of scalars acts jointly on both parts: 968: 5309: 4924:
are given, we can carry out the same construction; notice that when defining the inner product, only finitely many summands will be non-zero. However, the result will only be an
4679: 3964: 5419: 4074: 4330: 2275: 1392: 5271: 4855:{\displaystyle \left\langle \left(x_{1},\ldots ,x_{n}\right),\left(y_{1},\ldots ,y_{n}\right)\right\rangle =\langle x_{1},y_{1}\rangle +\cdots +\langle x_{n},y_{n}\rangle .} 3926: 3793: 1362: 1140:
This set inherits the module structure via component-wise addition and scalar multiplication. Explicitly, two such sequences (or functions) α and β can be added by writing
1001: 928: 5384: 5039: 4271: 4039: 725: 337: 5616: 3591: 5092: 4922: 3819: 3562: 1863: 1108: 5066: 4987: 4957: 4896: 4299: 3620: 1135: 5010: 3666: 4616: 4461: 4433: 4242: 4222: 4202: 4176: 4156: 3751: 3729: 3640: 3460: 3440: 3420: 3400: 2849: 2829: 5587: – short exact sequence where the middle term is the direct sum of the outer ones with the structure maps being the canonical inclusion and projection 5097: 2721:, in that the addition of objects is defined, but not subtraction. In fact, subtraction can be defined, and every commutative monoid can be extended to an 2080: 1796:{\displaystyle \operatorname {Hom} _{R}{\biggl (}\bigoplus _{i\in I}M_{i},L{\biggr )}\cong \prod _{i\in I}\operatorname {Hom} _{R}\left(M_{i},L\right).} 841:. Additionally, by modifying the definition one can accommodate the direct sum of an infinite family of modules. The precise definition is as follows ( 5534:
This is equivalent to the assertion that every Hilbert space has an orthonormal basis. More generally, every closed subspace of a Hilbert space is
2008: 5546:
asserts that if every closed subspace of a Banach space is complemented, then the Banach space is isomorphic (topologically) to a Hilbert space.
3824: 2152: 2857: 435: 2497: 5751: 5726: 5704: 5685: 5663: 5628: 5424: 4342: 3133: 4681:
are given, one can construct their orthogonal direct sum as above (since they are vector spaces), defining the inner product as:
2749:), then the direct sum of the modules can often be made to carry this additional structure, as well. In this case, we obtain the 1143: 3186: 1517:
may be identified with the submodule of the direct sum consisting of those functions which vanish on all indices different from
1286: 2627: 5502: 5569: 3969: 1209:(note that this is again zero for all but finitely many indices), and such a function can be multiplied with an element 4591:{\displaystyle B\left({\left({x_{i}}\right),\left({y_{i}}\right)}\right)=\sum _{i\in I}b_{i}\left({x_{i},y_{i}}\right)} 5314: 3077: 2240: 409: 3037: 2993: 5543: 4079: 3465: 3366: 2754: 1220: 5578: 5499:
Every Hilbert space is isomorphic to a direct sum of sufficiently many copies of the base field, which is either
3354: 96: 58: 1574:, so in a sense only these direct sums have to be considered. This is not true for modules over arbitrary rings. 4627: 3112: 1556: 802: 704: 316: 3671: 2792:. This construction, however, does not provide a coproduct in the category of algebras, but a direct product ( 1546:
are actually vector spaces, then the dimension of the direct sum is equal to the sum of the dimensions of the
1525:
of the direct sum can be written in one and only one way as a sum of finitely many elements from the modules
5770: 3269: 2789: 2469: 2304: 5775: 1019: 933: 5276: 4638: 3931: 5564: 5539: 5535: 5389: 4180: 4044: 3183:
while for the direct product a scalar factor may be collected alternately with the parts, but not both:
3069: 1397: 4305: 1367: 5651: 5584: 3731: 3025: 2809: 2769: 2733:
of being unique, and homomorphic to any other embedding of a commutative monoid in an abelian group.
838: 46: 5248: 3903: 4925: 3756: 3123: 2773: 1334: 973: 900: 129: 69: 4628:
Positive-definite kernel § Connection with reproducing kernel Hilbert spaces and feature maps
3108: 2742: 2730: 2726: 2477: 1560: 5359: 5015: 4864:
The resulting direct sum is a Hilbert space which contains the given Hilbert spaces as mutually
4247: 4014: 5233:{\displaystyle \langle \alpha ,\beta \rangle =\sum _{i}\langle \alpha _{i},\beta _{i}\rangle .} 686:. This parallels the extension of the scalar product of vector spaces to the direct sum above. 5747: 5735: 5722: 5700: 5681: 5659: 5624: 3119: 3029: 2781: 878: 522: 136: 3567: 532:
is equipped with the structure of an abelian group by defining the operations componentwise:
5739: 5673: 5634: 5071: 4901: 3798: 3541: 3021: 1626:(up to isomorphism), meaning that it doesn't matter in which order one forms the direct sum. 1087: 38: 5558: – in category theory, an object that is both product and coproduct in compatible ways 5044: 4965: 4935: 4874: 4277: 3897:
The norm is given by the sum above. The direct sum with this norm is again a Banach space.
3598: 1113: 5638: 5620: 3346: 3263: 2461: 1430: 1073: 1065: 1004: 4992: 3648: 4601: 4446: 4418: 4412: 4227: 4207: 4187: 4161: 4141: 3736: 3714: 3625: 3445: 3425: 3405: 3385: 2834: 2814: 2785: 2777: 1991: 1646: 1578: 1447: 1027: 1012: 870: 506: 428:. One elementary use is the reconstruction of a finite vector space from any subspace 54: 17: 5764: 4633: 4436: 2762: 2746: 2722: 495: 89: 73: 4962:
Alternatively and equivalently, one can define the direct sum of the Hilbert spaces
5493: 4929: 3380: 2758: 2757:
of all objects carrying the additional structure. Two prominent examples occur for
1804: 1077: 125: 85: 65: 2741:
If the modules we are considering carry some additional structure (for example, a
5714: 5608: 1623: 1619: 1950:{\displaystyle \tau ^{-1}(\beta )(\alpha )=\sum _{i\in I}\beta (i)(\alpha (i))} 4865: 2797: 1987: 1634: 825: 729:
It is customary to write the elements of an ordered sum not as ordered pairs (
483: 341:
It is customary to write the elements of an ordered sum not as ordered pairs (
31: 5555: 3643: 3362: 3065: 2750: 2465: 2350:
can be written in exactly one way as a sum of finitely many elements of the
2327: 2002: 1602:(which are abelian groups) is naturally isomorphic to the tensor product of 1443: 50: 3337:
The construction described above, as well as Wedderburn's use of the terms
3122:
exploited the concept of a direct sum of algebras in his classification of
4274: 749: 683: 81: 64:
The most familiar examples of this construction occur when considering
5154:{\displaystyle \sum _{i}\left\|\alpha _{(i)}\right\|^{2}<\infty .} 2718: 2715: 5163:
The inner product of two such function α and β is then defined as:
2977:{\displaystyle (x_{1}+y_{1})(x_{2}+y_{2})=(x_{1}x_{2}+y_{1}y_{2}).} 793:
can be written in one and only one way as the sum of an element of
785:
below.) With this identification, it is true that every element of
400:
can be written in one and only one way as the sum of an element of
2142:{\displaystyle i_{k}:A_{k}\mapsto A_{1}\oplus \cdots \oplus A_{n}} 4598:
in which the summation makes sense even for infinite index sets
2714:
The direct sum gives a collection of objects the structure of a
2476:-modules, which means that it is characterized by the following 1505:
is finite, then the direct sum and the direct product are equal.
1015:
is analogous but the indices do not need to cofinitely vanish.)
5485:{\textstyle \|a\|={\sqrt {\sum _{i}\left\|a_{i}\right\|^{2}}}.} 3365:, which (for commutative algebras) actually corresponds to the 2556:{\displaystyle j_{i}:M_{i}\rightarrow \bigoplus _{i\in I}M_{i}} 4404:{\displaystyle \left\{\left(M_{i},b_{i}\right):i\in I\right\}} 2070:{\displaystyle p_{k}:A_{1}\oplus \cdots \oplus A_{n}\to A_{k}} 3176:{\displaystyle \lambda (x\oplus y)=\lambda x\oplus \lambda y} 1570:
is isomorphic to a direct sum of sufficiently many copies of
2384:
is naturally isomorphic to the (external) direct sum of the
1463:, §II.1.7). The direct product is the set of all functions 1198:{\displaystyle (\alpha +\beta )_{i}=\alpha _{i}+\beta _{i}} 99:
for a way to write a module as a direct sum of submodules.
4273:
Note that not every closed subspace is complemented; e.g.
