Knowledge (XXG)

Convex hull

Source đź“ť

1926: 2558: 464: 3263: 2572: 2924: 2099: 40: 1170: 212: 1631: 3062: 2586:
Several other shapes can be defined from a set of points in a similar way to the convex hull, as the minimal superset with some property, the intersection of all shapes containing the points from a given family of shapes, or the union of all combinations of points for a certain type of combination.
915:
In two dimensions, the convex hull is sometimes partitioned into two parts, the upper hull and the lower hull, stretching between the leftmost and rightmost points of the hull. More generally, for convex hulls in any dimension, one can partition the boundary of the hull into upward-facing points
1319:
of a convex set is a point in the set that does not lie on any open line segment between any other two points of the same set. For a convex hull, every extreme point must be part of the given set, because otherwise it cannot be formed as a convex combination of given points. According to the
3343:, the term "convex hull" had become standard; Dines adds that he finds the term unfortunate, because the colloquial meaning of the word "hull" would suggest that it refers to the surface of a shape, whereas the convex hull includes the interior and not just the surface. 2830:
of a finite point set give a nested family of (non-convex) geometric objects describing the shape of a point set at different levels of detail. Each of alpha shape is the union of some of the features of the Delaunay triangulation, selected by comparing their
3221:
can make the minimum convex polygon excessively large, which has motivated relaxed approaches that contain only a subset of the observations, for instance by choosing one of the convex layers that is close to a target percentage of the samples, or in the
3298:
of a material, only those measurements on the lower convex hull will be stable. When removing a point from the hull and then calculating its distance to the hull, its distance to the new hull represents the degree of stability of the phase.
1328:) is the convex hull of its extreme points. However, this may not be true for convex sets that are not compact; for instance, the whole Euclidean plane and the open unit ball are both convex, but neither one has any extreme points. 1273: 2531:
structures can keep track of the convex hull for points moving continuously. The construction of convex hulls also serves as a tool, a building block for a number of other computational-geometric algorithms such as the
916:(points for which an upward ray is disjoint from the hull), downward-facing points, and extreme points. For three-dimensional hulls, the upward-facing and downward-facing parts of the boundary form topological disks. 3011:, points that do not belong to the hyperbolic space itself but lie on the boundary of a model of that space. The boundaries of convex hulls of ideal points of three-dimensional hyperbolic space are analogous to 7018: 4688: 2713:
or rectilinear convex hull is the intersection of all orthogonally convex and connected supersets, where a set is orthogonally convex if it contains all axis-parallel segments between pairs of its points.
2839:
of a point set are a nested family of convex polygons, the outermost of which is the convex hull, with the inner layers constructed recursively from the points that are not vertices of the convex hull.
1601:
commute with each other, in the sense that the Minkowski sum of convex hulls of sets gives the same result as the convex hull of the Minkowski sum of the same sets. This provides a step towards the
2246:, a number of algorithms are known for computing the convex hull for a finite set of points and for other geometric objects. Computing the convex hull means constructing an unambiguous, efficient 1189:
is always itself open, and the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed. For instance, the closed set
1617:
operation to constructing the convex hull of a set of points is constructing the intersection of a family of closed halfspaces that all contain the origin (or any other designated point).
2515: 1889: 2027: 1677: 5597:
Kim, Sooran; Kim, Kyoo; Koo, Jahyun; Lee, Hoonkyung; Min, Byung Il; Kim, Duck Young (December 2019), "Pressure-induced phase transitions and superconductivity in magnesium carbides",
7011: 1048:), then it equals the closed convex hull. However, an intersection of closed half-spaces is itself closed, so when a convex hull is not closed it cannot be represented in this way. 3186:
is that it lies within the convex hull of its control points. This so-called "convex hull property" can be used, for instance, in quickly detecting intersections of these curves.
2911:
helps find their crossings, and convex hulls are part of the measurement of boat hulls. And in the study of animal behavior, convex hulls are used in a standard definition of the
2824: 2786: 1740: 2088: 1470: 3116:
of solutions to a combinatorial problem. If the facets of these polytopes can be found, describing the polytopes as intersections of halfspaces, then algorithms based on
2656:
intersects the object. Equivalently it is the intersection of the (non-convex) cones generated by the outline of the object with respect to each viewpoint. It is used in
183:. Convex hulls have wide applications in mathematics, statistics, combinatorial optimization, economics, geometric modeling, and ethology. Related structures include the 7004: 6522: 5693: 4593: 2431: 2389: 158: 2689: 6840: 6122: 5133: 4494: 1589:, the shelling antimatroid of the point set. Every antimatroid can be represented in this way by convex hulls of points in a Euclidean space of high-enough dimension. 3085:
form a nested family of convex sets, with the convex hull outermost, and the bagplot also displays another polygon from this nested family, the contour of 50% depth.
