Knowledge

Composite number

Source 📝

43: 404: 2893: 594: 31: 2800: 85:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102,
77:
For example, the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself.
86:
104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150. (sequence
139:. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime factors and those with an even number of distinct prime factors. For the latter 503:
Another way to classify composite numbers is by counting the number of divisors. All composite numbers have at least three divisors. In the case of squares of primes, those divisors are
283: 200: 902: 574:
Yet another way to classify composite numbers is to determine whether all prime factors are either all below or all above some fixed (prime) number. Such numbers are called
546: 363: 321: 607: 2836: 135:
or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a
93: 895: 100:
Every composite number can be written as the product of two or more (not necessarily distinct) primes. For example, the composite number
1702: 888: 1697: 795: 1712: 1692: 3259: 2882: 770: 113: 3079: 2892: 2405: 1985: 460: 131:
One way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a
123:
that can determine whether a number is prime or composite, without necessarily revealing the factorization of a composite input.
62:
that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one
1707: 2491: 2829: 1807: 2157: 1476: 1269: 3033: 2192: 2162: 1837: 1827: 2333: 1747: 1481: 1461: 2023: 2187: 3249: 3069: 2282: 1905: 1662: 1471: 1453: 1347: 1337: 1327: 456: 2167: 787: 3054: 2410: 1955: 1576: 1362: 1357: 1352: 1342: 1319: 425: 2822: 1395: 403: 1652: 219: 3208: 3074: 2998: 2521: 2486: 2272: 2182: 2056: 2031: 1940: 1930: 1542: 1524: 1444: 809: 561: 447: 3244: 3059: 3018: 2781: 2051: 1925: 1556: 1332: 1112: 1039: 779: 622: 434: 145: 2988: 2857: 2036: 1890: 1817: 972: 617: 612: 30: 2745: 2385: 593: 3162: 3064: 2678: 2572: 2536: 2277: 2000: 1980: 1797: 1466: 1254: 1226: 443: 3254: 3223: 3218: 3013: 3008: 2993: 2932: 2400: 2264: 2259: 2227: 1990: 1965: 1960: 1935: 1865: 1861: 1792: 1682: 1514: 1310: 1279: 567:
Composite numbers have also been called "rectangular numbers", but that name can also refer to the
506: 386: 2799: 3147: 3142: 3103: 3023: 3003: 2803: 2557: 2552: 2466: 2440: 2338: 2317: 2089: 1970: 1920: 1842: 1812: 1752: 1519: 1499: 1430: 1143: 599: 71: 1687: 206: 871:
Lists of composites with prime factorization (first 100, 1,000, 10,000, 100,000, and 1,000,000)
333: 291: 3183: 3123: 2697: 2642: 2496: 2471: 2445: 2222: 1900: 1895: 1822: 1802: 1787: 1509: 1491: 1410: 1400: 1385: 1163: 1148: 853: 833: 813: 791: 766: 74: 1, so the composite numbers are exactly the numbers that are not prime and not a unit. 3213: 3188: 3108: 3094: 3028: 2872: 2733: 2526: 2112: 2084: 2074: 2066: 1950: 1915: 1910: 1877: 1571: 1534: 1425: 1420: 1415: 1405: 1377: 1264: 1216: 1211: 1168: 1107: 496: 59: 3198: 3193: 3118: 3112: 3049: 2947: 2937: 2867: 2709: 2598: 2531: 2457: 2380: 2354: 2172: 1885: 1742: 1677: 1647: 1637: 1632: 1298: 1206: 1153: 997: 937: 829: 416: 374: 35: 3203: 3157: 2983: 2967: 2957: 2927: 2714: 2582: 2567: 2431: 2395: 2370: 2246: 2217: 2202: 2079: 1975: 1945: 1672: 1627: 1504: 1102: 1097: 1092: 1064: 1049: 962: 947: 925: 912: 762: 478: 136: 120: 