3888:{\displaystyle \sum _{i\in I}\|x(i)\|_{X_{i}}<\infty .} 3256:{\displaystyle \lambda (x,y)=(\lambda x,y)=(x,\lambda y).} 1497:, but not necessarily vanishing for all but finitely many 635:
Integral multiples are similarly defined componentwise by
2214:{\displaystyle i_{1}\circ p_{1}+\cdots +i_{n}\circ p_{n}} 701:
and is usually denoted by a plus symbol inside a circle:
313:
and is usually denoted by a plus symbol inside a circle:
2575:
to those functions which are zero for all arguments but
1581:
distributes over direct sums in the following sense: if
5574:
Pages displaying short descriptions of redirect targets
2672:{\displaystyle f:\bigoplus _{i\in I}M_{i}\rightarrow M} 1589:-module, then the direct sum of the tensor products of 5527:{\displaystyle \mathbb {R} {\text{ or }}\mathbb {C} .} 5427: 4932:. We then define the direct sum of the Hilbert spaces 4618:
because only finitely many of the terms are non-zero.
4082: 1990:
of a direct sum of vector spaces is isomorphic to the
1856:
into the direct sum). The inverse of the homomorphism
1810:
from the left hand side to the right hand side, where
5505: 5392: 5362: 5317: 5279: 5251: 5169: 5100: 5074: 5047: 5018: 4995: 4968: 4938: 4904: 4877: 4687: 4641: 4604: 4469: 4449: 4421: 4345: 4308: 4280: 4250: 4230: 4210: 4190: 4164: 4144: 4047: 4017: 3972: 3934: 3906: 3827: 3801: 3759: 3739: 3717: 3674: 3651: 3628: 3601: 3570: 3544: 3468: 3448: 3428: 3408: 3388: 3272: 3189: 3136: 3080: 3040: 2996: 2860: 2837: 2817: 2630: 2500: 2243: 2155: 2083: 2011: 1866: 1672: 1400: 1370: 1337: 1289: 1223: 1146: 1116: 1090: 976: 936: 903: 707: 438: 319: 5589:
Pages displaying wikidata descriptions as a fallback
5560:
Pages displaying wikidata descriptions as a fallback
30:
For the broader use of the term in mathematics, see
5242:This space is complete and we get a Hilbert space. 4959:to be the completion of this inner product space. 4004:{\displaystyle \bigoplus _{i\in \mathbb {N} }X_{i}} 2768:In some classical texts, the phrase "direct sum of 1072:. These functions can equivalently be regarded as 473:{\displaystyle \mathbb {R} ^{n}=W\oplus W^{\perp }} 392:below.) With this identification, every element of 5658:, University Mathematical Texts, Oliver and Boyd, 5526: 5484: 5413: 5378: 5348: 5303: 5265: 5232: 5153: 5086: 5060: 5033: 5004: 4981: 4951: 4916: 4890: 4854: 4673: 4610: 4590: 4455: 4427: 4403: 4324: 4293: 4265: 4236: 4216: 4196: 4170: 4150: 4128: 4068: 4033: 4003: 3958: 3920: 3887: 3813: 3787: 3745: 3723: 3703: 3660: 3634: 3614: 3585: 3556: 3530: 3454: 3434: 3414: 3394: 3322: 3255: 3175: 3099: 3056: 3012: 2976: 2851:is the direct sum as vector spaces, with product 2843: 2823: 2671: 2555: 2269: 2213: 2141: 2069: 1949: 1795: 1421: 1386: 1356: 1321: 1267: 1197: 1129: 1102: 995: 962: 922: 719: 472: 331: 146:can be given the structure of a vector space over 84:). The construction may also be extended to cover 1727: 1688: 897:} is then defined to be the set of all sequences 154:, §18) by defining the operations componentwise: 103:Construction for vector spaces and abelian groups 5617:Ergebnisse der Mathematik und ihrer Grenzgebiete 5349:{\displaystyle \oplus _{i\in \mathbb {N} }X_{i}} 3266:uses the three direct sums above, denoting them 3100:{\displaystyle \mathbf {H} \oplus \mathbf {H} ,} 518: 5572: – Decomposition of an algebraic structure 4129:{\textstyle \|a\|=\sum _{i}\left|a_{i}\right|.} 3057:{\displaystyle \mathbf {C} \oplus \mathbf {C} } 3013:{\displaystyle \mathbf {R} \oplus \mathbf {R} } 2737:Direct sum of modules with additional structure 832:Construction for an arbitrary family of modules 3345:follow a different convention than the one in 1986:, and so the sum is finite.In particular, the 5699:, Englewood Cliffs, NJ: Prentice Hall, Inc., 3531:{\displaystyle \|(x,y)\|=\|x\|_{X}+\|y\|_{Y}} 1279:. In this way, the direct sum becomes a left 1268:{\displaystyle r(\alpha )_{i}=(r\alpha )_{i}} 824:This construction readily generalises to any 482:This construction readily generalizes to any 8: 5695:Dummit, David S.; Foote, Richard M. (1991), 5434: 5428: 5224: 5198: 5182: 5170: 4989:as the space of all functions α with domain 4846: 4820: 4808: 4782: 4443:is the module direct sum with bilinear form 4089: 4083: 3860: 3844: 3519: 3512: 3500: 3493: 3487: 3469: 1521:. With these identifications, every element 3462:considered as vector spaces, with the norm 3332:Clifford Algebras and the Classical Groups 2077:are the canonical projection mappings and 1970:. The key point is that the definition of 689:The resulting abelian group is called the 5517: 5516: 5511: 5507: 5506: 5504: 5471: 5461: 5446: 5440: 5426: 5401: 5391: 5367: 5361: 5340: 5330: 5329: 5322: 5316: 5294: 5293: 5284: 5278: 5259: 5258: 5250: 5218: 5205: 5192: 5168: 5136: 5120: 5105: 5099: 5073: 5052: 5046: 5017: 4994: 4973: 4967: 4943: 4937: 4903: 4882: 4876: 4840: 4827: 4802: 4789: 4763: 4744: 4721: 4702: 4686: 4665: 4646: 4640: 4603: 4577: 4564: 4559: 4549: 4533: 4510: 4505: 4487: 4482: 4477: 4468: 4448: 4420: 4373: 4360: 4344: 4335:Direct sum of modules with bilinear forms 4313: 4307: 4285: 4279: 4249: 4229: 4209: 4189: 4163: 4143: 4113: 4099: 4081: 4056: 4046: 4022: 4016: 3995: 3985: 3984: 3977: 3971: 3949: 3948: 3939: 3933: 3914: 3913: 3905: 3868: 3863: 3832: 3826: 3800: 3779: 3758: 3738: 3716: 3695: 3679: 3673: 3650: 3627: 3606: 3600: 3569: 3543: 3522: 3503: 3467: 3447: 3427: 3407: 3387: 3308: 3292: 3276: 3271: 3188: 3135: 3089: 3081: 3079: 3049: 3041: 3039: 3005: 2997: 2995: 2962: 2952: 2939: 2929: 2910: 2897: 2881: 2868: 2859: 2836: 2816: 2776:that is presently more commonly called a 2657: 2641: 2629: 2547: 2531: 2518: 2505: 2499: 2261: 2248: 2242: 2205: 2192: 2173: 2160: 2154: 2133: 2114: 2101: 2088: 2082: 2061: 2048: 2029: 2016: 2010: 1905: 1871: 1865: 1773: 1755: 1739: 1726: 1725: 1713: 1697: 1687: 1686: 1677: 1671: 1413: 1399: 1378: 1369: 1345: 1336: 1322:{\displaystyle \bigoplus _{i\in I}M_{i}.