2047: 1987: 2465: 2220:. The definition can be extended to the convex hull of a set of functions (obtained from the convex hull of the union of their epigraphs, or equivalently from their 5579:
Kernohan, Brian J.; Gitzen, Robert A.; Millspaugh, Joshua J. (2001), "Analysis of animal space use and movements", in Millspaugh, Joshua; Marzluff, John M. (eds.),
5422:
Hautier, Geoffroy (2014), "Data mining approaches to high-throughput crystal structure and compound prediction", in Atahan-Evrenk, Sule; Aspuru-Guzik, Alan (eds.),
857: 1707: 805: 428:
of the points encloses them with arbitrarily small surface area, smaller than the surface area of the convex hull. However, in higher dimensions, variants of the
1159: 1112: 5355: 2654: 2634: 2351: 2327: 2307: 2287: 2218: 2194: 2170: 1909: 1839: 1819: 1784: 1764: 1579: 1559: 1539: 1510: 1490: 1444: 1424: 1395: 1375: 1132: 1089: 1069: 1038: 1014: 994: 970: 905: 885: 825: 779: 759: 739: 712: 692: 672: 652: 632: 609: 589: 569: 549: 529: 509: 489: 422: 402: 378: 343: 317: 291: 269: 245: 6084:
Nilsen, Erlend B.; Pedersen, Simen; Linnell, John D. C. (2008), "Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?",
4412: 3003:
The definitions of a convex set as containing line segments between its points, and of a convex hull as the intersection of all convex supersets, apply to
7208: 1746:, and (by the Krein–Milman theorem) every convex polytope is the convex hull of its vertices. It is the unique convex polytope whose vertices belong to 718: 1195: 6347: 3170:
can be used to show that, for large markets, this approximation is accurate, and leads to a "quasi-equilibrium" for the original non-convex market.
424:. This formulation does not immediately generalize to higher dimensions: for a finite set of points in three-dimensional space, a neighborhood of a 1949:. Reflecting a pocket across its convex hull edge expands the given simple polygon into a polygon with the same perimeter and larger area, and the 7108: 6876:
Williams, Jason; Rossignac, Jarek (2005), "Tightening: curvature-limiting morphological simplification", in Kobbelt, Leif; Shapiro, Vadim (eds.),
5021: 4753: 1325: 2945:
of multivariate polynomials are convex hulls of points derived from the exponents of the terms in the polynomial, and can be used to analyze the
7200: 6357: 6266: 6075: 5439: 4919: 2835:
to the parameter alpha. The point set itself forms one endpoint of this family of shapes, and its convex hull forms the other endpoint. The
4793: 4718: 2595:
is the smallest affine subspace of a Euclidean space containing a given set, or the union of all affine combinations of points in the set.
6532: 5500: 2266:
of the hull. In two dimensions, it may suffice more simply to list the points that are vertices, in their cyclic order around the hull.
2602:
is the smallest linear subspace of a vector space containing a given set, or the union of all linear combinations of points in the set.
2029:, there will be times during the Brownian motion where the moving particle touches the boundary of the convex hull at a point of angle 7213: 2927:
Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by
2131: 1937:
encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a
6499: 6229: 5941: 5745: 5588: 5530:
Kashiwabara, Kenji; Nakamura, Masataka; Okamoto, Yoshio (2005), "The affine representation theorem for abstract convex geometries",
5344: 5205: 5122: 2702:
is the intersection of all relatively convex supersets, where a set within the same polygon is relatively convex if it contains the
2527:
data structures can be used to keep track of the convex hull of a set of points undergoing insertions and deletions of points, and
2517:, matching the worst-case output complexity of the problem. The convex hull of a simple polygon in the plane can be constructed in 2438: 1332:
extends this theory from finite convex combinations of extreme points to infinite combinations (integrals) in more general spaces.
5386: 5532: 4457: 2114:
or finite set of space curves in general position in three-dimensional space, the parts of the boundary away from the curves are
7233: 5463:(1992), "Hyperconvex hulls of metric spaces", Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 2250:
of the required convex shape. Output representations that have been considered for convex hulls of point sets include a list of
2130:, the convex hull of two semicircles in perpendicular planes with a common center, and D-forms, the convex shapes obtained from 7462: 7150: 1920: 5727: 3251: 2269:
For convex hulls in two or three dimensions, the complexity of the corresponding algorithms is usually estimated in terms of
1945:. Computing the same decomposition recursively for each pocket forms a hierarchical description of a given polygon called its 110:
problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its
71:
that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a
6990: 6615: 6188: 6014: 5645: 4631: 4360: 4895: 6878:
Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005
6275:
Rappoport, Ari (1992), "An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon",
5056:, London Mathematical Society Lecture Note Series, vol. 111, Cambridge: Cambridge University Press, pp. 113–253, 83:
subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
6956: 6756: 6751: 6305: 5465: 4941: 3227: 3007:
as well as to Euclidean spaces. However, in hyperbolic space, it is also possible to consider the convex hulls of sets of
3128:
of weights by finding and checking each convex hull vertex, often more efficiently than checking all possible solutions.
3124:, a different type of convex hull is also used, the convex hull of the weight vectors of solutions. One can maximize any 7467: 3247: 3121: 3167: 471:
It is not obvious that the first definition makes sense: why should there exist a unique minimal convex set containing
6951: 4906:, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 231–255, 2732: 7218: 5270:(1873), "A method of geometrical representation of the thermodynamic properties of substances by means of surfaces", 3213:, the study of animal behavior, where it is a classic, though perhaps simplistic, approach in estimating an animal's 6251:
Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982)
7452: 6457: 3246:
of any quantum system — the set of all ways the system can be prepared — is a convex hull whose extreme points are
3105: 2949:
behavior of the polynomial and the valuations of its roots. Convex hulls and polynomials also come together in the
2896: 2392: 7248: 1950: 1602: 1290: 435:
For objects in three dimensions, the first definition states that the convex hull is the smallest possible convex
6788: 6435: 5786: 3163: 3016: 2736: 7238: 2470: 1844: 1321: 1310: 7457: 7223: 7065: 5223: 3109: 3093: 3027: 3020: 2900: 2888: 2609:
or positive hull of a subset of a vector space is the set of all positive combinations of points in the subset.
