Knowledge

Complete metric space

Source đź“ť

3073:'s construction of the real numbers is similar to the above construction; the real numbers are the completion of the rational numbers using the ordinary absolute value to measure distances. The additional subtlety to contend with is that it is not logically permissible to use the completeness of the real numbers in their own construction. Nevertheless, equivalence classes of Cauchy sequences are defined as above, and the set of equivalence classes is easily shown to be a 2699: 2523: 3097:
for more details). One way to visualize this identification with the real numbers as usually viewed is that the equivalence class consisting of those Cauchy sequences of rational numbers that "ought" to have a given real limit is identified with that real number. The truncations of the
3185:, spaces for which there exists at least one complete metric inducing the given topology. Completely metrizable spaces can be characterized as those spaces that can be written as an intersection of countably many open subsets of some complete metric space. Since the conclusion of the 2581: 2405: 3067:). This defines an isometry onto a dense subspace, as required. Notice, however, that this construction makes explicit use of the completeness of the real numbers, so completion of the rational numbers needs a slightly different treatment. 3031: 898: 707: 105:
is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the
3517:
is called complete. One can furthermore construct a completion for an arbitrary uniform space similar to the completion of metric spaces. The most general situation in which Cauchy nets apply is
3241:, an alternative to relying on a metric structure for defining completeness and constructing the completion of a space is to use a group structure. This is most often seen in the context of 2925: 2877: 967: 2042: 2694:{\textstyle \operatorname {int} \left(\bigcap _{i\in \mathbb {N} }\operatorname {cl} S_{i}\right)=\operatorname {int} \operatorname {cl} \left(\bigcap _{i\in \mathbb {N} }S_{i}\right).} 2518:{\textstyle \operatorname {cl} \left(\bigcup _{i\in \mathbb {N} }\operatorname {int} S_{i}\right)=\operatorname {cl} \operatorname {int} \left(\bigcup _{i\in \mathbb {N} }S_{i}\right).} 183: 3367: 634: 3140:
If the earlier completion procedure is applied to a normed vector space, the result is a Banach space containing the original space as a dense subspace, and if it is applied to an
1086: 366: 3196:. However, the latter term is somewhat arbitrary since metric is not the most general structure on a topological space for which one can talk about completeness (see the section 2327: 1392: 1357: 2934: 2743: 1421: 3303: 1759: 1681: 1034: 102: 2130: 1147: 3445: 309: 2166: 1003: 822: 2201: 1924: 1861: 763: 733: 251: 2552: 2380: 1733: 1655: 1499: 1468: 588: 405: 218: 3495: 3126: 2350: 1557: 1257: 921: 657: 553: 458: 3515: 3410: 3390: 3323: 3283: 3263: 2576: 2400: 2281: 2088: 2064: 1944: 1889: 1826: 1802: 1779: 1701: 1614: 1519: 1441: 1322: 1296: 520: 500: 480: 435: 274: 1207: 3602: 3560: 900:
This is a Cauchy sequence of rational numbers, but it does not converge towards any rational limit: If the sequence did have a limit
3725: 3710: 3697: 3676: 3627: 3554: 827: 1952: 662: 3094: 75:
Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of
3539: â€“ in algebra, any of several related functors on rings and modules that result in complete topological rings and modules 3245:, but requires only the existence of a continuous "subtraction" operation. In this setting, the distance between two points 3205: 2133: 3168:
to a non-complete one. An example is given by the real numbers, which are complete but homeomorphic to the open interval
2766: 313: 3181: 3569: 2882: 2834: 926: 2230: 2238: 560: 3039:, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an 3744: 3242: 2246: 1124: 129: 1593: 3328: 3754: 3043:
on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of
593: 1569: 1049: 3545: 3186: 2207: 1471: 2286: 1362: 1327: 38: 3557: â€“ A TVS where points that get progressively closer to each other will always converge to a point 3536: 3040: 2721: 1397: 780: 3563: â€“ theorem that asserts that there exist nearly optimal solutions to some optimization problems 3471: 3141: 3074: 2234: 2223: 1561: 1187: 1127: 65: 3457:
is a set of all pairs of points that are at no more than a particular "distance" from each other.
3288: 1738: 1660: 3370: 3036: 2754: 2242: 2215: 1120: 1015: 83: 2093: 3415: 279: 3749: 3721: 3706: 3693: 3672: 3633: 3623: 3598: 3590: 3466: 3238: 3099: 2824: 2139: 2067: 1805: 1565: 1183: 1046:, again with the absolute difference metric, is not complete either. The sequence defined by 1010: 972: 1097:
is complete; for example the given sequence does have a limit in this interval, namely zero.
794: 2171: 1894: 1831: 1584:
is complete, though complete spaces need not be compact. In fact, a metric space is compact
1526: 1203: 1179: 738: 712: 230: 80: 31: 2530: 2358: 1706: 1628: 1477: 1446: 566: 378: 191: 3234: 3212: 3078: 3026:{\displaystyle d\left(x_{\bullet },y_{\bullet }\right)=\lim _{n}d\left(x_{n},y_{n}\right)} 1589: 1113: 1089: 76: 57: 3720:. Ramanujan, M.S. (trans.). Oxford: Clarendon Press; New York: Oxford University Press. 3477: 3108: 2332: 1539: 1239: 903: 639: 535: 440: 3685: 3664: 3500: 3395: 3375: 3308: 3268: 3248: 3082: 2750: 2561: 2385: 2266: 2073: 2049: 1929: 1874: 1811: 1787: 1764: 1686: 1599: 1585: 1534: 1504: 1426: 1307: 1281: 1109: 784: 505: 485: 465: 420: 259: 3738: 3454: 3450: 3228: 3145: 3129: 3047:. The original space is embedded in this space via the identification of an element 2219: 1947: 1581: 1227: 1151: 1092: 1040: 529: 3530: 3521:; these too have a notion of completeness and completion just like uniform spaces. 3518: 3216: 3165: 3070: 1522: 1234: 1211: 1131: 186: 42: 17: 3086: 2555: 2211: 1324:
becomes a complete metric space if we define the distance between the sequences
1006: 1005:
yet no rational number has this property. However, considered as a sequence of
788: 225: 3702: 3449:
A common generalisation of these definitions can be found in the context of a
3637: 3137:
arise by completing the rational numbers with respect to a different metric.