} 1310: 1294: 1288: 1259: 1237: 1222: 1189: 1176: 1163: 1145: 1121: 1115: 1089: 981: 975: 954: 941: 935: 911: 902: 706: 464: 445: 441: 440: 437: 420:is equal to the sum of the dimensions of 318: 301:The resulting vector space is called the 45:is a construction which combines several 3711:is a module consisting of all functions 3704:{\displaystyle \bigoplus _{i\in I}X_{i}} 3622:is a collection of Banach spaces, where 1460: 842: 780: 5600: 3330:as rings of scalars in his analysis of 2394: 5245:For example, if we take the index set 3900:For example, if we take the index set 3323:{\displaystyle ^{2}R,\ ^{2}C,\ ^{2}H,} 2772:" is also introduced for denoting the 2377: 1331:It is customary to write the sequence 151: 3349:. In categorical terms, Wedderburn's 2416:if there exists some other submodule 1471:to the disjoint union of the modules 7: 5492:Comparing this with the example for 5386:which consists of all the sequences 4244:is equal to the internal direct sum 4184:if there is another closed subspace 4041:which consists of all the sequences 1982:) is zero for all but finitely many 963:{\displaystyle \alpha _{i}\in M_{i}} 813:is equal to the sum of the ranks of 5304:{\displaystyle X_{i}=\mathbb {R} ,} 4674:{\displaystyle H_{1},\ldots ,H_{n}} 3959:{\displaystyle X_{i}=\mathbb {R} ,} 2987:Consider these classical examples: 490:Construction for two abelian groups 5678:Elements of mathematics, Algebra I 5414:{\displaystyle \left(a_{i}\right)} 5145: 4871:If infinitely many Hilbert spaces 4314: 4069:{\displaystyle \left(a_{i}\right)} 3879: 2617:, then there exists precisely one 1847:) (using the natural inclusion of 1566:Every vector space over the field 505:which are written additively, the 112:Construction for two vector spaces 25: 2725:. This extension is known as the 2149:are the inclusion mappings, then 1961:in the direct sum of the modules 1637:from the direct sum to some left 1422:{\displaystyle \sum '\alpha _{i}} 432:and its orthogonal complement: 5719:Finite dimensional vector spaces 4325:{\displaystyle \ell ^{\infty }.} 3090: 3082: 3050: 3042: 3006: 2998: 2294:, and is the zero map otherwise. 2270:{\displaystyle p_{k}\circ i_{l}} 2221:equals the identity morphism of 1387:{\displaystyle \sum \alpha _{i}} 4928:and it will not necessarily be 1645:is naturally isomorphic to the 1394:. Sometimes a primed summation 5544:Lindenstrauss–Tzafriri theorem 5467: 5454: 5266:{\displaystyle I=\mathbb {N} } 5132: 5127: 5121: 5113: 5028: 5022: 3921:{\displaystyle I=\mathbb {N} } 3856: 3850: 3769: 3763: 3484: 3472: 3363:coproduct (or categorical sum) 3247: 3232: 3226: 3211: 3205: 3193: 3152: 3140: 2968: 2922: 2916: 2890: 2887: 2861: 2663: 2524: 2107: 2054: 1944: 1941: 1935: 1929: 1926: 1920: 1895: 1889: 1886: 1880: 1351: 1338: 1256: 1246: 1234: 1227: 1160: 1147: 917: 904: 1: 3788:{\displaystyle x(i)\in X_{i}} 1994:of the duals of those spaces. 1826:-linear homomorphism sending 1357:{\displaystyle (\alpha _{i})} 996:{\displaystyle \alpha _{i}=0} 923:{\displaystyle (\alpha _{i})} 767:and is often identified with 517:is also called a direct sum ( 376:and is often identified with 27:Operation in abstract algebra 5656:Elementary rings and modules 5581: – Mathematical theorem 4622:Direct sum of Hilbert spaces 2566:which sends the elements of 2277:is the identity morphism of 519:Mac Lane & Birkhoff 1999 3373:Direct sum of Banach spaces 2001:direct sum of modules is a 1803:Indeed, there is clearly a 1653:-linear homomorphisms from 1606:with the direct sum of the 1555:. The same is true for the 1283:-module, and it is denoted 5792: 5421:of reals with finite norm 5379:{\displaystyle \ell _{2},} 5034:{\displaystyle \alpha (i)} 4625: 4266:{\displaystyle A\oplus B.} 4076:of reals with finite norm 4034:{\displaystyle \ell _{1},} 3367:tensor product of algebras 2780:of algebras; that is, the 2302: 1018:It can also be defined as 828:number of abelian groups. 29: 5611:; Husemoller, D. (1973). 4435:of modules equipped with 1649:of the abelian groups of 1429:is used to indicate that 720:{\displaystyle G\oplus H} 486:number of vector spaces. 332:{\displaystyle V\oplus W} 97:decomposition of a module 5613:Symmetric Bilinear Forms 3113:William Kingdon Clifford 2790:componentwise operations 2472:in the category of left 2450:complementary submodules 877:-modules indexed by the 4302:is not complemented in 3586:{\displaystyle y\in Y.} 2613:-linear maps for every 2305:Internal direct product 1433:of the terms are zero. 76:(modules over the ring 5528: 5486: 5415: 5380: 5350: 5305: 5267: 5234: 5155: 5088: 5087:{\displaystyle i\in I} 5062: 5035: 5006: 4983: 4953: 4918: 4917:{\displaystyle i\in I} 4892: 4856: 4675: 4612: 4592: 4457: 4429: 4405: 4326: 4295: 4267: 4238: 4218: 4198: 4172: 4152: 4130: 4070: 4035: 4005: 3960: 3922: 3889: 3815: 3814:{\displaystyle i\in I} 3789: 3747: 3725: 3705: 3662: 3636: 3616: 3587: 3558: 3557:{\displaystyle x\in X} 3532: 3456: 3436: 3416: 3396: 3379:The direct sum of two 3357:, whilst Wedderburn's 3324: 3257: 3177: 3101: 3058: 3014: 2978: 2845: 2825: 2804:Direct sum of algebras 2673: 2557: 2464:, the direct sum is a 2380:, §18). In this case, 2271: 2215: 2143: 2071: 1951: 1797: 1557:rank of abelian groups 1423: 1388: 1358: 1323: 1269: 1199: 1131: 1104: 1103:{\displaystyle i\in I} 1084:, with the fiber over 997: 964: 924: 771:; similarly for {0} × 721: 474: 380:; similarly for {0} × 333: 18:Complementary subspace 5579:Krull–Schmidt theorem 5570:Jordan–Hölder theorem 5565:Indecomposable module 5540:orthogonal complement 5538:because it admits an 5529: 5487: 5416: 5381: 5351: 5306: 5268: 5235: 5156: 5089: 5063: 5061:{\displaystyle H_{i}} 5036: 5007: 4984: 4982:{\displaystyle H_{i}} 4954: 4952:{\displaystyle H_{i}} 4919: 4893: 4891:{\displaystyle H_{i}} 4857: 4676: 4626:Further information: 4613: 4593: 4458: 4441:orthogonal direct sum 4430: 4406: 4327: 4296: 4294:{\displaystyle c_{0}} 4268: 4239: 4219: 4199: 4173: 4153: 4131: 4071: 4036: 4006: 3961: 3923: 3890: 3816: 3790: 3748: 3726: 3706: 3663: 3637: 3617: 3615:{\displaystyle X_{i}} 3588: 3559: 3533: 3457: 3437: 3422:is the direct sum of 3417: 3397: 3325: 3258: 3178: 3102: 3059: 3026:split-complex numbers 3015: 2979: 2846: 2826: 2770:algebras over a field 2674: 2558: 2272: 2216: 2144: 2072: 1952: 1798: 1629:The abelian group of 1424: 1389: 1359: 1324: 1270: 1200: 1132: 1130:{\displaystyle M_{i}} 1105: 998: 965: 925: 722: 475: 334: 5585:Split exact sequence 5503: 5425: 5390: 5360: 5315: 5311:then the direct sum 5277: 5249: 5167: 5098: 5072: 5045: 5016: 4993: 4966: 4936: 4902: 4875: 4685: 4639: 4602: 4467: 4447: 4419: 4343: 4306: 4278: 4248: 4228: 4208: 4188: 4162: 4142: 4080: 