1992: 1647: 1289:
The compactness of convex hulls of compact sets, in finite-dimensional Euclidean spaces, is generalized by the
30:
This article is about the smallest convex shape enclosing a given shape. For boats whose hulls are convex, see
3294:(1873), although the paper was published before the convex hull was so named. In a set of energies of several 2950: 2663:
The circular hull or alpha-hull of a subset of the plane is the intersection of all disks with a given radius
1177:. The points on or above the red curve provide an example of a closed set whose convex hull is open (the open 7308: 7285: 7179: 7103: 3254:
proves that any mixed state can in fact be written as a convex combination of pure states in multiple ways.
160:
for two or three dimensional point sets, and in time matching the worst-case output complexity given by the
3143: 591:
is included among the sets being intersected. Thus, it is exactly the unique minimal convex set containing
7426: 7387: 7303: 7228: 7155: 7140: 7093: 6726: 6366: 6246: 5541: 4802: 4551: 3193:
is a measurement of the size of a sailing vessel, defined using the convex hull of a cross-section of the
3159: 3137: 2904: 2748: 2721: 2710: 2563: 2243: 2237: 2173: 440: 192: 184: 180: 119: 6486:, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge: Cambridge University Press, 3069:. The outer shaded region is the convex hull, and the inner shaded region is the 50% Tukey depth contour. 2977: 2791: 2329:. For higher-dimensional hulls, the number of faces of other dimensions may also come into the analysis. 7447: 7160: 6390: 5866: 5495: 5302: 4853: 4542: 3307:
The lower convex hull of points in the plane appears, in the form of a Newton polygon, in a letter from
2740: 2149: 2143: 973: 115: 6742:(1986), "An optimal algorithm for computing the relative convex hull of a set of points in a polygon", 2997: 2928: 2859:
Convex hulls have wide applications in many fields. Within mathematics, convex hulls are used to study
2126:, the convex hull of two circles in perpendicular planes, each passing through the other's center, the 654:, so the set of all convex combinations is contained in the intersection of all convex sets containing 4785: 2762: 1716: 7165: 7031: 6910: 6093: 6046: 5664: 5606: 5267: 5240: 5048:(1987), "Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces", in 5012: 5008: 3291: 3125: 2695: 2577: 2056: 1966: 867:
and in three-dimensional space it is a tetrahedron. Therefore, every convex combination of points of
404:
and then releasing it, allowing it to contract; when it becomes taut, it encloses the convex hull of
6731: 4851:
Cranston, M.; Hsu, P.; March, P. (1989), "Smoothness of the convex hull of planar Brownian motion",
4807: 4556: 3339:). Other terms, such as "convex envelope", were also used in this time frame. By 1938, according to 432:
of finding a minimum-energy surface above a given shape can have the convex hull as their solution.
227:
if it contains the line segments connecting each pair of its points. The convex hull of a given set
7098: 7088: 7083: 6658: 5546: 5426:, Topics in Current Chemistry, vol. 345, Springer International Publishing, pp. 139–179, 5049: 5041: 3147: 3050: 3031: 2946: 2528: 2524: 2434: 2115: 2050: 1925: 1798: 1791: 942: 353: 161: 1965:
in the plane, at any fixed time, has probability 1 of having a convex hull whose boundary forms a
1449: 443:, and the definition using convex combinations may be extended from Euclidean spaces to arbitrary 7327: 7045: 6946: 6927: 6897: 6857: 6827: 6739: 6718: 6683: 6642: 6567: 6541: 6407: 6332: 6292: 6249:(1983), "Polyhedral combinatorics", in Bachem, Achim; Korte, Bernhard; Grötschel, Martin (eds.), 6109: 5986: 5893: 5839: 5803: 5759: 5680: 5654: 5287: 5256: 5166: 5150: 5092: 4958: 4899: 4872: 4820: 4648: 4610: 4577: 4533: 4513: 4437: 3201:, the perimeter of the cross-section itself, except for boats and ships that have a convex hull. 3179: 3155: 3117: 3035: 2957:
of the derivative of a polynomial all lie within the convex hull of the roots of the polynomial.
2954: 2752: 934: 296: 111: 76: 6120:
Oberman, Adam M. (2007), "The convex envelope is the solution of a nonlinear obstacle problem",
5330: 5224:"A local nearest-neighbor convex-hull construction of home ranges and utilization distributions" 2993: 2398: 2356: 125: 3000:
concern the existence of partitions of point sets into subsets with intersecting convex hulls.