3474:. If every Cauchy net (or equivalently every Cauchy filter) has a limit in 2804:
by this property (among all complete metric spaces isometrically containing
1530: 526: 3102:
give just one choice of Cauchy sequence in the relevant equivalence class.
1112:(with the metric given by the absolute difference) are complete, and so is 3035:(This limit exists because the real numbers are complete.) This is only a 3176: 3063:(i.e., the equivalence class containing the sequence with constant value 2801: 556: 124: 30:"Cauchy completion" redirects here. For the use in category theory, see 1150:
is a Banach space, and so a complete metric space, with respect to the
254: 1088:
is Cauchy, but does not have a limit in the given space. However the
2798: 791:, is not complete. Consider for instance the sequence defined by 1154:. However, the supremum norm does not give a norm on the space C 1148:
continuous real-valued functions on a closed and bounded interval
893:{\displaystyle x_{n+1}={\frac {x_{n}}{2}}+{\frac {1}{x_{n}}}.} 3548: â€“ Topological space with a notion of uniform properties 702:{\displaystyle \operatorname {diam} \left(F_{n}\right)\to 0,} 411:
if any of the following equivalent conditions are satisfied:
3189:
is purely topological, it applies to these spaces as well.
2777:, then there exists a unique uniformly continuous function 1891:
is a complete metric space. Here we define the distance in
3085:, and is the unique totally ordered complete field (up to 3622:. River Edge, N.J. London: World Scientific. p. 33. 1130:
may or may not be complete; those that are complete are
3550:
Pages displaying short descriptions of redirect targets
2714:, it is possible to construct a complete metric space 2584: 2408: 1402: 1067: 3503: 3480: 3418: 3398: 3378: 3331: 3311: 3291: 3271: 3251: 3197: 3111: 2937: 2885: 2837: 2724: 2564: 2533: 2388: 2361: 2335: 2289: 2269: 2174: 2142: 2096: 2076: 2052: 1955: 1932: 1897: 1877: 1834: 1814: 1790: 1767: 1741: 1709: 1689: 1663: 1631: 1602: 1542: 1507: 1480: 1449: 1429: 1400: 1365: 1330: 1310: 1284: 1242: 1052: 1018: 975: 929: 906: 830: 797: 741: 715: 665: 642: 596: 569: 538: 508: 488: 468: 443: 423: 381: 316: 282: 262: 233: 194: 132: 86: 3565:
Pages displaying wikidata descriptions as a fallback
3541:
Pages displaying wikidata descriptions as a fallback
1596:, which states that any closed and bounded subspace 3148:containing the original space as a dense subspace. 3690:Introductory functional analysis with applications 3509: 3489: 3439: 3404: 3384: 3361: 3317: 3297: 3277: 3257: 3120: 3025: 2919: 2871: 2737: 2693: 2570: 2546: 2517: 2394: 2374: 2344: 2321: 2275: 2195: 2160: 2124: 2082: 2058: 2036: 1938: 1918: 1883: 1855: 1820: 1796: 1773: 1753: 1727: 1695: 1675: 1649: 1608: 1551: 1513: 1493: 1462: 1435: 1415: 1386: 1351: 1316: 1290: 1251: 1080: 1028: 997: 961: 915: 892: 816: 757: 727: 701: 651: 628: 582: 547: 514: 494: 474: 452: 429: 399: 360: 303: 268: 245: 212: 177: 96: 2249:on complete metric spaces such as Banach spaces. 3533: â€“ Concept in general topology and analysis 2978: 1977: 2920:{\displaystyle y_{\bullet }=\left(y_{n}\right)} 2872:{\displaystyle x_{\bullet }=\left(x_{n}\right)} 962:{\displaystyle x={\frac {x}{2}}+{\frac {1}{x}}} 3192:Completely metrizable spaces are often called 3164:, meaning that a complete metric space can be 3595:Introduction to Metric and Topological Spaces 3204:for a wider class of topological spaces, the 2037:{\displaystyle d(f,g)\equiv \sup\{d:x\in X\}} 8: 3464:in the definition of completeness by Cauchy 2031: 1980: 1210:whose topology can be induced by a complete 3572: â€“ Theorem in order and lattice theory 3081:. This field is complete, admits a natural 3055:with the equivalence class of sequences in 2253: 2241:. The fixed-point theorem is often used to 2210:says that every complete metric space is a 1521:if there is no such index. This space is 3502: 3479: 3417: 3397: 3377: 3330: 3310: 3290: 3270: 3250: 3110: 3012: 2999: 2981: 2963: 2950: 2936: 2907: 2890: 2884: 2859: 2842: 2836: 2725: 2723: 2677: 2667: 2666: 2659: 2624: 2608: 2607: 2600: 2583: 2563: 2538: 2532: 2501: 2491: 2490: 2483: 2448: 2432: 2431: 2424: 2407: 2387: 2366: 2360: 2334: 2307: 2294: 2288: 2268: 2173: 2141: 2101: 2095: 2090:is a complete metric space, then the set 2075: 2051: 1954: 1931: 1896: 1876: 1833: 1828:is a complete metric space, then the set 1813: 1789: 1766: 1740: 1708: 1688: 1662: 1630: 1601: 1541: 1506: 1485: 1479: 1454: 1448: 1428: 1401: 1399: 1374: 1364: 1339: 1329: 1309: 1283: 1241: 1066: 1057: 1051: 1019: 1017: 980: 974: 949: 936: 928: 905: 879: 870: 856: 850: 835: 829: 802: 796: 746: 740: 714: 680: 664: 641: 620: 601: 595: 574: 568: 537: 507: 487: 467: 442: 422: 380: 340: 327: 315: 281: 261: 232: 193: 178:{\displaystyle x_{1},x_{2},x_{3},\ldots } 163: 150: 137: 131: 87: 85: 3620:Convex analysis in general vector spaces 3716:Meise, Reinhold; Vogt, Dietmar (1997). 