4045: 4015: 3970: 3966:then the direct sum 3932: 3904: 3825: 3799: 3757: 3737: 3715: 3672: 3668:then the direct sum 3649: 3626: 3599: 3568: 3542: 3466: 3446: 3426: 3406: 3386: 3270: 3187: 3134: 3128:Lectures on Matrices 3124:hypercomplex numbers 3111:, was introduced by 3078: 3038: 2994: 2858: 2835: 2815: 2798:direct sums of rings 2628: 2498: 2241: 2153: 2081: 2009: 1974:makes sense because 1864: 1670: 1635:linear homomorphisms 1508:Each of the modules 1442:The direct sum is a 1398: 1368: 1335: 1287: 1221: 1144: 1114: 1088: 974: 934: 901: 705: 436: 317: 53:. Contrast with the 5680:, Springer-Verlag, 5542:. Conversely, the 4926:inner product space 3355:categorical product 3109:split-biquaternions 2774:algebraic structure 2753:in the appropriate 2460:In the language of 2365:internal direct sum 2359:, then we say that 2299:Internal direct sum 1501:. If the index set 1080:over the index set 782:internal direct sum 390:internal direct sum 5524: 5482: 5451: 5411: 5376: 5346: 5301: 5263: 5230: 5197: 5151: 5110: 5084: 5058: 5031: 5005:{\displaystyle I,} 5002: 4979: 4949: 4914: 4888: 4852: 4671: 4608: 4588: 4544: 4453: 4425: 4401: 4322: 4291: 4263: 4234: 4214: 4194: 4168: 4158:of a Banach space 4148: 4138:A closed subspace 4126: 4104: 4066: 4031: 4001: 3990: 3956: 3918: 3885: 3843: 3811: 3785: 3743: 3721: 3701: 3690: 3661:{\displaystyle I,} 3658: 3632: 3612: 3583: 3554: 3528: 3452: 3432: 3412: 3392: 3320: 3253: 3173: 3097: 3064:is the algebra of 3054: 3010: 2974: 2841: 2821: 2796:and the remark on 2731:universal property 2727:Grothendieck group 2710:Grothendieck group 2669: 2652: 2553: 2542: 2478:universal property 2456:Universal property 2393:as defined above ( 2367:of the submodules 2267: 2211: 2139: 2067: 1947: 1916: 1793: 1750: 1708: 1419: 1384: 1354: 1319: 1305: 1265: 1195: 1127: 1100: 1074:finitely supported 993: 960: 920: 797:and an element of 717: 521:, §V.6). Thus the 470: 404:and an element of 329: 5674:Bourbaki, Nicolas 5514: 5477: 5442: 5188: 5101: 5041:is an element of 4632:If finitely many 4611:{\displaystyle I} 4529: 4456:{\displaystyle B} 4428:{\displaystyle I} 4237:{\displaystyle X} 4217:{\displaystyle X} 4197:{\displaystyle B} 4171:{\displaystyle X} 4151:{\displaystyle A} 4095: 3973: 3828: 3746:{\displaystyle I} 3724:{\displaystyle x} 3675: 3635:{\displaystyle i} 3455:{\displaystyle Y} 3435:{\displaystyle X} 3415:{\displaystyle Y} 3395:{\displaystyle X} 3307: 3291: 3120:Joseph Wedderburn 3030:interval analysis 2844:{\displaystyle Y} 2824:{\displaystyle X} 2782:Cartesian product 2637: 2527: 2490:natural embedding 1988:dual vector space 1901: 1735: 1693: 1561:length of modules 1290: 763:is isomorphic to 523:Cartesian product 372:is isomorphic to 137:cartesian product 16:(Redirected from 5783: 5756: 5731: 5709: 5697:Abstract algebra 5690: 5668: 5652:Adamson, Iain T. 5643: 5642: 5623:. pp. 4–5. 5619:. Vol. 73. 5605: 5590: 5575: 5561: 5533: 5531: 5530: 5525: 5520: 5515: 5512: 5510: 5491: 5489: 5488: 5483: 5478: 5476: 5475: 5470: 5466: 5465: 5450: 5441: 5420: 5418: 5417: 5412: 5410: 5406: 5405: 5385: 5383: 5382: 5377: 5372: 5371: 5355: 5353: 5352: 5347: 5345: 5344: 5335: 5334: 5333: 5310: 5308: 5307: 5302: 5297: 5289: 5288: 5272: 5270: 5269: 5264: 5262: 5239: 5237: 5236: 5231: 5223: 5222: 5210: 5209: 5196: 5160: 5158: 5157: 5152: 5141: 5140: 5135: 5131: 5130: 5109: 5093: 5091: 5090: 5085: 5067: 5065: 5064: 5059: 5057: 5056: 5040: 5038: 5037: 5032: 5011: 5009: 5008: 5003: 4988: 4986: 4985: 4980: 4978: 4977: 4958: 4956: 4955: 4950: 4948: 4947: 4923: 4921: 4920: 4915: 4897: 4895: 4894: 4889: 4887: 4886: 4861: 4859: 4858: 4853: 4845: 4844: 4832: 4831: 4807: 4806: 4794: 4793: 4778: 4774: 4773: 4769: 4768: 4767: 4749: 4748: 4731: 4727: 4726: 4725: 4707: 4706: 4680: 4678: 4677: 4672: 4670: 4669: 4651: 4650: 4617: 4615: 4614: 4609: 4597: 4595: 4594: 4589: 4587: 4583: 4582: 4581: 4569: 4568: 4554: 4553: 4543: 4525: 4521: 4520: 4516: 4515: 4514: 4497: 4493: 4492: 4491: 4462: 4460: 4459: 4454: 4434: 4432: 4431: 4426: 4410: 4408: 4407: 4402: 4400: 4396: 4383: 4379: 4378: 4377: 4365: 4364: 4331: 4329: 4328: 4323: 4318: 4317: 4300: 4298: 4297: 4292: 4290: 4289: 4272: 4270: 4269: 4264: 4243: 4241: 4240: 4235: 4223: 4221: 4220: 4215: 4203: 4201: 4200: 4195: 4177: 4175: 4174: 4169: 4157: 4155: 4154: 4149: 4135: 4133: 4132: 4127: 4122: 4118: 4117: 4103: 4075: 4073: 4072: 4067: 4065: 4061: 4060: 4040: 4038: 4037: 4032: 4027: 4026: 4010: 4008: 4007: 4002: 4000: 3999: 3989: 3988: 3965: 3963: 3962: 3957: 3952: 3944: 3943: 3927: 3925: 3924: 3919: 3917: 3894: 3892: 3891: 3886: 3875: 3874: 3873: 3872: 3842: 3820: 3818: 3817: 3812: 3794: 3792: 3791: 3786: 3784: 3783: 3752: 3750: 3749: 3744: 3730: 3728: 3727: 3722: 3710: 3708: 3707: 3702: 3700: 3699: 3689: 3667: 3665: 3664: 3659: 3641: 3639: 3638: 3633: 3621: 3619: 3618: 3613: 3611: 3610: 3592: 3590: 3589: 3584: 3563: 3561: 3560: 3555: 3537: 3535: 3534: 3529: 3527: 3526: 3508: 3507: 3461: 3459: 3458: 3453: 3441: 3439: 3438: 3433: 3421: 3419: 3418: 3413: 3401: 3399: 3398: 3393: 3329: 3327: 3326: 3321: 3313: 3312: 3305: 3297: 3296: 3289: 3281: 3280: 3262: 3260: 3259: 3254: 3182: 3180: 3179: 3174: 3106: 3104: 3103: 3098: 3093: 3085: 3063: 3061: 3060: 3055: 3053: 3045: 3019: 3017: 3016: 3011: 3009: 3001: 2983: 2981: 2980: 2975: 2967: 2966: 2957: 2956: 2944: 2943: 2934: 2933: 2915: 2914: 2902: 2901: 2886: 2885: 2873: 2872: 2850: 2848: 2847: 2842: 2830: 2828: 2827: 2822: 2808:A direct sum of 2678: 2676: 2675: 2670: 2662: 2661: 2651: 2583:be an arbitrary 2562: 2560: 2559: 2554: 2552: 2551: 2541: 2523: 2522: 2510: 2509: 2440:. In this case, 2276: 2274: 2273: 2268: 2266: 2265: 2253: 2252: 2220: 2218: 2217: 2212: 2210: 2209: 2197: 2196: 2178: 2177: 2165: 2164: 2148: 2146: 2145: 2140: 2138: 2137: 2119: 2118: 2106: 2105: 2093: 2092: 2076: 2074: 2073: 2068: 2066: 2065: 2053: 2052: 2034: 2033: 2021: 2020: 1956: 1954: 1953: 1948: 1915: 1879: 1878: 1802: 1800: 1799: 1794: 1789: 1785: 1778: 1777: 1760: 1759: 1749: 1731: 1730: 1718: 1717: 1707: 1692: 1691: 1682: 1681: 1618:Direct sums are 1428: 1426: 1425: 1420: 1418: 1417: 1408: 1393: 1391: 1390: 1385: 1383: 1382: 1363: 1361: 1360: 1355: 1350: 1349: 1328: 1326: 1325: 1320: 1315: 1314: 1304: 1274: 1272: 1271: 1266: 1264: 1263: 1242: 1241: 1204: 1202: 1201: 1196: 1194: 1193: 1181: 1180: 1168: 