2814: 3238: 3152: 2952: 2942: 2922: 2637: 2621: 2562: 2516: 2212: 2197: 2107: 1832: 1390: 1259: 1221: 1178: 1059: 1044: 1034: 992: 982: 957: 849: 575: 568: 407: 378: 42: 3167: 3084: 2962: 2907: 2877: 2673: 2662: 2577: 2415: 2390: 2307: 2207: 2177: 2152: 2136: 2041: 2008: 1757: 1731: 1642: 1581: 1158: 1054: 987: 967: 942: 579: 469: 105: 101: 67: 17: 2632: 2507: 2312: 1776: 1667: 1622: 1617: 1367: 1274: 1173: 1002: 977: 952: 397: 393: 2769: 2750: 2046: 1657: 589: 47: 880: 2917: 2375: 2302: 2294: 2099: 2013: 1131: 870: 132: 400:= 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. 2476: 396:= 2 × 3, all the prime factors are repeated, so 72 is a powerful number. 875: 108:
can be written as 2 × 3 × 5; furthermore, this representation is unique
2862: 2481: 2140: 63: 3133: 402: 109: 41: 29: 817: 857: 837: 2818: 2767: 2731: 2695: 2659: 2619: 2244: 2133: 1859: 1774: 1729: 1606: 1296: 1243: 1195: 1129: 1081: 1019: 923: 884: 66:
other than 1 and itself. Every positive integer is composite,
288:
However, for prime numbers, the function also returns −1 and
571:, numbers that are the product of two consecutive integers. 88: 373:
the prime factors of a number are repeated it is called a
213:
is half the total of prime factors), while for the former
876:
Divisor Plot (patterns found in large composite numbers)
509: 336: 294: 222: 148: 652: 650: 104:
can be written as 13 × 23, and the composite number
3176: 3132: 3093: 3042: 2976: 2900: 2850: 2591: 2545: 2505: 2456: 2430: 2363: 2347: 2326: 2293: 2258: 2098: 2065: 2022: 1999: 1876: 1564: 1555: 1533: 1490: 1452: 1443: 1376: 1318: 1309: 844:Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), 540: 357: 315: 277: 194: 112:the order of the factors. This fact is called the 728: 641: 564:(though the first two such numbers are 1 and 2). 385:of its prime factors are repeated, it is called 826:Introduction To Modern Algebra, Revised Edition 608:Canonical representation of a positive integer 2830: 896: 8: 535: 510: 389:. (All prime numbers and 1 are squarefree.) 38:, of the divisors of the composite number 10 2837: 2823: 2815: 2764: 2728: 2692: 2656: 2616: 2290: 2255: 2241: 2130: 1873: 1856: 1771: 1726: 1603: 1561: 1449: 1315: 1306: 1293: 1240: 1197:Possessing a specific set of other numbers 1192: 1126: 1078: 1016: 920: 903: 889: 881: 529: 508: 335: 327:with one or more repeated prime factors, 293: 251: 221: 177: 147: 806:Elementary Introduction to Number Theory 692: 680: 668: 634: 278:{\displaystyle \mu (n)=(-1)^{2x+1}=-1.} 46:Composite numbers can be arranged into 716: 81:The composite numbers up to 150 are: 7: 740: 704: 656: 27:Integer having a non-trivial divisor 2845:Divisibility-based sets of integers 195:{\displaystyle \mu (n)=(-1)^{2x}=1} 759:A First Course In Abstract Algebra 25: 2883:Fundamental theorem of arithmetic 114:fundamental theorem of arithmetic 2891: 2798: 2406:Perfect digit-to-digit invariant 592: 552:that has more divisors than any 346: 340: 304: 298: 248: 238: 232: 226: 174: 164: 158: 152: 1: 1245:Expressible via specific sums 729:Pettofrezzo & Byrkit 1970 642:Pettofrezzo & Byrkit 1970 541:{\displaystyle \{1,p,p^{2}\}} 788:Blaisdell Publishing Company 2334:Multiplicative digital root 808:(2nd ed.), Lexington: 3276: 757:Fraleigh, John B. (1976), 381:are powerful numbers). If 3080:Superior highly composite 2889: 2794: 2777: 2763: 2741: 2727: 2705: 2691: 2669: 2655: 2628: 2615: 2411:Perfect digital invariant 2254: 2240: 2148: 2129: 1986:Superior highly composite 1872: 1855: 1783: 1770: 1738: 1725: 1613: 1602: 1305: 1292: 1250: 1239: 1202: 1191: 1139: 1125: 1088: 1077: 1030: 1015: 933: 919: 846:Elements of Number Theory 761:(2nd ed.), Reading: 461:superior highly composite 358:{\displaystyle \mu (n)=0} 316:{\displaystyle \mu (1)=1} 50:but prime numbers cannot. 