3582: 3362:{\displaystyle d(x,y)<\varepsilon ,} 3093:as the field of real numbers (see also 1208:locally convex topological vector space 779:of rational numbers, with the standard 3460:It is also possible to replace Cauchy 3211:A topological space homeomorphic to a 629:{\displaystyle F_{n+1}\subseteq F_{n}} 110:of a given space, as explained below. 3200:). Indeed, some authors use the term 1081:{\displaystyle x_{n}={\tfrac {1}{n}}} 7: 2237:on a complete metric space admits a 361:{\displaystyle d(x_{m},x_{n})<r.} 276:such that for all positive integers 3718:Introduction to functional analysis 3077:that has the rational numbers as a 2322:{\displaystyle S_{1},S_{2},\ldots } 2283:be a complete metric space and let 1622:is compact and therefore complete. 559:tending to 0, has a non-empty 417:Every Cauchy sequence of points in 3412:via subtraction in the comparison 3215:complete metric space is called a 3156:Completeness is a property of the 2931:, we may define their distance as 1592:. This is a generalization of the 1387:{\displaystyle \left(y_{n}\right)} 1352:{\displaystyle \left(x_{n}\right)} 1298:is an arbitrary set, then the set 1267:-adic metric in the same way that 25: 3705:, "Real and Functional Analysis" 3555:Complete topological vector space 3229:Uniform space § Completeness 2761:is any complete metric space and 3223:Alternatives and generalizations 3198:Alternatives and generalizations 3095:Construction of the real numbers 1568:; completeness follows from the 1443:is the smallest index for which 1202:can be given the structure of a 3561:Ekeland's variational principle 3285:is gauged not by a real number 3237:can also be defined in general 3206:completely uniformizable spaces 2831:. For any two Cauchy sequences 2823:can be constructed as a set of 2738:{\displaystyle {\overline {M}}} 2222:subsets of the space has empty 1657:be a complete metric space. If 1416:{\displaystyle {\tfrac {1}{N}}} 3347: 3335: 2190: 2178: 2152: 2119: 2107: 2016: 2013: 2007: 1998: 1992: 1986: 1971: 1959: 1913: 1901: 1850: 1838: 1722: 1710: 1644: 1632: 1564:which are complete are called 1104:of real numbers and the space 690: 394: 382: 346: 320: 207: 195: 79:is not complete, because e.g. 1: 3152:Topologically complete spaces 2767:uniformly continuous function 1761:is a complete subspace, then 709:then there is a unique point 525:Every decreasing sequence of 3298:{\displaystyle \varepsilon } 3182:completely metrizable spaces 2730: 2329:be a sequence of subsets of 1926:in terms of the distance in 1754:{\displaystyle A\subseteq X} 1676:{\displaystyle A\subseteq X} 437:has a limit that is also in 3650:Kelley, Problem 6.L, p. 208 1166:of continuous functions on 1029:{\displaystyle {\sqrt {2}}} 502:(that is, to some point of 97:{\displaystyle {\sqrt {2}}} 3771: 3226: 2718:(which is also denoted as 2231:Banach fixed-point theorem 2125:{\displaystyle C_{b}(X,M)} 1009:, it does converge to the 29: 3692:(Wiley, New York, 1978). 3440:{\displaystyle x-y\in N.} 3243:topological vector spaces 3172:, which is not complete. 2203:and hence also complete. 1863:of all bounded functions 590:is closed and non-empty, 462:Every Cauchy sequence in 304:{\displaystyle m,n>N,} 2753:. It has the following 2247:inverse function theorem 2168:is a closed subspace of 2161:{\displaystyle f:X\to M} 1533:number of copies of the 998:{\displaystyle x^{2}=2,} 2827:of Cauchy sequences in 1275:with the usual metric. 817:{\displaystyle x_{1}=1} 3618:Zalinescu, C. (2002). 