2666: 7145: 6986: 6965: 6606: 6516: 6495: 6353: 6262: 6225: 6071: 5998: 5937: 5781: 5741: 5632: 5584: 5454: 5445: 5435: 5340: 5201: 5185: 5118: 5069: 4915: 4485: 3332: 3223: 3194: 3074: 2989: 2876: 2872: 2657: 2533: 2251: 2221: 1743: 1402: 946: 444: 31: 6209: 5104: 4404: 4384: 4348: 3482:, p. 6. The idea of partitioning the hull into two chains comes from an efficient variant of 2032: 1972: 7298: 7243: 7134: 7129: 6919: 6889: 6881: 6849: 6797: 6765: 6667: 6624: 6596: 6551: 6487: 6466: 6444: 6399: 6373:, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, 6314: 6284: 6254: 6217: 6197: 6161: 6131: 6101: 6063: 6023: 5970: 5921: 5883: 5875: 5848: 5816: 5795: 5733: 5702: 5672: 5622: 5614: 5551: 5509: 5474: 5427: 5364: 5334: 5311: 5248: 5193: 5181: 5142: 5110: 5084: 5030: 4978: 4950: 4907: 4862: 4840: 4812: 4781: 4762: 4748: 4727: 4697: 4663: 4640: 4602: 4588: 4561: 4537: 4503: 4466: 4421: 4369: 3364: 3316: 3113: 3004: 2892: 2759:, are mathematically related to convex hulls: the Delaunay triangulation of a point set in 2717: 2444: 2259: 2255: 2225: 1787: 1346: 1283: 1178: 452: 429: 99: 6996: 6869: 6811: 6779: 6711: 6679: 6638: 6587: 6563: 6509: 6419: 6378: 6328: 6239: 6175: 6145: 6035: 5982: 5951: 5912:
Laurentini, A. (1994), "The visual hull concept for silhouette-based image understanding",
5905: 5864:; Ĺ mulian, V. (1940), "On regularly convex sets in the space conjugate to a Banach space", 5755: 5716: 5563: 5523: 5488: 5401: 5378: 5323: 5215: 5162: 5061: 5001: 4982: 4970: 4929: 4884: 4774: 4741: 4709: 4622: 4573: 4525: 4478: 4433: 4396: 2616:
of a three-dimensional object, with respect to a set of viewpoints, consists of the points
830: 7318: 7289: 7263: 7258: 7253: 7184: 7169: 7078: 7050: 7027: 6865: 6807: 6775: 6707: 6675: 6634: 6583: 6559: 6505: 6426: 6415: 6374: 6343: 6324: 6235: 6171: 6141: 6031: 5978: 5947: 5901: 5820: 5812: 5751: 5712: 5559: 5519: 5484: 5397: 5374: 5319: 5211: 5158: 5057: 4997: 4966: 4925: 4880: 4770: 4737: 4705: 4683: 4618: 4569: 4521: 4474: 4429: 4392: 3328: 3324: 3312: 3262: 3239: 3089: 2981: 2965: 2961: 2942: 2868: 2848: 2756: 2197: 1962: 1938: 1710: 1639: 1614: 1279: 1174: 436: 220: 196: 172: 72: 4716:
Chang, J. S.; Yap, C.-K. (1986), "A polynomial solution for the potato-peeling problem",
4161:. See in particular Section 16.9, Non Convexity and Approximate Equilibrium, pp. 209–210. 3183: 2908: 1686: 784: 6097: 5668: 5610: 5394:
Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971)
5282: 5244: 4358:
Andrew, A. M. (1979), "Another efficient algorithm for convex hulls in two dimensions",
3081:, a method for visualizing the spread of two-dimensional sample points. The contours of 1141: 1094: 634:
must (by the assumption that it is convex) contain all convex combinations of points in
7405: 7313: 7174: 7073: 6653: 6481: 6477: 5627: 5572:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
5460: 5405: 5177: 5016: 4671: 4452: 3287: 3024: 2934: 2699: 2639: 2619: 2557: 2336: 2312: 2292: 2272: 2247: 2203: 2179: 2155: 1934: 1894: 1824: 1804: 1769: 1749: 1680: 1564: 1544: 1524: 1495: 1475: 1429: 1409: 1380: 1360: 1329: 1135: 1117: 1074: 1054: 1023: 999: 979: 955: 890: 870: 810: 764: 744: 724: 697: 677: 657: 637: 617: 594: 574: 554: 534: 514: 494: 474: 407: 387: 363: 328: 302: 276: 254: 230: 168: 4844: 4508: 4470: 3096:
is the convex hull of the risk points of its underlying deterministic decision rules.
2716:
The orthogonal convex hull is a special case of a much more general construction, the
1891:. In particular, in two and three dimensions the number of faces is at most linear in 7441: 7372: 7364: 7360: 7356: 7352: 7348: 7189: 6802: 6770: 6687: 6470: 6336: 6216:, Algorithms and Computation in Mathematics, vol. 11, Springer, pp. 12–13, 6201: 6027: 5807: 5514: 5479: 5315: 5293: 5252: 5170: 5096: 5045: 4667: 4644: 4489: 4373: 3295: 3012: 2969: 2836: 2119: 1598: 1316: 1298: 1091:-dimensional, then every point of the hull belongs to an open convex hull of at most 439:
of the objects. The definition using intersections of convex sets may be extended to
425: 188: 95: 6901: 6646: 6571: 6296: 6113: 5990: 5684: 5369: 5260: 4824: 4652: 4441: 3400: 3398: 3396: 2571: 761:-dimensional Euclidean space, every convex combination of finitely many points from 352:
in the Euclidean plane, not all on one line, the boundary of the convex hull is the
7410: 6696:"Fixed points for condensing multifunctions in metric spaces with convex structure" 6448: 6042: 5958: 5830: 5767: 5763: 5723: 4891: 4659: 4581: 3424: 3308: 3162:
can be used to prove the existence of an equilibrium. When actual economic data is
2847:
of a polygon is the largest convex polygon contained inside it. It can be found in
2844: 2832: 2725: 2606: 2309:, the number of points on the convex hull, which may be significantly smaller than 2263: 2134:
for a surface formed by gluing together two planar convex sets of equal perimeter.