1167: 1136: 1134: 1133: 1128: 1126: 1125: 1109: 1107: 1106: 1101: 1076:sections of the 1002: 1000: 999: 994: 986: 985: 969: 967: 966: 961: 959: 958: 946: 945: 929: 927: 926: 921: 916: 915: 852:be a ring, and { 737:), but as a sum 726: 724: 723: 718: 479: 477: 476: 471: 469: 468: 450: 449: 444: 349:), but as a sum 338: 336: 335: 330: 95:See the article 68:(modules over a 39:abstract algebra 21: 5791: 5790: 5786: 5785: 5784: 5782: 5781: 5780: 5761: 5760: 5754: 5746:, AMS Chelsea, 5734: 5729: 5713: 5707: 5694: 5688: 5672: 5666: 5650: 5647: 5646: 5631: 5621:Springer-Verlag 5607: 5606: 5602: 5597: 5588: 5573: 5559: 5552: 5501: 5500: 5457: 5453: 5452: 5423: 5422: 5397: 5393: 5388: 5387: 5363: 5358: 5357: 5336: 5318: 5313: 5312: 5280: 5275: 5274: 5247: 5246: 5214: 5201: 5165: 5164: 5116: 5112: 5111: 5096: 5095: 5070: 5069: 5048: 5043: 5042: 5014: 5013: 4991: 4990: 4969: 4964: 4963: 4939: 4934: 4933: 4900: 4899: 4878: 4873: 4872: 4836: 4823: 4798: 4785: 4759: 4740: 4739: 4735: 4717: 4698: 4697: 4693: 4692: 4688: 4683: 4682: 4661: 4642: 4637: 4636: 4630: 4624: 4600: 4599: 4573: 4560: 4555: 4545: 4506: 4501: 4483: 4478: 4473: 4465: 4464: 4445: 4444: 4417: 4416: 4369: 4356: 4355: 4351: 4350: 4346: 4341: 4340: 4337: 4309: 4304: 4303: 4281: 4276: 4275: 4246: 4245: 4226: 4225: 4206: 4205: 4186: 4185: 4160: 4159: 4140: 4139: 4109: 4105: 4078: 4077: 4052: 4048: 4043: 4042: 4018: 4013: 4012: 3991: 3968: 3967: 3935: 3930: 3929: 3902: 3901: 3864: 3859: 3823: 3822: 3797: 3796: 3775: 3755: 3754: 3735: 3734: 3713: 3712: 3691: 3670: 3669: 3647: 3646: 3624: 3623: 3602: 3597: 3596: 3566: 3565: 3540: 3539: 3518: 3499: 3464: 3463: 3444: 3443: 3424: 3423: 3404: 3403: 3384: 3383: 3375: 3347:category theory 3304: 3288: 3273: 3268: 3267: 3264:Ian R. Porteous 3185: 3184: 3132: 3131: 3076: 3075: 3036: 3035: 3028:, also used in 3022:ring isomorphic 2992: 2991: 2958: 2948: 2935: 2925: 2906: 2893: 2877: 2864: 2856: 2855: 2833: 2832: 2813: 2812: 2806: 2786:underlying sets 2739: 2712: 2701: 2691: 2653: 2626: 2625: 2604: 2595: 2574: 2543: 2514: 2501: 2496: 2495: 2488:, consider the 2462:category theory 2458: 2392: 2375: 2358: 2325: 2307: 2301: 2285: 2257: 2244: 2239: 2238: 2236: 2227: 2201: 2188: 2169: 2156: 2151: 2150: 2129: 2110: 2097: 2084: 2079: 2078: 2057: 2044: 2025: 2012: 2007: 2006: 1969: 1867: 1862: 1861: 1855: 1838: 1769: 1768: 1764: 1751: 1709: 1673: 1668: 1667: 1661: 1614: 1601: 1554: 1545: 1533: 1516: 1496: 1479: 1458: 1450:of the modules 1439: 1431:cofinitely many 1409: 1401: 1396: 1395: 1374: 1366: 1365: 1341: 1333: 1332: 1306: 1285: 1284: 1255: 1233: 1219: 1218: 1185: 1172: 1159: 1142: 1141: 1117: 1112: 1111: 1086: 1085: 1066:cofinitely many 1051: 1038: 1030:of the modules 1005:cofinitely many 977: 972: 971: 950: 937: 932: 931: 907: 899: 898: 896: 860: 834: 703: 702: 627: 620: 609: 602: 591: 584: 577: 570: 563: 556: 549: 542: 492: 460: 439: 434: 433: 315: 314: 285: 278: 263: 256: 213: 206: 199: 192: 185: 178: 171: 164: 114: 105: 57:, which is the 35: 28: 23: 22: 15: 12: 11: 5: 5789: 5787: 5779: 5778: 5773: 5771:Linear algebra 5763: 5762: 5759: 5758: 5752: 5732: 5727: 5711: 5705: 5692: 5686: 5670: 5664: 5645: 5644: 5629: 5599: 5598: 5596: 5593: 5592: 5591: 5582: 5576: 5567: 5562: 5551: 5548: 5523: 5519: 5513: or  5509: 5481: 5474: 5469: 5464: 5460: 5456: 5449: 5445: 5439: 5436: 5433: 5430: 5409: 5404: 5400: 5396: 5375: 5370: 5366: 5343: 5339: 5332: 5328: 5325: 5321: 5300: 5296: 5292: 5287: 5283: 5261: 5257: 5254: 5229: 5226: 5221: 5217: 5213: 5208: 5204: 5200: 5195: 5191: 5187: 5184: 5181: 5178: 5175: 5172: 5150: 5147: 5144: 5139: 5134: 5129: 5126: 5123: 5119: 5115: 5108: 5104: 5083: 5080: 5077: 5055: 5051: 5030: 5027: 5024: 5021: 5001: 4998: 4976: 4972: 4946: 4942: 4913: 4910: 4907: 4885: 4881: 4851: 4848: 4843: 4839: 4835: 4830: 4826: 4822: 4819: 4816: 4813: 4810: 4805: 4801: 4797: 4792: 4788: 4784: 4781: 4777: 4772: 4766: 4762: 4758: 4755: 4752: 4747: 4743: 4738: 4734: 4730: 4724: 4720: 4716: 4713: 4710: 4705: 4701: 4696: 4691: 4668: 4664: 4660: 4657: 4654: 4649: 4645: 4634:Hilbert spaces 4623: 4620: 4607: 4586: 4580: 4576: 4572: 4567: 4563: 4558: 4552: 4548: 4542: 4539: 4536: 4532: 4528: 4524: 4519: 4513: 4509: 4504: 4500: 4496: 4490: 4486: 4481: 4476: 4472: 4452: 4437:bilinear forms 4424: 4399: 4395: 4392: 4389: 4386: 4382: 4376: 4372: 4368: 4363: 4359: 4354: 4349: 4336: 4333: 4321: 4316: 4312: 4288: 4284: 4262: 4259: 4256: 4253: 4233: 4213: 4193: 4167: 4147: 4125: 4121: 4116: 4112: 4108: 4102: 4098: 4094: 4091: 4088: 4085: 4064: 4059: 4055: 4051: 4030: 4025: 4021: 3998: 3994: 3987: 3983: 3980: 3976: 3955: 3951: 3947: 3942: 3938: 3916: 3912: 3909: 3884: 3881: 3878: 3871: 3867: 3862: 3858: 3855: 3852: 3849: 3846: 3841: 3838: 3835: 3831: 3810: 3807: 3804: 3782: 3778: 3774: 3771: 3768: 3765: 3762: 3742: 3720: 3698: 3694: 3688: 3685: 3682: 3678: 3657: 3654: 3642:traverses the 3631: 3609: 3605: 3595:Generally, if 3582: 3579: 3576: 3573: 3553: 3550: 3547: 3525: 3521: 3517: 3514: 3511: 3506: 3502: 3498: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3474: 3471: 3451: 3431: 3411: 3391: 3374: 3371: 3360: 3359:direct product 3352: 3344: 3343:direct product 3340: 3319: 3316: 3311: 3303: 3300: 3295: 3287: 3284: 3279: 3275: 3252: 3249: 3246: 3243: 3240: 3237: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3210: 3207: 3204: 3201: 3198: 3195: 3192: 3172: 3169: 3166: 3163: 3160: 3157: 3154: 3151: 3148: 3145: 3142: 3139: 3117: 3116: 3096: 3092: 3088: 3084: 3073: 3068:introduced by 3052: 3048: 3044: 3033: 3008: 3004: 3000: 2985: 2984: 2973: 2970: 2965: 2961: 2955: 2951: 2947: 2942: 2938: 2932: 2928: 2924: 2921: 2918: 2913: 2909: 2905: 2900: 2896: 2892: 2889: 2884: 2880: 2876: 2871: 2867: 2863: 2840: 2820: 2805: 2802: 2794:see note below 2778:direct product 2763:Hilbert spaces 2738: 2735: 2711: 2708: 2697: 2689: 2680: 2679: 2668: 2665: 2660: 2656: 2650: 2647: 2644: 2640: 2636: 2633: 2600: 2591: 2570: 2564: 2563: 2550: 2546: 2540: 2537: 2534: 2530: 2526: 2521: 2517: 2513: 2508: 2504: 2457: 2454: 2432:direct sum of 2410:direct summand 2388: 2371: 2354: 2321: 2300: 2297: 2296: 2295: 2281: 2264: 2260: 2256: 2251: 2247: 2232: 2225: 2208: 2204: 2200: 2195: 2191: 2187: 2184: 2181: 2176: 2172: 2168: 2163: 2159: 2136: 2132: 2128: 2125: 2122: 2117: 2113: 2109: 2104: 2100: 2096: 2091: 2087: 