3570:Knaster–Tarski theorem 3546:Complete uniform space 3511: 3491: 3441: 3406: 3386: 3363: 3319: 3299: 3279: 3259: 3202:topologically complete 3194:topologically complete 3187:Baire category theorem 3122: 3027: 2921: 2873: 2739: 2695: 2572: 2548: 2519: 2396: 2376: 2346: 2323: 2277: 2208:Baire category theorem 2197: 2196:{\displaystyle B(X,M)} 2162: 2126: 2084: 2060: 2038: 1940: 1920: 1919:{\displaystyle B(X,M)} 1885: 1857: 1856:{\displaystyle B(X,M)} 1822: 1798: 1775: 1755: 1735:be a metric space. If 1729: 1703:is also complete. Let 1697: 1683:is a closed set, then 1677: 1651: 1610: 1553: 1515: 1495: 1464: 1437: 1417: 1388: 1353: 1318: 1292: 1253: 1123:metric. In contrast, 1082: 1030: 999: 963: 917: 894: 818: 759: 758:{\displaystyle F_{n}.} 729: 728:{\displaystyle x\in X} 703: 653: 630: 584: 549: 516: 496: 476: 454: 431: 401: 362: 305: 270: 247: 246:{\displaystyle r>0} 224:if for every positive 214: 179: 98: 3591:Sutherland, Wilson A. 3512: 3492: 3442: 3407: 3387: 3364: 3320: 3300: 3280: 3260: 3123: 3028: 2922: 2874: 2808:), and is called the 2740: 2710:For any metric space 2696: 2573: 2549: 2547:{\displaystyle S_{i}} 2520: 2397: 2377: 2375:{\displaystyle S_{i}} 2347: 2324: 2278: 2198: 2163: 2127: 2085: 2061: 2039: 1941: 1921: 1886: 1858: 1823: 1799: 1776: 1756: 1730: 1728:{\displaystyle (X,d)} 1698: 1678: 1652: 1650:{\displaystyle (X,d)} 1611: 1554: 1516: 1496: 1494:{\displaystyle y_{N}} 1465: 1463:{\displaystyle x_{N}} 1438: 1418: 1389: 1354: 1319: 1293: 1259:This space completes 1254: 1212:translation-invariant 1182:. Instead, with the 1178:, for it may contain 1083: 1031: 1000: 964: 918: 895: 819: 760: 730: 704: 654: 631: 585: 583:{\displaystyle F_{n}} 550: 517: 497: 477: 455: 432: 402: 400:{\displaystyle (X,d)} 363: 306: 271: 248: 215: 213:{\displaystyle (X,d)} 180: 99: 39:mathematical analysis 3537:Completion (algebra) 3501: 3478: 3416: 3396: 3376: 3329: 3309: 3289: 3269: 3249: 3109: 3041:equivalence relation 2935: 2883: 2835: 2722: 2582: 2562: 2531: 2406: 2386: 2359: 2333: 2287: 2267: 2172: 2140: 2094: 2074: 2050: 1953: 1930: 1895: 1875: 1832: 1812: 1788: 1765: 1739: 1707: 1687: 1661: 1629: 1600: 1582:compact metric space 1562:Riemannian manifolds 1540: 1505: 1478: 1447: 1427: 1398: 1363: 1328: 1308: 1304:of all sequences in 1282: 1240: 1233:is complete for any 1128:normed vector spaces 1125:infinite-dimensional 1050: 1016: 973: 927: 904: 828: 795: 739: 713: 663: 640: 594: 567: 536: 506: 486: 466: 441: 421: 379: 314: 280: 260: 253:there is a positive 231: 192: 130: 84: 3142:inner product space 2825:equivalence classes 2261: —  2235:contraction mapping 1594:Heine–Borel theorem 1588:it is complete and 1188:compact convergence 1180:unbounded functions 735:common to all sets 18:Complete (topology) 3507: 3490:{\displaystyle X,} 3487: 3437: 3402: 3382: 3371:open neighbourhood 3359: 3325:in the comparison 3315: 3295: 3275: 3255: 3239:topological groups 3144:, the result is a 3121:{\displaystyle p,} 3118: 3023: 2986: 2917: 2869: 2819:The completion of 2755:universal property 2745:), which contains 2735: 2691: 2672: 2613: 2568: 2544: 2515: 2496: 2437: 2392: 2372: 2345:{\displaystyle X.} 2342: 2319: 2273: 2255: 2218:of countably many 2193: 2158: 2136:bounded functions 2132:consisting of all 2122: 2080: 2056: 2034: 1936: 1916: 1881: 1853: 1818: 1794: 1771: 1751: 1725: 1693: 1673: 1647: 1606: 1570:Hopf–Rinow theorem 1566:geodesic manifolds 1552:{\displaystyle S.} 1549: 1511: 1491: 1460: 1433: 1413: 1411: 1384: 1349: 1314: 1288: 1252:{\displaystyle p.} 1249: 1078: 1076: 1026: 995: 959: 916:{\displaystyle x,} 913: 890: 814: 755: 725: 699: 652:{\displaystyle n,} 649: 626: 580: 548:{\displaystyle X,} 545: 512: 492: 472: 453:{\displaystyle X.} 450: 427: 397: 358: 301: 266: 243: 210: 175: 94: 3604:978-0-19-853161-6 3510:{\displaystyle X} 3405:{\displaystyle 0} 3385:{\displaystyle N} 3318:{\displaystyle d} 3278:{\displaystyle y} 3258:{\displaystyle x} 3100:decimal expansion 2977: 2733: 2655: 2596: 2571:{\displaystyle X} 2479: 2420: 2395:{\displaystyle X} 2276:{\displaystyle X} 2083:{\displaystyle M} 2068:topological space 2059:{\displaystyle X} 1939:{\displaystyle M} 1884:{\displaystyle M} 1821:{\displaystyle M} 1797:{\displaystyle X} 1774:{\displaystyle A} 1696:{\displaystyle A} 1609:{\displaystyle S} 1514:{\displaystyle 0} 1436:{\displaystyle N} 1410: 1317:{\displaystyle S} 1291:{\displaystyle S} 1075: 1024: 1011:irrational number 957: 944: 885: 865: 515:{\displaystyle