1294: 674:. Conversely, the set of all convex combinations is itself a convex set containing 448: 200: 106:
can be represented by applying this closure operator to finite sets of points. The
6695: 6610: 6555: 6136: 5707: 6258: 6067: 5732:, Lecture Notes in Computer Science, vol. 606, Heidelberg: Springer-Verlag, 5555: 5353:
Gustin, William (1947), "On the interior of the convex hull of a Euclidean set",
2660:
as the largest shape that could have the same outlines from the given viewpoints.
511:? However, the second definition, the intersection of all convex sets containing 7400: 7395: 6982: 6969: 6744:
Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2
6183: 5297: 4936: 3483: 3340: 3243: 3190: 3082: 3008: 2923: 2880: 2827: 2613: 2599: 2592: 2518: 2330: 2111: 1586: 1517: 1268:{\displaystyle \left\{(x,y)\mathop {\bigg |} y\geq {\frac {1}{1+x^{2}}}\right\}} 1045: 381: 349: 176: 103: 91: 80: 6530:
Seaton, Katherine A. (2017), "Sphericons and D-forms: a crocheted connection",
5618: 4911: 7323: 7293: 7055: 6430: 6385: 6288: 6221: 6105: 6012:(1979), "A linear algorithm for finding the convex hull of a simple polygon", 6009: 5888: 5861: 5826: 5691:
Kiselman, Christer O. (2002), "A semigroup of operators in convexity theory",
5676: 5197: 4701: 4448: 4380: 3214: 3198: 3151: 3015:
in Euclidean space, and their metric properties play an important role in the
2985: 2973: 2938: 2912: 2864: 2860: 2098: 1134:. The sets of vertices of a square, regular octahedron, or higher-dimensional 1041: 1017: 463: 224: 68: 44: 6908:
Worton, Bruce J. (1995), "A convex hull-based estimator of home-range size",
6491: 5034: 4867: 4766: 6974: 6885: 6671: 6629: 5231: 5131:
Gardner, L. Terrell (1984), "An elementary proof of the Russo-Dye theorem",
5054:
Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)
3923: 3921: 3267: 3250:
known as pure states and whose interior points are called mixed states. The
3023:. Hyperbolic convex hulls have also been used as part of the calculation of 2127: 1293:, according to which the closed convex hull of a weakly compact subset of a 357: 107: 39: 5853: 5636: 5449: 4565: 1585:
When applied to a finite set of points, this is the closure operator of an
17: 5737: 5424:
Prediction and Calculation of Crystal Structures: Methods and Applications
5114: 4831:
Chen, Qinyu; Wang, Guozhao (March 2003), "A class of BĂ©zier-like curves",
167:
As well as for finite point sets, convex hulls have also been studied for
7332: 6656:(1914), "Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)", 6186:(1984), "On the definition and computation of rectilinear convex hulls", 5659: 5431: 5339:, Graduate Texts in Mathematics, vol. 221 (2nd ed.), Springer, 3210: 2703: 2541: 1186: 864: 87: 52: 6831: 6754:(1993), "Convex hulls and isometries of cusped hyperbolic 3-manifolds", 5192:, Mathematics: Theory & Applications, Birkhäuser, pp. 193–213, 3420: 3045:
for the application of convex hulls to this subject, and the section on
1630: 1324:, every compact convex set in a Euclidean space (or more generally in a 1169: 7113: 6931: 6861: 6600: 6578:
Sedykh, V. D. (1981), "Structure of the convex hull of a space curve",
6411: 6319: 6303:
Reay, John R. (1979), "Several generalizations of Tverberg's theorem",
5974: 5897: 5799: 5154: 4962: 4876: 4816: 4732: 4614: 4517: 3315:
in 1676. The term "convex hull" itself appears as early as the work of
3218: 3078: 3066: 2907:
to non-convex markets. In geometric modeling, the convex hull property
2884: 860: 322: 211: 6166: 5925: 6893: 5088: 4425: 3827: 3811: 3691: 3679: 3655: 3479: 3404: 3271: 694:, so it also contains the intersection of all convex sets containing 6923: 6853: 6403: 6388:(1961), "Holomorphically convex sets in several complex variables", 5879: 5146: 4954: 4606: 6546: 3715: 3209:
The convex hull is commonly known as the minimum convex polygon in
3061: 4591:(1935), "Integration of functions with values in a Banach space", 3261: 3060: 2922: 2537: 2123: 2103: 2097: 1924: 1629: 1168: 462: 451:; convex hulls may also be generalized in a more abstract way, to 210: 38: 6721:(1983), "Solving geometric problems with the rotating calipers", 5570:
Katoh, Naoki (1992), "Bicriteria network optimization problems",
5283:
The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics
714:, and therefore the second and third definitions are equivalent. 4689:
International Journal of Computational Geometry and Applications
1345:
The convex-hull operator has the characteristic properties of a
94:
are compact. Every compact convex set is the convex hull of its
7000: 5834: 2887:
visualization of two-dimensional data, and define risk sets of
1929:
Convex hull ( in blue and yellow) of a simple polygon (in blue)
1605:
bounding the distance of a Minkowski sum from its convex hull.