2064: 2060: 2056: 2051: 2047: 2043: 2040: 2037: 2032: 2028: 2024: 2019: 2015: 1995: 1992:direct product 1965: 1946: 1943: 1940: 1937: 1934: 1931: 1928: 1925: 1922: 1919: 1914: 1911: 1908: 1904: 1900: 1897: 1894: 1891: 1888: 1885: 1882: 1877: 1874: 1870: 1860:is defined by 1851: 1834: 1792: 1788: 1784: 1781: 1776: 1772: 1767: 1763: 1758: 1754: 1748: 1745: 1742: 1738: 1734: 1729: 1724: 1721: 1716: 1712: 1706: 1703: 1700: 1696: 1690: 1685: 1680: 1676: 1657: 1647:direct product 1627: 1616: 1610: 1597: 1585:is some right 1579:tensor product 1575: 1564: 1550: 1541: 1535: 1529: 1512: 1506: 1492: 1475: 1454: 1448:direct product 1438: 1435: 1416: 1412: 1407: 1404: 1381: 1377: 1373: 1353: 1348: 1344: 1340: 1318: 1313: 1309: 1303: 1300: 1297: 1293: 1262: 1258: 1254: 1251: 1248: 1245: 1240: 1236: 1232: 1229: 1226: 1192: 1188: 1184: 1179: 1175: 1171: 1166: 1162: 1158: 1155: 1152: 1149: 1124: 1120: 1099: 1096: 1093: 1047: 1043:) ∈  1034: 1028:disjoint union 1013:direct product 992: 989: 984: 980: 957: 953: 949: 944: 940: 919: 914: 910: 906: 892: 856: 833: 830: 716: 713: 710: 660: 659: 625: 618: 607: 600: 594: 593: 589: 582: 575: 568: 561: 554: 547: 540: 507:direct product 496:abelian groups 491: 488: 467: 463: 459: 456: 453: 448: 443: 328: 325: 322: 283: 276: 261: 254: 244: 243: 215: 211: 204: 197: 190: 183: 176: 169: 162: 113: 110: 104: 101: 90:Hilbert spaces 74:abelian groups 55:direct product 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5788: 5777: 5776:Module theory 5774: 5772: 5769: 5768: 5766: 5755: 5753:0-8218-1646-2 5749: 5745: 5741: 5737: 5733: 5730: 5728:0-387-90093-4 5724: 5720: 5716: 5712: 5708: 5706:0-13-004771-6 5702: 5698: 5693: 5689: 5687:3-540-64243-9 5683: 5679: 5675: 5671: 5667: 5665:0-05-002192-3 5661: 5657: 5653: 5649: 5648: 5640: 5636: 5632: 5630:3-540-06009-X 5626: 5622: 5618: 5614: 5610: 5604: 5601: 5594: 5586: 5583: 5580: 5577: 5571: 5568: 5566: 5563: 5557: 5554: 5553: 5549: 5547: 5545: 5541: 5537: 5521: 5497: 5495: 5494:Banach spaces 5479: 5472: 5462: 5458: 5447: 5443: 5437: 5431: 5407: 5402: 5398: 5394: 5373: 5368: 5364: 5356:is the space 5341: 5337: 5326: 5323: 5319: 5298: 5290: 5285: 5281: 5255: 5252: 5243: 5240: 5227: 5219: 5215: 5211: 5206: 5202: 5193: 5189: 5185: 5179: 5176: 5173: 5161: 5148: 5142: 5137: 5124: 5117: 5106: 5102: 5081: 5078: 5075: 5053: 5049: 5025: 5019: 4999: 4996: 4974: 4970: 4960: 4944: 4940: 4931: 4927: 4911: 4908: 4905: 4883: 4879: 4869: 4867: 4862: 4849: 4841: 4837: 4833: 4828: 4824: 4817: 4814: 4811: 4803: 4799: 4795: 4790: 4786: 4779: 4775: 4770: 4764: 4760: 4756: 4753: 4750: 4745: 4741: 4736: 4732: 4728: 4722: 4718: 4714: 4711: 4708: 4703: 4699: 4694: 4689: 4666: 4662: 4658: 4655: 4652: 4647: 4643: 4635: 4629: 4621: 4619: 4605: 4584: 4578: 4574: 4570: 4565: 4561: 4556: 4550: 4546: 4540: 4537: 4534: 4530: 4526: 4522: 4517: 4511: 4507: 4502: 4498: 4494: 4488: 4484: 4479: 4474: 4470: 4450: 4442: 4438: 4422: 4414: 4397: 4393: 4390: 4387: 4384: 4380: 4374: 4370: 4366: 4361: 4357: 4352: 4347: 4334: 4332: 4319: 4310: 4301: 4286: 4282: 4260: 4257: 4254: 4251: 4231: 4211: 4191: 4183: 4182: 4165: 4145: 4136: 4123: 4119: 4114: 4110: 4106: 4100: 4096: 4092: 4086: 4062: 4057: 4053: 4049: 4028: 4023: 4019: 4011:is the space 3996: 3992: 3981: 3978: 3974: 3953: 3945: 3940: 3936: 3910: 3907: 3898: 3895: 3882: 3876: 3869: 3865: 3853: 3847: 3839: 3836: 3833: 3829: 3808: 3805: 3802: 3780: 3776: 3772: 3766: 3760: 3740: 3733: 3718: 3696: 3692: 3686: 3683: 3680: 3676: 3655: 3652: 3645: 3629: 3607: 3603: 3593: 3580: 3577: 3574: 3571: 3551: 3548: 3545: 3523: 3515: 3509: 3504: 3496: 3490: 3481: 3478: 3475: 3449: 3429: 3409: 3389: 3382: 3381:Banach spaces 3377: 3372: 3370: 3368: 3364: 3358: 3356: 3350: 3348: 3342: 3338: 3335: 3333: 3317: 3314: 3309: 3301: 3298: 3293: 3285: 3282: 3277: 3274: 3265: 3250: 3244: 3241: 3238: 3235: 3229: 3223: 3220: 3217: 3214: 3208: 3202: 3199: 3196: 3190: 3170: 3167: 3164: 3161: 3158: 3155: 3149: 3146: 3143: 3137: 3129: 3125: 3121: 3114: 3110: 3094: 3086: 3074: 3071: 3067: 3046: 3034: 3031: 3027: 3023: 3002: 2990: 2989: 2988: 2971: 2963: 2959: 2953: 2949: 2945: 2940: 2936: 2930: 2926: 2919: 2911: 2907: 2903: 2898: 2894: 2882: 2878: 2874: 2869: 2865: 2854: 2853: 2852: 2838: 2818: 2811: 2803: 2801: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2766: 2764: 2760: 2759:Banach spaces 2756: 2752: 2748: 2747:inner product 2744: 2736: 2734: 2732: 2728: 2724: 2723:abelian group 2720: 2717: 2709: 2707: 2705: 2700: 2696: 2692: 2685: 2666: 2658: 2654: 2648: 2645: 2642: 2638: 2634: 2631: 2624: 2623: 2622: 2620: 2616: 2612: 2609:be arbitrary 2608: 2603: 2599: 2594: 2590: 2586: 2582: 2578: 2573: 2569: 2548: 2544: 2538: 2535: 2532: 2528: 2519: 2515: 2511: 2506: 2502: 2494: 2493: 2492: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2455: 2453: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2398: 2396: 2391: 2387: 2383: 2379: 2374: 2370: 2366: 2362: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2324: 2320: 2316: 2312: 2306: 2298: 2293: 2289: 2284: 2280: 2262: 2258: 2254: 2249: 2245: 2235: 2231: 2224: 2206: 2202: 2198: 2193: 2189: 2185: 2182: 2179: 2174: 2170: 2166: 2161: 2157: 2134: 2130: 2126: 2123: 2120: 2115: 2111: 2102: 2098: 2094: 2089: 2085: 2062: 2058: 2049: 2045: 2041: 2038: 2035: 2030: 2026: 2022: 2017: 2013: 2004: 2000: 1996: 1993: 1989: 1985: 1981: 1977: 1973: 1968: 1964: 1960: 1938: 1932: 1923: 1917: 1912: 1909: 1906: 1902: 1898: 1892: 1883: 1875: 1872: 1868: 1859: 1854: 1850: 1846: 1842: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1806: 1790: 1786: 1782: 1779: 1774: 1770: 1765: 1761: 1756: 1752: 1746: 1743: 1740: 1736: 1732: 1722: 1719: 1714: 1710: 1704: 1701: 1698: 1694: 1683: 1678: 1674: 1665: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1625: 1621: 1617: 1613: 1609: 1605: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1573: 1569: 1565: 1562: 1558: 1553: 1549: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1515: 1511: 1507: 1504: 1500: 1495: 1491: 1487: 1483: 1478: 1474: 1470: 1466: 1462: 1461:Bourbaki 1989 1457: 1453: 1449: 1445: 1441: 1440: 1436: 1434: 1432: 1414: 1410: 1405: 1402: 1379: 1375: 1371: 1346: 1342: 1329: 1316: 1311: 1307: 1301: 1298: 1295: 1291: 1282: 1278: 1260: 1252: 1249: 1243: 1238: 1230: 1224: 1216: 1212: 1208: 1190: 1186: 1182: 1177: 