3260:Elementary number theory 2977:Constrained divisor sums 2024:Euler's totient function 1808:Euler–Jacobi pseudoprime 1083:Other polynomial numbers 804:Long, Calvin T. (1972), 119:There are several known 1838:Somer–Lucas pseudoprime 1828:Lucas–Carmichael number 1663:Lazy caterer's sequence 824:McCoy, Neal H. (1968), 810:D. C. Heath and Company 562:highly composite number 1713:Wedderburn–Etherington 1113:Lucky numbers of Euler 623:Table of prime factors 542: 500: 410:of numbers under 100: 359: 317: 279: 196: 51: 39: 2858:Integer factorization 2001:Prime omega functions 1818:Frobenius pseudoprime 1608:Combinatorial numbers 1477:Centered dodecahedral 1270:Primary pseudoperfect 618:Sieve of Eratosthenes 613:Integer factorization 543: 406: 360: 318: 280: 197: 45: 33: 2460:-composition related 2260:Arithmetic functions 1862:Arithmetic functions 1798:Elliptic pseudoprime 1482:Centered icosahedral 1462:Centered tetrahedral 848:, Englewood Cliffs: 671:, pp. 198, 266. 507: 334: 292: 220: 146: 34:Demonstration, with 3070:Colossally abundant 2901:Factorization forms 2386:Kaprekar's constant 1906:Colossally abundant 1793:Catalan pseudoprime 1693:Schröder–Hipparchus 1472:Centered octahedral 1348:Centered heptagonal 1338:Centered pentagonal 1328:Centered triangular 928:and related numbers 457:Colossally abundant 3055:Primitive abundant 3043:With many divisors 2804:Mathematics portal 2746:Aronson's sequence 2492:Smarandache–Wellin 2249:-dependent numbers 1956:Primitive abundant 1843:Strong pseudoprime 1833:Perrin pseudoprime 1813:Fermat pseudoprime 1753:Wolstenholme prime 1577:Squared triangular 1363:Centered decagonal 1358:Centered nonagonal 1353:Centered octagonal 1343:Centered hexagonal 600:Mathematics portal 538: 501: 426:Primitive abundant 355: 313: 275: 192: 52: 40: 3250:Integer sequences 3232: 3231: 2812: 2811: 2790: 2789: 2759: 2758: 2723: 2722: 2687: 2686: 2651: 2650: 2611: 2610: 2607: 2606: 2426: 2425: 2236: 2235: 2125: 2124: 2121: 2120: 2067:Aliquot sequences 1878:Divisor functions 1851: 1850: 1823:Lucas pseudoprime 1803:Euler pseudoprime 1788:Carmichael number 1766: 1765: 1721: 1720: 1598: 1597: 1594: 1593: 1590: 1589: 1551: 1550: 1439: 1438: 1396:Square triangular 1288: 1287: 1235: 1234: 1187: 1186: 1121: 1120: 1073: 1072: 1011: 1010: 784:Topics In Algebra 644:, pp. 23–24. 18:Composite numbers 16:(Redirected from 3267: 3209:Harmonic divisor 3095:Aliquot sequence 3075:Highly composite 2999:Multiply perfect 2895: 2873:Divisor function 2839: 2832: 2825: 2816: 2802: 2765: 2734:Natural language 2729: 2693: 2661:Generated via a 2657: 2617: 2522:Digit-reassembly 2487:Self-descriptive 2291: 2256: 2242: 2193:Lucas–Carmichael 2183:Harmonic divisor 2131: 2057:Sparsely totient 2032:Highly cototient 1941:Multiply perfect 1931:Highly composite 1874: 1857: 1772: 1727: 1708:Telephone number 1604: 1562: 1543:Square pyramidal 1525:Stella octangula 1450: 1316: 1307: 1299:Figurate numbers 1294: 1241: 1193: 1127: 1079: 1017: 921: 905: 898: 891: 882: 860: 840: 820: 800: 775: 744: 738: 732: 726: 720: 714: 708: 702: 696: 690: 684: 678: 672: 666: 660: 654: 645: 639: 602: 597: 596: 582:, respectively. 