X} 495:{\displaystyle X} 475:{\displaystyle X} 430:{\displaystyle X} 269:{\displaystyle N} 92: 16:(Redirected from 3762: 3731: 3682: 3669:General Topology 3651: 3648: 3642: 3641: 3615: 3609: 3608: 3587: 3566: 3551: 3542: 3516: 3514: 3513: 3508: 3496: 3494: 3493: 3488: 3446: 3444: 3443: 3438: 3411: 3409: 3408: 3403: 3391: 3389: 3388: 3383: 3368: 3366: 3365: 3360: 3324: 3322: 3321: 3316: 3304: 3302: 3301: 3296: 3284: 3282: 3281: 3276: 3264: 3262: 3261: 3256: 3235:Cauchy sequences 3171: 3134: 3127: 3125: 3124: 3119: 3032: 3030: 3029: 3024: 3022: 3018: 3017: 3016: 3004: 3003: 2985: 2973: 2969: 2968: 2967: 2955: 2954: 2926: 2924: 2923: 2918: 2916: 2912: 2911: 2895: 2894: 2878: 2876: 2875: 2870: 2868: 2864: 2863: 2847: 2846: 2744: 2742: 2741: 2736: 2734: 2726: 2700: 2698: 2697: 2692: 2687: 2683: 2682: 2681: 2671: 2670: 2634: 2630: 2629: 2628: 2612: 2611: 2577: 2575: 2574: 2569: 2553: 2551: 2550: 2545: 2543: 2542: 2524: 2522: 2521: 2516: 2511: 2507: 2506: 2505: 2495: 2494: 2458: 2454: 2453: 2452: 2436: 2435: 2401: 2399: 2398: 2393: 2381: 2379: 2378: 2373: 2371: 2370: 2351: 2349: 2348: 2343: 2328: 2326: 2325: 2320: 2312: 2311: 2299: 2298: 2282: 2280: 2279: 2274: 2262: 2259: 2202: 2200: 2199: 2194: 2167: 2165: 2164: 2159: 2131: 2129: 2128: 2123: 2106: 2105: 2089: 2087: 2086: 2081: 2065: 2063: 2062: 2057: 2043: 2041: 2040: 2035: 1945: 1943: 1942: 1937: 1925: 1923: 1922: 1917: 1890: 1888: 1887: 1882: 1870: 1866: 1862: 1860: 1859: 1854: 1827: 1825: 1824: 1819: 1803: 1801: 1800: 1795: 1781:is also closed. 1780: 1778: 1777: 1772: 1760: 1758: 1757: 1752: 1734: 1732: 1731: 1726: 1702: 1700: 1699: 1694: 1682: 1680: 1679: 1674: 1656: 1654: 1653: 1648: 1621: 1615: 1613: 1612: 1607: 1558: 1556: 1555: 1550: 1520: 1518: 1517: 1512: 1500: 1498: 1497: 1492: 1490: 1489: 1469: 1467: 1466: 1461: 1459: 1458: 1442: 1440: 1439: 1434: 1422: 1420: 1419: 1414: 1412: 1403: 1393: 1391: 1390: 1385: 1383: 1379: 1378: 1358: 1356: 1355: 1350: 1348: 1344: 1343: 1323: 1321: 1320: 1315: 1303: 1297: 1295: 1294: 1289: 1258: 1256: 1255: 1250: 1201: 1177: 1165: 1145: 1095: 1087: 1085: 1084: 1079: 1077: 1068: 1062: 1061: 1045: 1035: 1033: 1032: 1027: 1025: 1020: 1004: 1002: 1001: 996: 985: 984: 968: 966: 965: 960: 958: 950: 945: 937: 923:then by solving 922: 920: 919: 914: 899: 897: 896: 891: 886: 884: 883: 871: 866: 861: 860: 851: 846: 845: 823: 821: 820: 815: 807: 806: 764: 762: 761: 756: 751: 750: 734: 732: 731: 726: 708: 706: 705: 700: 689: 685: 684: 658: 656: 655: 650: 635: 633: 632: 627: 625: 624: 612: 611: 589: 587: 586: 581: 579: 578: 554: 552: 551: 546: 521: 519: 518: 513: 501: 499: 498: 493: 481: 479: 478: 473: 459: 457: 456: 451: 436: 434: 433: 428: 406: 404: 403: 398: 367: 365: 364: 359: 345: 344: 332: 331: 310: 308: 307: 302: 275: 273: 272: 267: 252: 250: 249: 244: 219: 217: 216: 211: 184: 182: 181: 176: 168: 167: 155: 154: 142: 141: 103: 101: 100: 95: 93: 88: 77:rational numbers 71: 68:that is also in 63: 47: 32:Karoubi envelope 21: 3770: 3769: 3765: 3764: 3763: 3761: 3760: 3759: 3745:Metric geometry 3735: 3734: 3728: 3715: 3686:Kreyszig, Erwin 3679: 3665:Kelley, John L. 3663: 3660: 3655: 3654: 3649: 3645: 3630: 3617: 3616: 3612: 3605: 3589: 3588: 3584: 3579: 3564: 3549: 3540: 3527: 3499: 3498: 3476: 3475: 3414: 3413: 3394: 3393: 3374: 3373: 3327: 3326: 3307: 3306: 3305:via the metric 3287: 3286: 3267: 3266: 3247: 3246: 3231: 3225: 3169: 3160:and not of the 3154: 3130: 3107: 3106: 3008: 2995: 2994: 2990: 2959: 2946: 2945: 2941: 2933: 2932: 2903: 2899: 2886: 2881: 2880: 2855: 2851: 2838: 2833: 2832: 2720: 2719: 2708: 2703: 2673: 2654: 2650: 2620: 2595: 2591: 2580: 2579: 2560: 2559: 2534: 2529: 2528: 2497: 2478: 2474: 2444: 2419: 2415: 2404: 2403: 2384: 2383: 2362: 2357: 2356: 2331: 2330: 2303: 2290: 2285: 2284: 2265: 2264: 2260: 2257: 2214:. That is, the 2170: 2169: 2138: 2137: 2097: 2092: 2091: 2072: 2071: 2048: 2047: 1951: 1950: 1928: 1927: 1893: 1892: 1873: 1872: 1868: 1864: 1830: 1829: 1810: 1809: 1786: 1785: 1763: 1762: 1737: 1736: 1705: 1704: 1685: 1684: 1659: 1658: 1627: 1626: 1617: 1598: 1597: 1590:totally bounded 1578: 1538: 1537: 1503: 1502: 1481: 1476: 1475: 1450: 1445: 1444: 1425: 1424: 1396: 1395: 1370: 1366: 1361: 1360: 1335: 1331: 1326: 1325: 1306: 1305: 1299: 1280: 1279: 1238: 1237: 1225: 1191: 1167: 