1173: 1169: 1164: 1156: 1153: 1150: 1138: 1122: 1118: 1097: 1094: 1091: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1050: 1046: 1042: 1037: 1033: 1029: 1025: 1021: 1016: 1014: 1010: 1006: 990: 987: 982: 978: 955: 951: 947: 942: 938: 912: 908: 895: 891: 887: 883: 880: 876: 872: 868: 865: ∈  864: 861: :  859: 855: 851: 846: 844: 843:Bourbaki 1989 840: 831: 829: 827: 822: 820: 816: 812: 808: 804: 800: 796: 792: 788: 784: 783: 778: 774: 770: 766: 762: 758: 754: 751: 746: 744: 740: 736: 732: 727: 714: 711: 708: 700: 696: 692: 687: 685: 681: 677: 673: 669: 665: 657: 653: 649: 645: 641: 638: 637: 636: 633: 631: 624: 617: 613: 606: 599: 588: 581: 574: 567: 560: 553: 546: 539: 535: 534: 533: 531: 527: 524: 520: 516: 512: 508: 504: 500: 497: 489: 487: 485: 480: 465: 461: 457: 454: 451: 446: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 379: 375: 371: 367: 363: 360:The subspace 358: 356: 352: 348: 344: 339: 326: 323: 320: 312: 308: 304: 299: 297: 293: 289: 282: 275: 271: 267: 260: 253: 249: 241: 238: 234: 231: 227: 223: 219: 216: 210: 203: 196: 189: 182: 175: 168: 161: 157: 156: 155: 153: 149: 145: 141: 138: 134: 131: 127: 126:vector spaces 123: 119: 111: 109: 102: 100: 98: 93: 91: 87: 86:Banach spaces 83: 79: 75: 71: 67: 66:vector spaces 62: 60: 56: 52: 48: 44: 40: 33: 19: 5743: 5740:Birkhoff, G. 5736:Mac Lane, S. 5721:, Springer, 5718: 5715:Halmos, Paul 5696: 5677: 5655: 5612: 5603: 5536:complemented 5498: 5244: 5241: 5162: 4961: 4870: 4863: 4631: 4440: 4338: 4181:complemented 4179: 4137: 3899: 3896: 3732:defined over 3594: 3378: 3376: 3336: 3331: 3127: 3118: 3070:James Cockle 2986: 2807: 2793: 2767: 2740: 2713: 2703: 2698: 2694: 2687: 2683: 2681: 2621:-linear map 2618: 2614: 2610: 2606: 2601: 2597: 2592: 2588: 2587:-module and 2584: 2580: 2576: 2571: 2567: 2565: 2489: 2485: 2481: 2480:. For every 2473: 2468:and hence a 2459: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2400:A submodule 2399: 2395:Adamson 1972 2389: 2385: 2381: 2372: 2368: 2364: 2360: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2322: 2318: 2317:-module and 2314: 2310: 2308: 2291: 2287: 2286:in the case 2282: 2278: 2233: 2229: 2222: 1998: 1983: 1979: 1975: 1971: 1966: 1962: 1958: 1857: 1852: 1848: 1844: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1805:homomorphism 1663: 1658: 1654: 1650: 1642: 1638: 1630: 1611: 1607: 1603: 1598: 1594: 1590: 1586: 1582: 1571: 1567: 1551: 1547: 1542: 1538: 1530: 1526: 1522: 1518: 1513: 1509: 1502: 1498: 1493: 1489: 1485: 1481: 1476: 1472: 1468: 1464: 1455: 1451: 1330: 1280: 1276: 1217:by defining 1214: 1210: 1206: 1139: 1081: 1078:fiber bundle 1069: 1061: 1057: 1053: 1048: 1044: 1040: 1039:such that α( 1035: 1031: 1023: 1017: 1008: 893: 889: 885: 881: 874: 866: 862: 857: 853: 849: 847: 845:, §II.1.6). 835: 823: 818: 814: 810: 806: 798: 794: 790: 786: 781: 776: 772: 768: 764: 760: 756: 752: 747: 742: 738: 734: 730: 728: 698: 694: 690: 688: 679: 675: 671: 667: 663: 661: 655: 651: 647: 643: 639: 634: 629: 622: 615: 611: 604: 597: 595: 586: 579: 572: 565: 558: 551: 544: 537: 529: 525: 514: 510: 502: 498: 493: 481: 429: 425: 421: 417: 413: 405: 401: 397: 393: 389: 385: 381: 377: 373: 369: 365: 361: 359: 354: 350: 346: 342: 340: 310: 306: 302: 300: 295: 291: 287: 280: 273: 269: 265: 258: 251: 247: 245: 239: 236: 232: 229: 225: 221: 217: 208: 201: 194: 187: 180: 173: 166: 159: 147: 143: 139: 132: 121: 117: 115: 106: 94: 77: 63: 42: 36: 4868:subspaces. 4463:defined by 4415:indexed by 3107:called the 2716:commutative 2448:are called 2378:Halmos 1974 2342:. If every 1624:associative 1620:commutative 152:Halmos 1974 5765:Categories 5639:0292.10016 5609:Milnor, J. 5595:References 5068:for every 5012:such that 4866:orthogonal 4224:such that 3753:such that 3351:direct sum 3339:direct sum 3126:. See his 3066:tessarines 2682:such that 2579:. Now let 2424:such that 2303:See also: 1437:Properties 1064:) = 0 for 886:direct sum 691:direct sum 303:direct sum 43:direct sum 32:Direct sum 5556:Biproduct 5444:∑ 5435:‖ 5429:‖ 5365:ℓ 5327:∈ 5320:⊕ 5225:⟩ 5216:β 5203:α 5199:⟨ 5190:∑ 5183:⟩ 5180:β 5174:α 5171:⟨ 5146:∞ 5118:α 5103:∑ 5079:∈ 5020:α 4909:∈ 4847:⟩ 4821:⟨ 4815:⋯ 4809:⟩ 4783:⟨ 4754:… 4712:… 4656:… 4538:∈ 4531:∑ 4391:∈ 4315:∞ 4311:ℓ 4255:⊕ 4097:∑ 4090:‖ 4084:‖ 4020:ℓ 3982:∈ 3975:⨁ 3880:∞ 3861:‖ 3845:‖ 3837:∈ 3830:∑ 3806:∈ 3773:∈ 3684:∈ 3677:⨁ 3644:index set 3575:∈ 3549:∈ 3520:‖ 3513:‖ 3501:‖ 3494:‖ 3488:‖ 3470:‖ 3242:λ 3215:λ 3191:λ 3168:λ 3165:⊕ 3159:λ 3147:⊕ 3138:λ 3087:⊕ 3047:⊕ 3003:⊕ 2788:with the 2751:coproduct 2664:→ 2646:∈ 2639:⨁ 2536:∈ 2529:⨁ 2525:→ 2466:coproduct 2397:, p.61). 2334:for each 2328:submodule 2255:∘ 2199:∘ 2183:⋯ 2167:∘ 2127:⊕ 2124:⋯ 2121:⊕ 2108:↦ 2055:→ 2042:⊕ 2039:⋯ 2036:⊕ 2003:biproduct 1933:α 1918:β 1910:∈ 1903:∑ 1893:α 1884:β 1873:− 1869:τ 1822:) is the 1762:⁡ 1744:∈ 1737:∏ 1733:≅ 1702:∈ 1695:⨁ 1684:⁡ 1444:submodule 1411:α 1403:∑ 1376:α 1372:∑ 1364:as a sum 1343:α 1299:∈ 1292:⨁ 1253:α 1231:α 1187:β 1174:α 1157:β 1151:α 1095:∈ 1020:functions 979:α 948:∈ 939:α 909:α 755:× {0} of 712:⊕ 466:⊥ 458:⊕ 410:dimension 364:× {0} of 324:⊕ 128:over the 51:coproduct 5742:(1999), 5717:(1974), 5676:(1989), 5654:(1972), 5550:See also 5468:‖ 5455:‖ 5133:‖ 5114:‖ 4930:complete 4776:⟩ 4690:⟨ 3795:for all 3538:for all 3334:(1995). 3115:in 1873. 3072:in 1848. 2810:algebras 2755:category 2702:for all 2596: : 2430:internal 2309:Suppose 1957:for any 1641:-module 1559:and the 1406:′ 1275:for all 1205:for all 1068:indices 1052:for all 1007:indices 873:of left 750:subgroup 116:Suppose 82:integers 61:notion. 5744:Algebra 2784:of the 2470:colimit 2428:is the 2363:is the 1537:If the 1446:of the 1026:to the 1022:α from 1011:. (The 839:modules 779:. (See 684:integer 388:. (See 47:modules 5750:  5725:  5703:  5684:  5662:  5637:  5627:  4439:. The 4413:family 3306:  3290:  2745:or an 2719:monoid 2313:is an 2237:, and 2228:⊕ ⋯ ⊕ 1999:finite 1110:being 1060:and α( 930:where 884:. The 871:family 826:finite 801:. The 678:, and 614:, and 484:finite 408:. The 290:, and 135:. The 72:) and 41:, the 5094:and: 4411:be a 3361:is a 3353:is a 2408:is a 2326:is a 2005:: If 1593:with 1480:with 1467:from 1213:from 650:) = ( 564:) = ( 550:) + ( 228:) = ( 186:) = ( 172:) + ( 130:field 70:field 5748:ISBN 5723:ISBN 5701:ISBN 5682:ISBN 5660:ISBN 5625:ISBN 5273:and 5143:< 4898:for 4339:Let 3928:and 3877:< 3821:and 3564:and 3442:and 3402:and 3341:and 2831:and 2761:and 2743:norm 2444:and 2436:and 1997:The 1622:and 1577:The 1003:for 970:and 888:of { 869:} a 848:Let 817:and 803:rank 775:and 748:The 697:and 662:for 596:for 513:and 501:and 494:For 424:and 384:and 309:and 246:for 124:are 120:and 88:and 59:dual 5635:Zbl 4204:of 4178:is 3024:to 3020:is 2800:). 