547: 545: 544: 539: 534: 533: 494: 485: 476: 467: 454: 448:highly composite 441: 432: 423: 414: 364: 362: 361: 356: 322: 320: 319: 314: 284: 282: 281: 276: 265: 264: 205:(where ÎŒ is the 201: 199: 198: 193: 185: 184: 91: 60:positive integer 56:composite number 21: 3275: 3274: 3270: 3269: 3268: 3266: 3265: 3264: 3235: 3234: 3233: 3228: 3172: 3128: 3089: 3060:Highly abundant 3038: 3019:Unitary perfect 2972: 2896: 2887: 2868:Unitary divisor 2846: 2843: 2813: 2808: 2786: 2782:Strobogrammatic 2773: 2755: 2737: 2719: 2701: 2683: 2665: 2647: 2624: 2603: 2587: 2546:Divisor-related 2541: 2501: 2452: 2422: 2359: 2343: 2322: 2289: 2262: 2250: 2232: 2144: 2143:related numbers 2117: 2094: 2061: 2052:Perfect totient 2018: 1995: 1926:Highly abundant 1868: 1847: 1779: 1762: 1734: 1717: 1703:Stirling second 1609: 1586: 1547: 1529: 1486: 1435: 1372: 1333:Centered square 1301: 1284: 1246: 1231: 1198: 1183: 1135: 1134:defined numbers 1117: 1084: 1069: 1040:Double Mersenne 1026: 1007: 929: 915: 913:natural numbers 909: 867: 843: 830:Allyn and Bacon 823: 803: 798: 780:Herstein, I. N. 778: 773: 756: 753: 748: 747: 739: 735: 727: 723: 715: 711: 703: 699: 691: 687: 679: 675: 667: 663: 655: 648: 640: 636: 631: 598: 591: 588: 525: 505: 504: 499: 492: 490: 483: 481: 474: 472: 465: 463: 452: 450: 439: 437: 435:Highly abundant 430: 428: 421: 419: 412: 375:powerful number 332: 331: 323:. For a number 290: 289: 247: 218: 217: 207:Möbius function 173: 144: 143: 129: 121:primality tests 87: 36:Cuisenaire rods 28: 23: 22: 15: 12: 11: 5: 3273: 3271: 3263: 3262: 3257: 3252: 3247: 3237: 3236: 3230: 3229: 3227: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3180: 3178: 3174: 3173: 3171: 3170: 3165: 3160: 3155: 3150: 3145: 3139: 3137: 3130: 3129: 3127: 3126: 3121: 3116: 3106: 3100: 3098: 3091: 3090: 3088: 3087: 3082: 3077: 3072: 3067: 3062: 3057: 3052: 3046: 3044: 3040: 3039: 3037: 3036: 3031: 3026: 3021: 3016: 3011: 3006: 3001: 2996: 2991: 2989:Almost perfect 2986: 2980: 2978: 2974: 2973: 2971: 2970: 2965: 2960: 2955: 2950: 2945: 2940: 2935: 2930: 2925: 2920: 2915: 2910: 2904: 2902: 2898: 2897: 2890: 2888: 2886: 2885: 2880: 2875: 2870: 2865: 2860: 2854: 2852: 2848: 2847: 2844: 2842: 2841: 2834: 2827: 2819: 2810: 2809: 2807: 2806: 2795: 2792: 2791: 2788: 2787: 2785: 2784: 2778: 2775: 2774: 2768: 2761: 2760: 2757: 2756: 2754: 2753: 2748: 2742: 2739: 2738: 2732: 2725: 2724: 2721: 2720: 2718: 2717: 2715:Sorting number 2712: 2710:Pancake number 2706: 2703: 2702: 2696: 2689: 2688: 2685: 2684: 2682: 2681: 2676: 2670: 2667: 2666: 2660: 2653: 2652: 2649: 2648: 2646: 2645: 2640: 2635: 2629: 2626: 2625: 2622:Binary numbers 2620: 2613: 2612: 2609: 2608: 2605: 2604: 2602: 2601: 2595: 2593: 2589: 2588: 2586: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2549: 2547: 2543: 2542: 2540: 2539: 2534: 2529: 2524: 2519: 2513: 2511: 2503: 2502: 2500: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2463: 2461: 2454: 2453: 2451: 2450: 2449: 2448: 