5914:
IEEE Transactions on Pattern Analysis and Machine Intelligence
4027: 1597:
The operations of constructing the convex hull and taking the
6058:
Nicola, Piercarlo (2000), "General Competitive Equilibrium",
3927: 3367:. However, this term is also frequently used to refer to the 2903:. In economics, convex hulls can be used to apply methods of 5272:
Transactions of the Connecticut Academy of Arts and Sciences
5190:
Discriminants, Resultants, and Multidimensional Determinants
3951: 2053:
of this set of exceptional times is (with high probability)
531:, is well-defined. It is a subset of every other convex set 4629:
Brown, K. Q. (1979), "Voronoi diagrams from convex hulls",
3383: 3381: 3282:
is expected to be unstable as it lies above the lower hull.
2391:. For points in two and three dimensions, more complicated 5963:
International Journal of Computer and Information Sciences
5961:(1983), "On finding the convex hull of a simple polygon", 5643:
Kirkpatrick, K. A. (2006), "The Schrödinger–HJW theorem",
3627: 3077:, the convex hull provides one of the key components of a 1953:
states that this expansion process eventually terminates.
5070:"Convex polytopes, algebraic geometry, and combinatorics" 4786:"An optimal convex hull algorithm in any fixed dimension" 4350:
Convex Sets and Their Applications. Summer Lectures 1959.
3896: 3894: 3892: 3646:, Theorem 1.1.2 (pages 2–3) and Chapter 3. 1941:
of the polygon and a single convex hull edge, are called
5019:(1983), "On the shape of a set of points in the plane", 4194: 215:
Convex hull of a bounded planar set: rubber band analogy
5300:(1983), "Finding the convex hull of a simple polygon", 907:, and the third and fourth definitions are equivalent. 611:. Therefore, the first two definitions are equivalent. 3871: 2895:
of solutions to combinatorial problems are central to
6838:
Whitley, Robert (1986), "The KreÄ­n-Ĺ mulian theorem",
6786:
Westermann, L. R. J. (1976), "On the hull operator",
6060:
Mainstream Mathematical Economics in the 20th Century
5387:"Mathematical models for statistical decision theory" 4686:(2012), "Three problems about dynamic convex hulls", 4198: 2794: 2765: 2669: 2642: 2622: 2473: 2447: 2401: 2359: 2339: 2315: 2295: 2275: 2206: 2182: 2158: 2059: 2035: 1995: 1975: 1897: 1847: 1827: 1807: 1772: 1752: 1719: 1689: 1650: 1567: 1547: 1527: 1498: 1478: 1452: 1432: 1412: 1383: 1363: 1198: 1144: 1120: 1097: 1077: 1057: 1026: 1002: 982: 958: 893: 873: 833: 813: 787: 767: 747: 727: 700: 680: 660: 640: 620: 597: 577: 557: 537: 517: 497: 477: 410: 390: 366: 331: 305: 279: 257: 233: 128: 6455:
Sakuma, Itsuo (1977), "Closedness of convex hulls",
6152:
Okon, T. (2000), "Choquet theory in metric spaces",
3531: 3217:
based on points where the animal has been observed.
3166:, it can be made convex by taking convex hulls. The 2788:
can be viewed as the projection of a convex hull in
7419: 7386: 7341: 7272: 7198: 7122: 7064: 7038: 6818:White, F. Puryer (April 1923), "Pure mathematics", 4676:
Computational Geometry: Algorithms and Applications
3112:, central objects of study are the convex hulls of 43:The convex hull of the red set is the blue and red 5188:(1994), "6. Newton Polytopes and Chow Polytopes", 4110: 3363:refers to the fact that the convex hull defines a 2818: 2780: 2739:, obtained as an intersection of sublevel sets of 2683: 2648: 2628: 2509: 2459: 2425: 2383: 2345: 2321: 2301: 2281: 2212: 2188: 2164: 2082: 2041: 2021: 1981: 1903: 1883: 1833: 1813: 1778: 1758: 1734: 1701: 1671: 1573: 1553: 1533: 1504: 1484: 1464: 1438: 1418: 1389: 1369: 1267: 1153: 1126: 1106: 1083: 1063: 1032: 1008: 988: 964: 899: 879: 851: 819: 799: 773: 753: 733: 706: 686: 666: 646: 626: 603: 583: 563: 543: 523: 503: 483: 416: 396: 372: 337: 311: 285: 263: 239: 152: 5694:Transactions of the American Mathematical Society 5068:Escobar, Laura; Kaveh, Kiumars (September 2020), 4902:(2008), "All polygons flip finitely ... right?", 4594:Transactions of the American Mathematical Society 3799: 3416: 3371:, with which it should not be confused — see e.g 1221: 6841:Proceedings of the American Mathematical Society 6123:Proceedings of the American Mathematical Society 5222:Getz, Wayne M.; Wilmers, Christopher C. (2004), 5134:Proceedings of the American Mathematical Society 4751:(1985), "On the convex layers of a planar set", 4495:Proceedings of the American Mathematical Society 4455:(1997), "How good are convex hull algorithms?", 3727: 6659:Journal fĂĽr die Reine und Angewandte Mathematik 4137:; see especially remarks following Theorem 2.9. 