2484:in 2420:of 2412:of 2404:of 2346:in 2338:in 2330:of 1839:to 1753:Hom 1675:Hom 1662:to 879:set 805:of 693:of 682:an 674:in 666:in 628:in 610:in 509:of 412:of 305:of 80:of 37:In 5767:: 5738:; 5633:. 5615:. 3369:. 2765:. 2706:. 2693:= 2686:o 2605:→ 2452:. 2446:N′ 2438:N′ 2418:N′ 2290:= 1818:)( 1666:: 1488:)∈ 1137:. 1056:∈ 821:. 809:⊕ 789:⊕ 759:⊕ 745:. 741:+ 733:, 670:, 656:nh 654:, 652:ng 646:, 632:. 621:, 603:, 585:+ 578:, 571:+ 557:, 543:, 528:× 416:⊕ 396:⊕ 368:⊕ 357:. 353:+ 345:, 298:. 294:∈ 286:∈ 279:, 272:, 268:, 264:∈ 257:, 250:, 235:, 224:, 207:+ 200:, 193:+ 179:, 165:, 142:× 92:. 5757:. 5710:. 5691:. 5669:. 5641:. 5522:. 5518:C 5508:R 5480:. 5473:2 5463:i 5459:a 5448:i 5438:= 5432:a 5408:) 5403:i 5399:a 5395:( 5374:, 5369:2 5342:i 5338:X 5331:N 5324:i 5299:, 5295:R 5291:= 5286:i 5282:X 5260:N 5256:= 5253:I 5228:. 5220:i 5212:, 5207:i 5194:i 5186:= 5177:, 5149:. 5138:2 5128:) 5125:i 5122:( 5107:i 5082:I 5076:i 5054:i 5050:H 5029:) 5026:i 5023:( 5000:, 4997:I 4975:i 4971:H 4945:i 4941:H 4912:I 4906:i 4884:i 4880:H 4850:. 4842:n 4838:y 4834:, 4829:n 4825:x 4818:+ 4812:+ 4804:1 4800:y 4796:, 4791:1 4787:x 4780:= 4771:) 4765:n 4761:y 4757:, 4751:, 4746:1 4742:y 4737:( 4733:, 4729:) 4723:n 4719:x 4715:, 4709:, 4704:1 4700:x 4695:( 4667:n 4663:H 4659:, 4653:, 4648:1 4644:H 4606:I 4585:) 4579:i 4575:y 4571:, 4566:i 4562:x 4557:( 4551:i 4547:b 4541:I 4535:i 4527:= 4523:) 4518:) 4512:i 4508:y 4503:( 4499:, 4495:) 4489:i 4485:x 4480:( 4475:( 4471:B 4451:B 4423:I 4398:} 4394:I 4388:i 4385:: 4381:) 4375:i 4371:b 4367:, 4362:i 4358:M 4353:( 4348:{ 4320:. 4287:0 4283:c 4261:. 4258:B 4252:A 4232:X 4212:X 4192:B 4166:X 4146:A 4124:. 4120:| 4115:i 4111:a 4107:| 4101:i 4093:= 4087:a 4063:) 4058:i 4054:a 4050:( 4029:, 4024:1 3997:i 3993:X 3986:N 3979:i 3954:, 3950:R 3946:= 3941:i 3937:X 3915:N 3911:= 3908:I 3883:. 3870:i 3866:X 3857:) 3854:i 3851:( 3848:x 3840:I 3834:i 3809:I 3803:i 3781:i 3777:X 3770:) 3767:i 3764:( 3761:x 3741:I 3719:x 3697:i 3693:X 3687:I 3681:i 3656:, 3653:I 3630:i 3608:i 3604:X 3581:. 3578:Y 3572:y 3552:X 3546:x 3524:Y 3516:y 3510:+ 3505:X 3497:x 3491:= 3485:) 3482:y 3479:, 3476:x 3473:( 3450:Y 3430:X 3410:Y 3390:X 3318:, 3315:H 3310:2 3302:, 3299:C 3294:2 3286:, 3283:R 3278:2 3251:. 3248:) 3245:y 3239:, 3236:x 3233:( 3230:= 3227:) 3224:y 3221:, 3218:x 3212:( 3209:= 3206:) 3203:y 3200:, 3197:x 3194:( 3171:y 3162:x 3156:= 3153:) 3150:y 3144:x 3141:( 3095:, 3091:H 3083:H 3051:C 3043:C 3032:. 3007:R 2999:R 2972:. 2969:) 2964:2 2960:y 2954:1 2950:y 2946:+ 2941:2 2937:x 2931:1 2927:x 2923:( 2920:= 2917:) 2912:2 2908:y 2904:+ 2899:2 2895:x 2891:( 2888:) 2883:1 2879:y 2875:+ 2870:1 2866:x 2862:( 2839:Y 2819:X 2704:i 2699:i 2695:f 2690:i 2688:j 2684:f 2667:M 2659:i 2655:M 2649:I 2643:i 2635:: 2632:f 2619:R 2615:i 2611:R 2607:M 2602:i 2598:M 2593:i 2589:f 2585:R 2581:M 2577:i 2572:i 2568:M 2549:i 2545:M 2539:I 2533:i 2520:i 2516:M 2512:: 2507:i 2503:j 2486:I 2482:i 2474:R 2442:N 2434:N 2426:M 2422:M 2414:M 2406:M 2402:N 2390:i 2386:M 2382:M 2376:( 2373:i 2369:M 2361:M 2356:i 2352:M 2348:M 2344:x 2340:I 2336:i 2332:M 2323:i 2319:M 2315:R 2311:M 2292:k 2288:l 2283:k 2279:A 2263:l 2259:i 2250:k 2246:p 2234:n 2230:A 2226:1 2223:A 2207:n 2203:p 2194:n 2190:i 2186:+ 2180:+ 2175:1 2171:p 2162:1 2158:i 2135:n 2131:A 2116:1 2112:A 2103:k 2099:A 2095:: 2090:k 2086:i 2063:k 2059:A 2050:n 2046:A 2031:1 2027:A 2023:: 2018:k 2014:p 1984:i 1980:i 1978:( 1976:α 1972:τ 1967:i 1963:M 1959:α 1945:) 1942:) 1939:i 1936:( 1930:( 1927:) 1924:i 1921:( 1913:I 1907:i 1899:= 1896:) 1890:( 1887:) 1881:( 1876:1 1858:τ 1853:i 1849:M 1845:x 1843:( 1841:θ 1836:i 1832:M 1830:∈ 1828:x 1824:R 1820:i 1816:θ 1814:( 1812:τ 1808:τ 1791:. 1787:) 1783:L 1780:, 1775:i 1771:M 1766:( 1757:R 1747:I 1741:i 1728:) 1723:L 1720:, 1715:i 1711:M 1705:I 1699:i 1689:( 1679:R 1664:L 1659:i 1655:M 1651:R 1643:L 1639:R 1633:- 1631:R 1615:. 1612:i 1608:M 1604:N 1599:i 1595:M 1591:N 1587:R 1583:N 1572:K 1568:K 1563:. 1552:i 1548:M 1543:i 1539:M 1534:. 1531:i 1527:M 1523:x 1519:i 1514:i 1510:M 1503:I 1499:i 1494:i 1490:M 1486:i 1484:( 1482:α 1477:i 1473:M 1469:I 1465:α 1459:( 1456:i 1452:M 1415:i 1380:i 1352:) 1347:i 1339:( 1317:. 1312:i 1308:M 1302:I 1296:i 1281:R 1277:i 1261:i 1257:) 1250:r 1247:( 1244:= 1239:i 1235:) 1228:( 1225:r 1215:R 1211:r 1207:i 1191:i 1183:+ 1178:i 1170:= 1165:i 1161:) 1154:+ 1148:( 1123:i 1119:M 1098:I 1092:i 1082:I 1070:i 1062:i 1058:I 1054:i 1049:i 1045:M 1041:i 1036:i 1032:M 1024:I 1009:i 991:0 988:= 983:i 956:i 952:M 943:i 918:) 913:i 905:( 894:i 890:M 882:I 875:R 867:I 863:i 858:i 854:M 850:R 819:H 815:G 811:H 807:G 799:H 795:G 791:H 787:G 777:H 773:H 769:G 765:G 761:H 757:G 753:G 743:h 739:g 735:h 731:g 715:H 709:G 699:H 695:G 680:n 676:H 672:h 668:G 664:g 658:) 648:h 644:g 642:( 640:n 630:H 626:2 623:h 619:1 616:h 612:G 608:2 605:g 601:1 598:g 592:) 590:2 587:h 583:1 580:h 576:2 573:g 569:1 566:g 562:2 559:h 555:2 552:g 548:1 545:h 541:1 538:g 536:( 530:H 526:G 515:H 511:G 503:H 499:G 462:W 455:W 452:= 447:n 442:R 430:W 426:W 422:V 418:W 414:V 406:W 402:V 398:W 394:V 386:W 382:W 378:V 374:V 370:W 366:V 362:V 355:w 351:v 347:w 343:v 327:W 321:V 311:W 307:V 296:K 292:α 288:W 284:2 281:w 277:1 274:w 270:w 266:V 262:2 259:v 255:1 252:v 248:v 242:) 240:w 237:α 233:v 230:α 226:w 222:v 220:( 218:α 214:) 212:2 209:w 205:1 202:w 198:2 195:v 191:1 188:v 184:2 181:w 177:2 174:v 170:1 167:w 163:1 160:v 158:( 150:( 148:K 144:W 140:V 133:K 122:W 118:V 78:Z 34:. 20:)

Index

Complementary subspace
Direct sum
abstract algebra
modules
coproduct
direct product
dual
vector spaces
field
abelian groups
integers
Banach spaces
Hilbert spaces
decomposition of a module
vector spaces
field
cartesian product
Halmos 1974
dimension
finite
abelian groups
direct product
Mac Lane & Birkhoff 1999
Cartesian product
integer
subgroup
internal direct sum
rank
finite
modules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.