2437: 2435: 2432:P-adic numbers 2428: 2427: 2424: 2423: 2421: 2420: 2419: 2418: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2367: 2365: 2361: 2360: 2358: 2357: 2351: 2349: 2348:Coding-related 2345: 2344: 2342: 2341: 2336: 2330: 2328: 2324: 2323: 2321: 2320: 2315: 2310: 2305: 2299: 2297: 2288: 2287: 2286: 2285: 2283:Multiplicative 2280: 2269: 2267: 2252: 2251: 2247:Numeral system 2245: 2238: 2237: 2234: 2233: 2231: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2155: 2149: 2146: 2145: 2134: 2127: 2126: 2123: 2122: 2119: 2118: 2116: 2115: 2110: 2104: 2102: 2096: 2095: 2093: 2092: 2087: 2082: 2077: 2071: 2069: 2063: 2062: 2060: 2059: 2054: 2049: 2044: 2039: 2037:Highly totient 2034: 2028: 2026: 2020: 2019: 2017: 2016: 2011: 2005: 2003: 1997: 1996: 1994: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1943: 1938: 1933: 1928: 1923: 1918: 1913: 1908: 1903: 1898: 1893: 1891:Almost perfect 1888: 1882: 1880: 1870: 1869: 1860: 1853: 1852: 1849: 1848: 1846: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1784: 1781: 1780: 1775: 1768: 1767: 1764: 1763: 1761: 1760: 1755: 1750: 1745: 1739: 1736: 1735: 1730: 1723: 1722: 1719: 1718: 1716: 1715: 1710: 1705: 1700: 1698:Stirling first 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1614: 1611: 1610: 1607: 1600: 1599: 1596: 1595: 1592: 1591: 1588: 1587: 1585: 1584: 1579: 1574: 1568: 1566: 1559: 1553: 1552: 1549: 1548: 1546: 1545: 1539: 1537: 1531: 1530: 1528: 1527: 1522: 1517: 1512: 1507: 1502: 1496: 1494: 1488: 1487: 1485: 1484: 1479: 1474: 1469: 1464: 1458: 1456: 1447: 1441: 1440: 1437: 1436: 1434: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1382: 1380: 1374: 1373: 1371: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1324: 1322: 1313: 1303: 1302: 1297: 1290: 1289: 1286: 1285: 1283: 1282: 1277: 1272: 1267: 1262: 1257: 1251: 1248: 1247: 1244: 1237: 1236: 1233: 1232: 1230: 1229: 1224: 1219: 1214: 1209: 1203: 1200: 1199: 1196: 1189: 1188: 1185: 1184: 1182: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1140: 1137: 1136: 1130: 1123: 1122: 1119: 1118: 1116: 1115: 1110: 1105: 1100: 1095: 1089: 1086: 1085: 1082: 1075: 1074: 1071: 1070: 1068: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1031: 1028: 1027: 1020: 1013: 1012: 1009: 1008: 1006: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 934: 931: 930: 924: 917: 916: 910: 908: 907: 900: 893: 885: 879: 878: 873: 866: 865:External links 863: 862: 861: 841: 821: 801: 797:978-1114541016 796: 776: 771: 763:Addison-Wesley 752: 749: 746: 745: 743:, p. 159. 733: 721: 709: 697: 695:, p. 270. 685: 683:, p. 106. 673: 661: 646: 633: 632: 630: 627: 626: 625: 620: 615: 610: 604: 603: 587: 584: 576:smooth numbers 569:pronic numbers 537: 532: 528: 524: 521: 518: 515: 512: 491: 482: 473: 464: 451: 438: 429: 420: 411: 379:perfect powers 367: 366: 354: 351: 348: 345: 342: 339: 312: 309: 306: 303: 300: 297: 286: 285: 274: 271: 268: 263: 260: 257: 254: 250: 246: 243: 240: 237: 234: 231: 228: 225: 203: 202: 191: 188: 183: 180: 176: 172: 169: 166: 163: 160: 157: 154: 151: 137:sphenic number 128: 125: 98: 97: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3272: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3245:Prime numbers 3243: 3242: 3240: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3181: 3179: 3175: 3169: 