3751: 2395:are known that compute the convex hull in time 273:The intersection of all convex sets containing 4904:Surveys on Discrete and Computational Geometry 3034:, and applied to determine the equivalence of 887:belongs to a simplex whose vertices belong to 98:. The convex hull operator is an example of a 7012: 6521:: CS1 maint: DOI inactive as of March 2024 ( 6154:Zeitschrift fĂĽr Analysis und ihre Anwendungen 5498:(1976), "Normality and the numerical range", 5356:Bulletin of the American Mathematical Society 4086: 3928:Edelsbrunner, Kirkpatrick & Seidel (1983) 3459: 3457: 3421:answer to "the perimeter of a non-convex set" 2851:, but the exponent of the algorithm is high. 2636:such that every ray from a viewpoint through 2262:of facets and their adjacencies, or the full 2172:on a real vector space is the function whose 1742:. Each extreme point of the hull is called a 8: 6433:(1999), "The bagplot: A bivariate boxplot", 5077:Notices of the American Mathematical Society 4492:(1982), "Quantitative Helly-type theorems", 4413:Notices of the American Mathematical Society 4304: 4257: 4233: 3952:Ottmann, Soisalon-Soininen & Wood (1984) 3839: 3639: 2499: 2485: 2467:, the time for computing the convex hull is 2176:is the lower convex hull of the epigraph of 2106:, the convex hull of two circles in 3d space 1873: 1859: 1801:, the number of faces of the convex hull of 1357:, meaning that the convex hull of every set 1278:(the set of points that lie on or above the 4540:(1999), "Data structures for mobile data", 4245: 4221: 4134: 3787: 3775: 3587: 3511: 3463: 3387: 2735:is a generalization of similar concepts to 251:The (unique) minimal convex set containing 7019: 7005: 6997: 5835:"On extreme points of regular convex sets" 5109:, Cambridge University Press, p. 55, 4028:Gel'fand, Kapranov & Zelevinsky (1994) 3912: 3900: 3628:Kashiwabara, Nakamura & Okamoto (2005) 3120:can be used to find optimal solutions. In 2720:, which can be thought of as the smallest 2510:{\displaystyle O(n^{\lfloor d/2\rfloor })} 1884:{\displaystyle O(n^{\lfloor d/2\rfloor })} 27:Smallest convex set containing a given set 6820:Science Progress in the Twentieth Century 6801: 6769: 6730: 6628: 6545: 6483:Convex Bodies: The Brunn–Minkowski Theory 6318: 6165: 6135: 5887: 5852: 5706: 5658: 5626: 5545: 5513: 5478: 5368: 4866: 4806: 4731: 4555: 4507: 4389:Algebraic Numbers and Algebraic Functions 3939: 3883: 3843: 3703: 3643: 3189:In the geometry of boat and ship design, 2801: 2797: 2796: 2793: 2772: 2768: 2767: 2764: 2673: 2668: 2641: 2621: 2491: 2484: 2472: 2446: 2400: 2358: 2338: 2314: 2294: 2274: 2205: 2181: 2157: 2069: 2058: 2034: 2022:{\displaystyle \pi /2<\theta <\pi } 1999: 1994: 1974: 1896: 1865: 1858: 1846: 1826: 1806: 1771: 1751: 1726: 1722: 1721: 1718: 1688: 1672:{\displaystyle S\subset \mathbb {R} ^{d}} 1663: 1659: 1658: 1649: 1566: 1546: 1526: 1497: 1477: 1451: 1431: 1411: 1382: 1362: 1251: 1235: 1220: 1219: 1197: 1143: 1119: 1096: 1076: 1056: 1025: 1001: 981: 957: 892: 872: 832: 812: 786: 766: 746: 726: 699: 679: 659: 639: 619: 596: 576: 556: 536: 516: 496: 476: 409: 389: 365: 330: 304: 278: 256: 232: 127: 6349:Quantum Computing: A Gentle Introduction 5784:(December 1922), "Ăśber konvexe Körper", 4405:"The mathematics of Grace Murray Hopper" 4195:Kernohan, Gitzen & Millspaugh (2001) 4170: 4038: 4011: 3999: 3963: 3823: 3667: 3615: 3542: 3523: 3320: 1541:, the convex hull of the convex hull of 781:is also a convex combination of at most 7109:Locally convex topological vector space 6723:Proceedings of IEEE MELECON '83, Athens 5022:IEEE Transactions on Information Theory 4754:IEEE Transactions on Information Theory 4281: 4062: 4050: 3575: 3436: 3352: 3049:for their application to the theory of 2875:involve convex hulls. They are used in 1326:locally convex topological vector space 6580:Trudy Seminara imeni I. G. Petrovskogo 6514: 4296: 4209: 4158: 4122: 3872:Basch, Guibas & Hershberger (1999) 3763: 3739: 3642:, Theorem 3, pages 562–563; 3563: 3550: 3527: 3499: 3487: 1644:The convex hull of a finite point set 1165:Preservation of topological properties 827:. The set of convex