1155: 1135: 1114:Euclidean space 1110:complex numbers 1093: 1090:closed interval 1053: 1048: 1047: 1043: 1014: 1013: 976: 971: 970: 925: 924: 902: 901: 875: 852: 831: 826: 825: 798: 793: 792: 773: 742: 737: 736: 711: 710: 676: 672: 661: 660: 638: 637: 616: 597: 592: 591: 570: 565: 564: 534: 533: 504: 503: 484: 483: 464: 463: 439: 438: 419: 418: 377: 376: 375:A metric space 336: 323: 312: 311: 278: 277: 258: 257: 229: 228: 190: 189: 159: 146: 133: 128: 127: 119:Cauchy sequence 116: 82: 81: 69: 61: 58:Cauchy sequence 45: 35: 28: 27:Metric geometry 23: 22: 15: 12: 11: 5: 3768: 3766: 3758: 3757: 3755:Uniform spaces 3752: 3747: 3737: 3736: 3733: 3732: 3726: 3713: 3700: 3683: 3677: 3659: 3656: 3653: 3652: 3643: 3628: 3610: 3603: 3581: 3580: 3578: 3575: 3574: 3573: 3567: 3558: 3552: 3543: 3534: 3526: 3523: 3506: 3486: 3483: 3436: 3433: 3430: 3427: 3424: 3421: 3401: 3381: 3358: 3355: 3352: 3349: 3346: 3343: 3340: 3337: 3334: 3314: 3294: 3274: 3254: 3227:Main article: 3224: 3221: 3179:one considers 3153: 3150: 3117: 3114: 3083:total ordering 3059:converging to 3021: 3015: 3011: 3007: 3002: 2998: 2993: 2989: 2984: 2980: 2976: 2972: 2966: 2962: 2958: 2953: 2949: 2944: 2940: 2915: 2910: 2906: 2902: 2898: 2893: 2889: 2867: 2862: 2858: 2854: 2850: 2845: 2841: 2797:is determined 2751:dense subspace 2732: 2729: 2707: 2704: 2702: 2701: 2690: 2686: 2680: 2676: 2669: 2665: 2662: 2658: 2653: 2649: 2646: 2643: 2640: 2637: 2633: 2627: 2623: 2619: 2616: 2610: 2606: 2603: 2599: 2594: 2590: 2587: 2567: 2541: 2537: 2525: 2514: 2510: 2504: 2500: 2493: 2489: 2486: 2482: 2477: 2473: 2470: 2467: 2464: 2461: 2457: 2451: 2447: 2443: 2440: 2434: 2430: 2427: 2423: 2418: 2414: 2411: 2391: 2369: 2365: 2341: 2338: 2318: 2315: 2310: 2306: 2302: 2297: 2293: 2272: 2251: 2233:states that a 2192: 2189: 2186: 2183: 2180: 2177: 2157: 2154: 2151: 2148: 2145: 2121: 2118: 2115: 2112: 2109: 2104: 2100: 2079: 2055: 2033: 2030: 2027: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1935: 1915: 1912: 1909: 1906: 1903: 1900: 1880: 1852: 1849: 1846: 1843: 1840: 1837: 1817: 1793: 1770: 1750: 1747: 1744: 1724: 1721: 1718: 1715: 1712: 1692: 1672: 1669: 1666: 1646: 1643: 1640: 1637: 1634: 1605: 1586:if and only if 1577: 1574: 1548: 1545: 1535:discrete space 1510: 1488: 1484: 1457: 1453: 1432: 1409: 1406: 1382: 1377: 1373: 1369: 1347: 1342: 1338: 1334: 1313: 1287: 1248: 1245: 1221: 1134:. The space C 1121:usual distance 1074: 1071: 1065: 1060: 1056: 1023: 994: 991: 988: 983: 979: 956: 953: 948: 943: 940: 935: 932: 912: 909: 889: 882: 878: 874: 869: 864: 859: 855: 849: 844: 841: 838: 834: 813: 810: 805: 801: 785:absolute value 772: 769: 768: 767: 766: 765: 754: 749: 745: 724: 721: 718: 698: 695: 692: 688: 683: 679: 675: 671: 668: 648: 645: 623: 619: 615: 610: 607: 604: 600: 577: 573: 544: 541: 530:closed subsets 523: 511: 491: 471: 460: 449: 446: 426: 396: 393: 390: 387: 384: 371:Complete space 357: 354: 351: 348: 343: 339: 335: 330: 326: 322: 319: 300: 297: 294: 291: 288: 285: 265: 242: 239: 236: 209: 206: 203: 200: 197: 174: 171: 166: 162: 158: 153: 149: 145: 140: 136: 115: 112: 91: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3767: 3756: 3753: 3751: 3748: 3746: 3743: 3742: 3740: 3729: 3727:0-19-851485-9 3723: 3719: 3714: 3712: 3711:0-387-94001-4 3708: 3704: 3701: 3699: 3698:0-471-03729-X 3695: 3691: 3687: 3684: 3680: 3678:0-387-90125-6 3674: 3670: 3666: 3662: 3661: 3657: 3647: 3644: 3639: 3635: 3631: 3629:981-238-067-1 3625: 3621: 3614: 3611: 3606: 3600: 3596: 3592: 3586: 3583: 3576: 3571: 3568: 3562: 3559: 3556: 3553: 3547: 3544: 3538: 3535: 3532: 3529: 3528: 3524: 3522: 3520: 3519:Cauchy spaces 3504: 3484: 3481: 3473: 3469: 3468: 3463: 3458: 3456: 3452: 3451:uniform space 3447: 3434: 3431: 3428: 3425: 3422: 3419: 3399: 3379: 3372: 3356: 3353: 3350: 3344: 3341: 3338: 3332: 3312: 3292: 3272: 3252: 3244: 3240: 3236: 3230: 3222: 3220: 3218: 3214: 3209: 3207: 3203: 3199: 3195: 3190: 3188: 3184: 3183: 3178: 3173: 3167: 3163: 3159: 3151: 3149: 3147: 3146:Hilbert space 3143: 3138: 3136: 3135:-adic numbers 3133: 3115: 3112: 3103: 3101: 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3066: 3062: 3058: 3054: 3050: 3046: 3042: 3038: 3033: 3019: 3013: 3009: 3005: 3000: 2996: 2991: 2987: 2982: 2974: 2970: 2964: 2960: 2956: 2951: 2947: 2942: 