3166: 3164: 3163:Polydivisible 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3140: 3138: 3135: 3131: 3125: 3122: 3120: 3117: 3114: 3110: 3107: 3105: 3102: 3101: 3099: 3096: 3092: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3065:Superabundant 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3047: 3045: 3041: 3035: 3034:ErdƑs–Nicolas 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2981: 2979: 2975: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2943:Perfect power 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2905: 2903: 2899: 2894: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2856: 2855: 2853: 2849: 2840: 2835: 2833: 2828: 2826: 2821: 2820: 2817: 2805: 2801: 2797: 2796: 2793: 2783: 2780: 2779: 2776: 2771: 2766: 2762: 2752: 2749: 2747: 2744: 2743: 2740: 2735: 2730: 2726: 2716: 2713: 2711: 2708: 2707: 2704: 2699: 2694: 2690: 2680: 2677: 2675: 2672: 2671: 2668: 2664: 2658: 2654: 2644: 2641: 2639: 2636: 2634: 2631: 2630: 2627: 2623: 2618: 2614: 2600: 2597: 2596: 2594: 2590: 2584: 2581: 2579: 2576: 2574: 2573:Polydivisible 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2550: 2548: 2544: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2514: 2512: 2509: 2504: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2464: 2462: 2459: 2455: 2447: 2444: 2443: 2442: 2439: 2438: 2436: 2433: 2429: 2417: 2414: 2413: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2368: 2366: 2362: 2356: 2353: 2352: 2350: 2346: 2340: 2337: 2335: 2332: 2331: 2329: 2327:Digit product 2325: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2298: 2296: 2292: 2284: 2281: 2279: 2276: 2275: 2274: 2271: 2270: 2268: 2266: 2261: 2257: 2253: 2248: 2243: 2239: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2163:ErdƑs–Nicolas 2161: 2159: 2156: 2154: 2151: 2150: 2147: 2142: 2138: 2132: 2128: 2114: 2111: 2109: 2106: 2105: 2103: 2101: 2097: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2072: 2070: 2068: 2064: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2029: 2027: 2025: 2021: 2015: 2012: 2010: 2007: 2006: 2004: 2002: 1998: 1992: 1989: 1987: 1984: 1982: 1981:Superabundant 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1883: 1881: 1879: 1875: 1871: 1867: 1863: 1858: 1854: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1785: 1782: 1778: 1773: 1769: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1740: 1737: 1733: 1728: 1724: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1612: 1605: 1601: 1583: 1580: 1578: 1575: 1573: 1570: 1569: 1567: 1563: 1560: 1558: 1557:4-dimensional 1554: 1544: 1541: 1540: 1538: 1536: 1532: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1497: 1495: 1493: 1489: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1467:Centered cube 1465: 1463: 1460: 1459: 1457: 1455: 1451: 1448: 1446: 1445:3-dimensional 1442: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1383: 1381: 1379: 1375: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1325: 1323: 1321: 1317: 1314: 1312: 1311:2-dimensional 1308: 1304: 1300: 1295: 1291: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1255:Nonhypotenuse 1253: 1252: 1249: 1242: 1238: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1204: 1201: 1194: 1190: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1141: 1138: 1133: 1128: 1124: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1090: 1087: 1080: 1076: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1032: 1029: 1024: 1018: 1014: 1004: 1001: 999: 996: 994: 993:Perfect power 991: 989: 986: 984: 983:Seventh power 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 935: 932: 927: 922: 918: 914: 906: 901: 899: 894: 892: 887: 886: 883: 877: 874: 872: 869: 868: 864: 859: 855: 851: 850:Prentice Hall 847: 842: 839: 835: 831: 827: 822: 819: 815: 811: 807: 802: 799: 793: 789: 785: 781: 777: 774: 772:0-201-01984-1 768: 764: 760: 755: 754: 750: 742: 737: 734: 731:, p. 53. 730: 725: 722: 719:, p. 85. 718: 713: 710: 707:, p. 44. 706: 701: 698: 694: 693:Fraleigh 1976 689: 686: 682: 681:Herstein 1964 677: 674: 670: 669:Fraleigh 1976 665: 662: 659:, p. 16. 658: 653: 651: 647: 643: 638: 635: 628: 624: 621: 619: 616: 614: 611: 609: 606: 605: 601: 595: 590: 585: 583: 581: 580:rough numbers 577: 572: 570: 565: 563: 559: 555: 551: 530: 526: 522: 519: 516: 513: 498: 489: 480: 471: 462: 458: 449: 445: 444:Superabundant 436: 427: 418: 409: 408:Euler diagram 405: 401: 399: 395: 392:For example, 390: 388: 384: 380: 376: 372: 352: 349: 343: 337: 330: 329: 328: 326: 310: 307: 301: 295: 272: 269: 266: 261: 258: 255: 252: 244: 241: 235: 229: 223: 216: 215: 214: 212: 208: 189: 186: 181: 178: 170: 167: 161: 155: 149: 142: 141: 140: 138: 134: 126: 124: 122: 117: 115: 111: 107: 103: 95: 90: 84: 83: 82: 79: 75: 73: 69: 65: 61: 57: 49: 44: 37: 32: 19: 3224:Superperfect 3219:Refactorable 3014:Superperfect 3009:Hyperperfect 2994:Quasiperfect 2912: 2878:Prime factor 2537:Transposable 2401:Narcissistic 2308:Digital root 2228:Super-Poulet 2188:Jordan–PĂłlya 2137:prime factor 2042:Noncototient 2009:Almost prime 1991:Superperfect 1966:Refactorable 1961:Quasiperfect 1936:Hyperperfect 1777:Pseudoprimes 1748:Wall–Sun–Sun 1683:Ordered Bell 1653:Fuss–Catalan 1565:non-centered 1515:Dodecahedral 1492:non-centered 1378:non-centered 1280:Wolstenholme 1025:× 2 ± 1 1022: 1021:Of the form 988:Eighth power 968:Fourth power 845: 825: 805: 783: 758: 736: 724: 712: 700: 688: 676: 664: 637: 573: 566: 557: 553: 549: 502: 487: 391: 382: 370: 368: 324: 287: 210: 204: 130: 118: 99: 80: 76: 55: 53: 3148:Extravagant 3143:Equidigital 3104:Untouchable 3024:Semiperfect 3004:Hemiperfect 2933:Square-free 2558:Extravagant 2553:Equidigital 2508:permutation 2467:Palindromic 2441:Automorphic 2339:Sum-product 2318:Sum-product 2273:Persistence 2168:ErdƑs–Woods 2090:Untouchable 1971:Semiperfect 1921:Hemiperfect 1582:Tesseractic 1520:Icosahedral 1500:Tetrahedral 1431:Dodecagonal 1132:Recursively 1003:Prime power 978:Sixth power 973:Fifth power 953:Power of 10 911:Classes of 786:, Waltham: 548:. A number 3255:Arithmetic 3239:Categories 3184:Arithmetic 3177:Other sets 3136:-dependent 2770:Graphemics 2643:Pernicious 2497:Undulating 2472:Pandigital 2446:Trimorphic 2047:Nontotient 1896:Arithmetic 1510:Octahedral 1411:Heptagonal 1401:Pentagonal 1386:Triangular 1227:SierpiƄski 1149:Jacobsthal 948:Power of 3 943:Power of 2 828:, Boston: 751:References 717:McCoy 1968 387:squarefree 48:rectangles 3214:Descartes 3189:Deficient 3124:Betrothed 3029:Practical 2918:Semiprime 2913:Composite 2527:Parasitic 2376:Factorion 2303:Digit sum 2295:Digit sum 2113:Fortunate 2100:Primorial 