2938: 2930: 2913: 2908: 2904: 2900: 2896: 2891: 2887: 2865: 2860: 2856: 2852: 2848: 2843: 2839: 2830: 2826: 2822: 2817: 2815: 2811: 2807: 2803: 2800: 2796: 2793:. The space 2792: 2789:that extends 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2727: 2717: 2713: 2705: 2688: 2684: 2678: 2674: 2663: 2660: 2656: 2651: 2647: 2644: 2641: 2638: 2635: 2631: 2625: 2621: 2617: 2614: 2604: 2601: 2597: 2592: 2588: 2585: 2565: 2557: 2539: 2535: 2526: 2512: 2508: 2502: 2498: 2487: 2484: 2480: 2475: 2471: 2468: 2465: 2462: 2459: 2455: 2449: 2445: 2441: 2438: 2428: 2425: 2421: 2416: 2412: 2409: 2389: 2382:is closed in 2367: 2363: 2354: 2353: 2352: 2339: 2336: 2316: 2313: 2308: 2304: 2300: 2295: 2291: 2270: 2250: 2248: 2244: 2240: 2236: 2232: 2227: 2225: 2221: 2220:nowhere dense 2217: 2213: 2209: 2204: 2187: 2184: 2181: 2175: 2155: 2149: 2146: 2143: 2135: 2116: 2113: 2110: 2102: 2098: 2077: 2069: 2053: 2044: 2028: 2025: 2022: 2019: 2010: 2004: 2001: 1995: 1989: 1983: 1974: 1968: 1965: 1962: 1956: 1949: 1948:supremum norm 1933: 1910: 1907: 1904: 1898: 1878: 1847: 1844: 1841: 1835: 1815: 1807: 1791: 1782: 1768: 1748: 1745: 1742: 1719: 1716: 1713: 1690: 1670: 1667: 1664: 1641: 1638: 1635: 1623: 1620: 1603: 1595: 1591: 1587: 1583: 1576:Some theorems 1575: 1573: 1571: 1567: 1563: 1559: 1546: 1543: 1536: 1532: 1528: 1524: 1508: 1486: 1482: 1473: 1455: 1451: 1430: 1407: 1404: 1380: 1375: 1371: 1367: 1345: 1340: 1336: 1332: 1311: 1302: 1285: 1276: 1274: 1270: 1266: 1262: 1246: 1243: 1236: 1232: 1231:-adic numbers 1230: 1224: 1220: 1215: 1213: 1209: 1205: 1204:FrĂ©chet space 1199: 1195: 1189: 1185: 1181: 1175: 1171: 1163: 1159: 1153: 1152:supremum norm 1149: 1143: 1139: 1133: 1132:Banach spaces 1129: 1126: 1122: 1118: 1115: 1111: 1107: 1103: 1098: 1096: 1094:[0,1] 1091: 1072: 1069: 1063: 1058: 1054: 1042: 1041:open interval 1037: 1021: 1012: 1008: 992: 989: 986: 981: 977: 954: 951: 946: 941: 938: 933: 930: 910: 907: 887: 880: 876: 872: 867: 862: 857: 853: 847: 842: 839: 836: 832: 811: 808: 803: 799: 790: 786: 783:given by the 782: 778: 770: 752: 747: 743: 722: 719: 716: 696: 693: 686: 681: 677: 673: 669: 666: 646: 643: 621: 617: 613: 608: 605: 602: 598: 575: 571: 562: 558: 542: 539: 531: 528: 524: 509: 489: 482:converges in 469: 461: 447: 444: 424: 416: 415: 414: 413: 412: 410: 391: 388: 385: 373: 372: 368: 355: 352: 349: 341: 337: 333: 328: 324: 317: 298: 295: 292: 289: 286: 283: 263: 256: 240: 237: 234: 227: 223: 204: 201: 198: 188: 172: 169: 164: 160: 156: 151: 147: 143: 138: 134: 126: 121: 120: 113: 111: 109: 104: 89: 78: 73: 67: 60:of points in 59: 55: 51: 44: 40: 33: 19: 3717: 3689: 3671:. Springer. 3668: 3646: 3619: 3613: 3594: 3585: 3531:Cauchy space 3465: 3461: 3459: 3448: 3232: 3217:Polish space 3210: 3201: 3193: 3191: 3180: 3174: 3166:homeomorphic 3161: 3157: 3155: 3139: 3131: 3105:For a prime 3104: 3090: 3069: 3064: 3060: 3056: 3052: 3048: 3044: 3037:pseudometric 3034: 2928: 2828: 2820: 2818: 2813: 2809: 2805: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2762: 2758: 2746: 2715: 2711: 2709: 2258:(C. Ursescu) 2252: 2228: 2205: 2045: 1783: 1624: 1618: 1579: 1560: 1523:homeomorphic 1300: 1277: 1272: 1268: 1264: 1260: 1235:prime number 1228: 1222: 1218: 1216: 1197: 1193: 1173: 1169: 1161: 1157: 1141: 1137: 1116: 1105: 1101: 1099: 1038: 1007:real numbers 969:necessarily 776: 774: 561:intersection 408: 374: 370: 369: 221: 187:metric space 122: 118: 117: 107: 74: 54:Cauchy space 53: 49: 43:metric space 36: 3703:Lang, Serge 3453:, where an 3087:isomorphism 2239:fixed point 2212:Baire space 1119:, with the 226:real number 56:) if every 3739:Categories 3658:References 3470:or Cauchy 3369:but by an 3089:). It is 2810:completion 2706:Completion 2134:continuous 1271:completes 1217:The space 1100:The space 789:difference 775:The space 636:for every 220:is called 114:Definition 108:completion 48:is called 3638:285163112 3462:sequences 3455:entourage 3429:∈ 3423:− 3354:ε 3293:ε 3213:separable 2965:∙ 2952:∙ 2892:∙ 2844:∙ 2731:¯ 2664:∈ 2657:⋂ 2648:⁡ 2642:⁡ 2618:⁡ 2605:∈ 2598:⋂ 2589:⁡ 2488:∈ 2481:⋃ 2472:⁡ 2466:⁡ 2442:⁡ 2429:∈ 2422:⋃ 2413:⁡ 2317:… 2153:→ 2026:∈ 1975:≡ 1946:with the 1746:⊆ 1668:⊆ 1531:countable 1263:with the 720:∈ 691:→ 670:⁡ 614:⊆ 557:diameters 527:non-empty 173:… 3750:Topology 3667:(1975). 