2014:Semiprime 1951:Practical 1916:Descartes 1911:Deficient 1901:Betrothed 1743:Wieferich 1572:Pentatope 1535:pyramidal 1426:Decagonal 1421:Nonagonal 1416:Octagonal 1406:Hexagonal 1265:Practical 1212:Congruent 1144:Fibonacci 1108:Loeschian 818:77-171950 741:Long 1972 705:Long 1972 657:Long 1972 497:Deficient 488:Composite 338:μ 296:μ 270:− 242:− 224:μ 168:− 150:μ 133:semiprime 70:, or the 3199:Solitary 3194:Friendly 3119:Sociable 3109:Amicable 3097:-related 3050:Abundant 2948:Achilles 2938:Powerful 2851:Overview 2599:Friedman 2532:Primeval 2477:Repdigit 2434:-related 2381:Kaprekar 2355:Meertens 2278:Additive 2265:dynamics 2173:Friendly 2085:Sociable 2075:Amicable 1886:Abundant 1866:dynamics 1688:Schröder 1678:Narayana 1648:Eulerian 1638:Delannoy 1633:Dedekind 1454:centered 1320:centered 1207:Amenable 1164:Narayana 1154:Leonardo 1050:Mersenne 998:Powerful 938:Achilles 858:77-81766 838:68-15225 782:(1964), 586:See also 417:Abundant 3204:Sublime 3158:Harshad 2984:Perfect 2968:Unusual 2958:Regular 2928:Sphenic 2863:Divisor 2772:related 2736:related 2700:related 2698:Sorting 2583:Vampire 2568:Harshad 2510:related 2482:Repunit 2396:Lychrel 2371:Dudeney 2223:StĂžrmer 2218:Sphenic 2203:Regular 2141:divisor 2080:Perfect 1976:Sublime 1946:Perfect 1673:Motzkin 1628:Catalan 1169:Padovan 1103:Leyland 1098:Idoneal 1093:Hilbert 1065:Woodall 495:  486:  479:Perfect 477:  468:  455:  442:  433:  424:  415:  92:in the 89:A002808 64:divisor 3153:Frugal 3113:Triple 2953:Smooth 2923:Pronic 2638:Odious 2563:Frugal 2517:Cyclic 2506:Digit- 2213:Smooth 2198:Pronic 2158:Cyclic 2135:Other 2108:Euclid 1758:Wilson 1732:Primes 1391:Square 1260:Polite 1222:Riesel 1217:Knödel 1179:Perrin 1060:Thabit 1045:Fermat 1035:Cullen 958:Square 926:Powers 856:  836:  816:  794:  769:  493:  484:  475:  466:  453:  440:  431:  422:  413:  3168:Smith 3085:Weird 2963:Rough 2908:Prime 2679:Prime 2674:Lucky 2663:sieve 2592:Other 2578:Smith 2458:Digit 2416:Happy 2391:Keith 2364:Other 2208:Rough 2178:Giuga 1643:Euler 1505:Cubic 1159:Lucas 1055:Proth 629:Notes 560:is a 556:< 470:Weird 459:and 446:and 377:(All 127:Types 110:up to 68:prime 58:is a 3134:Base 2633:Evil 2313:Self 2263:and 2153:Blum 1864:and 1668:Lobb 1623:Cake 1618:Bell 1368:Star 1275:Ulam 1174:Pell 963:Cube 854:LCCN 834:LCCN 814:LCCN 792:ISBN 767:ISBN 578:and 383:none 209:and 94:OEIS 72:unit 2751:Ban 2139:or 1658:Lah 371:all 369:If 106:360 102:299 3241:: 852:, 832:, 812:, 790:, 765:, 649:^ 398:42 394:72 273:1. 116:. 54:A 3115:) 3111:( 2838:e 2831:t 2824:v 1023:a 904:e 897:t 890:v 558:n 554:x 550:n 536:} 531:2 527:p 523:, 520:p 517:, 514:1 511:{ 365:. 353:0 350:= 347:) 344:n 341:( 325:n 311:1 308:= 305:) 302:1 299:( 267:= 262:1 259:+ 256:x 253:2 249:) 245:1 239:( 236:= 233:) 230:n 227:( 211:x 190:1 187:= 182:x 179:2 175:) 171:1 165:( 162:= 159:) 156:n 153:( 96:) 20:)

Index

Composite numbers

Cuisenaire rods
Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but prime numbers cannot
rectangles
positive integer
divisor
prime
unit
A002808
OEIS
299
360
up to
fundamental theorem of arithmetic
primality tests
semiprime
sphenic number
Möbius function
powerful number
perfect powers
squarefree
72
42

Euler diagram
Abundant
Primitive abundant
Highly abundant
Superabundant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