3593:(1975). 3525:See also 3177:topology 3162:topology 3079:subfield 2802:isometry 2527:If each 2355:If each 2224:interior 1472:distinct 1214:metric. 1184:topology 771:Examples 409:complete 125:sequence 50:complete 3472:filters 3091:defined 2765:is any 2254:Theorem 1527:product 1525:to the 787:of the 255:integer 3724:  3709:  3696:  3675:  3636:  3626:  3601:  3233:Since 3158:metric 3071:Cantor 2256:  1580:Every 1423:where 1394:to be 781:metric 222:Cauchy 64:has a 52:(or a 3577:Notes 3497:then 3170:(0,1) 3075:field 2799:up to 2781:from 2769:from 2757:: if 2749:as a 2578:then 2402:then 2243:prove 2216:union 2066:is a 1867:from 1804:is a 1529:of a 1474:from 1144:] 1136:[ 1044:(0,1) 563:: if 555:with 185:in a 66:limit 3722:ISBN 3707:ISBN 3694:ISBN 3673:ISBN 3634:OCLC 3624:ISBN 3599:ISBN 3467:nets 3351:< 3265:and 3128:the 2879:and 2556:open 2263:Let 2245:the 2229:The 2206:The 2070:and 1808:and 1625:Let 1359:and 1206:: a 1039:The 824:and 667:diam 659:and 350:< 293:> 238:> 41:, a 3392:of 3175:In 3051:of 2979:lim 2927:in 2812:of 2785:to 2773:to 2639:int 2586:int 2558:in 2554:is 2469:int 2439:int 2046:If 1978:sup 1871:to 1806:set 1784:If 1616:of 1501:or 1470:is 1278:If 1226:of 1190:, C 1186:of 1146:of 1108:of 532:of 407:is 37:In 3741:: 3688:, 3632:. 3597:. 3219:. 3208:. 3053:M' 2816:. 2795:M' 2783:M′ 2779:f′ 2716:M′ 2645:cl 2615:cl 2463:cl 2410:cl 2226:. 1572:. 1196:, 1172:, 1160:, 1140:, 1036:. 522:). 123:A 72:. 3730:. 3681:. 3640:. 3607:. 3505:X 3485:, 3482:X 3435:. 3432:N 3426:y 3420:x 3400:0 3380:N 3357:, 3348:) 3345:y 3342:, 3339:x 3336:( 3333:d 3313:d 3273:y 3253:x 3132:p 3116:, 3113:p 3065:x 3061:x 3057:M 3049:x 3045:M 3020:) 3014:n 3010:y 3006:, 3001:n 2997:x 2992:( 2988:d 2983:n 2975:= 2971:) 2961:y 2957:, 2948:x 2943:( 2939:d 2929:M 2914:) 2909:n 2905:y 2901:( 2897:= 2888:y 2866:) 2861:n 2857:x 2853:( 2849:= 2840:x 2829:M 2821:M 2814:M 2806:M 2791:f 2787:N 2775:N 2771:M 2763:f 2759:N 2747:M 2728:M 2712:M 2689:. 2685:) 2679:i 2675:S 2668:N 2661:i 2652:( 2636:= 2632:) 2626:i 2622:S 2609:N 2602:i 2593:( 2566:X 2540:i 2536:S 2513:. 2509:) 2503:i 2499:S 2492:N 2485:i 2476:( 2460:= 2456:) 2450:i 2446:S 2433:N 2426:i 2417:( 2390:X 2368:i 2364:S 2340:. 2337:X 2314:, 2309:2 2305:S 2301:, 2296:1 2292:S 2271:X 2191:) 2188:M 2185:, 2182:X 2179:( 2176:B 2156:M 2150:X 2147:: 2144:f 2120:) 2117:M 2114:, 2111:X 2108:( 2103:b 2099:C 2078:M 2054:X 2032:} 2029:X 2023:x 2020:: 2017:] 2014:) 2011:x 2008:( 2005:g 2002:, 1999:) 1996:x 1993:( 1990:f 1987:[ 1984:d 1981:{ 1972:) 1969:g 1966:, 1963:f 1960:( 1957:d 1934:M 1914:) 1911:M 1908:, 1905:X 1902:( 1899:B 1879:M 1869:X 1865:f 1851:) 1848:M 1845:, 1842:X 1839:( 1836:B 1816:M 1792:X 1769:A 1749:X 1743:A 1723:) 1720:d 1717:, 1714:X 1711:( 1691:A 1671:X 1665:A 1645:) 1642:d 1639:, 1636:X 1633:( 1619:R 1604:S 1547:. 1544:S 1509:0 1487:N 1483:y 1456:N 1452:x 1431:N 1408:N 1405:1 1381:) 1376:n 1372:y 1368:( 1346:) 1341:n 1337:x 1333:( 1312:S 1301:S 1286:S 1273:Q 1269:R 1265:p 1261:Q 1247:. 1244:p 1229:p 1223:p 1219:Q 1200:) 1198:b 1194:a 1192:( 1176:) 1174:b 1170:a 1168:( 1164:) 1162:b 1158:a 1156:( 1142:b 1138:a 1117:R 1106:C 1102:R 1073:n 1070:1 1064:= 1059:n 1055:x 1022:2 993:, 990:2 987:= 982:2 978:x 955:x 952:1 947:+ 942:2 939:x 934:= 931:x 911:, 908:x 888:. 881:n 877:x 873:1 868:+ 863:2 858:n 854:x 848:= 843:1 840:+ 837:n 833:x 812:1 809:= 804:1 800:x 777:Q 753:. 748:n 744:F 723:X 717:x 697:, 694:0 687:) 682:n 678:F 674:( 647:, 644:n 622:n 618:F 609:1 606:+ 603:n 599:F 576:n 572:F 543:, 540:X 510:X 490:X 470:X 448:. 445:X 425:X 395:) 392:d 389:, 386:X 383:( 356:. 353:r 347:) 342:n 338:x 334:, 329:m 325:x 321:( 318:d 299:, 296:N 290:n 287:, 284:m 264:N 241:0 235:r 208:) 205:d 202:, 199:X 196:( 170:, 165:3 161:x 157:, 152:2 148:x 144:, 139:1 135:x 90:2 70:M 62:M 46:M 34:. 20:)

Index

Complete (topology)
Karoubi envelope
mathematical analysis
metric space
Cauchy sequence
limit
rational numbers
2 {\displaystyle {\sqrt {2}}}
sequence
metric space
real number
integer
non-empty
closed subsets
diameters
intersection
metric
absolute value
difference
real numbers
irrational number
open interval
closed interval
[0,1]
complex numbers
Euclidean space
usual distance
infinite-dimensional
normed vector spaces
Banach spaces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