combinations of a 6611:"Remarks on piecewise-linear algebra" 5581:Radio Tracking and Animal Populations 4794:Discrete & Computational Geometry 4719:Discrete & Computational Geometry 4391:, Gordon and Breach, pp. 37–43, 4329: 4317: 4285: 4269: 4199:Nilsen, Pedersen & Linnell (2008) 4182: 4146: 4098: 4023: 3987: 3975: 3448: 3336: 1185:Topologically, the convex hull of an 1020:itself (as happens, for instance, if 7: 6182:Ottmann, T.; Soisalon-Soininen, E.; 5286:, Longmans, Green, & Co., 1906, 4300: 4074: 3859: 3603: 3532:Bárány, Katchalski & Pach (1982) 3226:method by combining convex hulls of 3150:, agents are assumed to have convex 3042: 2224:) and, in this form, is dual to the 1297:(a subset that is compact under the 384:so that it surrounds the entire set 75:, or equivalently as the set of all 32:Hull (watercraft) § Hull shapes 6533:Journal of Mathematics and the Arts 6000:Encyclopaedia of Ships and Shipping 5501:Linear Algebra and Its Applications 3847: 3591: 3546: 3467: 3372: 3197:of the vessel. It differs from the 2819:{\displaystyle \mathbb {R} ^{n+1}.} 1406:, meaning that, for every two sets 6700:KĹŤdai Mathematical Seminar Reports 5934:Convex Sets and their Applications 4111:Rousseeuw, Ruts & Tukey (1999) 2289:, the number of input points, and 1634:Convex hull of points in the plane 1561:is the same as the convex hull of 1492:is a subset of the convex hull of 1336:Geometric and algebraic properties 972:is the intersection of all closed 25: 6746:, North-Holland, pp. 853–856 4990:Journal for Geometry and Graphics 4509:10.1090/S0002-9939-1982-0663877-X 3800:Avis, Bremner & Seidel (1997) 3327:appears earlier, for instance in 3323:), and the corresponding term in 3182:, one of the key properties of a 3046: 2724:containing the points of a given 2698:of a subset of a two-dimensional 1967:continuously differentiable curve 1051:If the open convex hull of a set 467:3D convex hull of 120 point cloud 5253:10.1111/j.0906-7590.2004.03835.x 3728:Cranston, Hsu & March (1989) 2781:{\displaystyle \mathbb {R} ^{n}} 2570: 2556: 1841:-dimensional Euclidean space is 1735:{\displaystyle \mathbb {R} ^{d}} 7214:Ekeland's variational principle 6352:, MIT Press, pp. 215–216, 6210:"1.2.1 The Gauss–Lucas theorem" 5370:10.1090/S0002-9904-1947-08787-5 4833:Computer Aided Geometric Design 3417:Williams & Rossignac (2005) 3248:positive-semidefinite operators 2333:can compute the convex hull of 2132:Alexandrov's uniqueness theorem 2083:{\displaystyle 1-\pi /2\theta } 1921:Convex hull of a simple polygon 1138:provide examples where exactly 380:. One may imagine stretching a 79:of points in the subset. For a 6991:Wolfram Demonstrations Project 6616:Pacific Journal of Mathematics 6449:10.1080/00031305.1999.10474494 6253:, Springer, pp. 312–345, 6062:, Springer, pp. 197–215, 6015:Information Processing Letters 5646:Foundations of Physics Letters 5106:Phase Transitions in Materials 4983:"The development of the oloid" 4632:Information Processing Letters 4361:Information Processing Letters 2980:describes the convex hulls of 2706:between any two of its points. 2504: 2477: 2420: 2405: 2378: 2363: 1878: 1851: 1216: 1204: 846: 834: 147: 132: 118:, are fundamental problems of 90:are open, and convex hulls of 1: 6757:Topology and Its Applications 6593:Journal of Soviet Mathematics 6556:10.1080/17513472.2017.1318512 6346:; Polak, Wolfgang H. (2011), 6306:Israel Journal of Mathematics 6137:10.1090/S0002-9939-07-08887-9 5708:10.1090/S0002-9947-02-02915-X 5466:Topology and Its Applications 4942:American Mathematical Monthly 4845:10.1016/s0167-8396(03)00003-7 4471:10.1016/S0925-7721(96)00023-5 3752:Dirnböck & Stachel (1997) 122:. They can be solved in time 6803:10.1016/1385-7258(76)90065-2 6771:10.1016/0166-8641(93)90032-9 6471:10.1016/0022-0531(77)90095-3 6259:10.1007/978-3-642-68874-4_13 6208:Prasolov, Victor V. (2004), 6202:10.1016/0020-0255(84)90025-2 6068:10.1007/978-3-662-04238-0_16 6028:10.1016/0020-0190(79)90069-3 5556:10.1016/j.comgeo.2004.05.001 5515:10.1016/0024-3795(76)90080-x 5480:10.1016/0166-8641(92)90092-E 5316:10.1016/0196-6774(83)90013-5 4645:10.1016/0020-0190(79)90074-7 4374:10.1016/0020-0190(79)90072-3 3148:general economic equilibrium 3122:multi-objective optimization 2879:as the outermost contour of 2439:Kirkpatrick–Seidel algorithm 2353:points in the plane in time 1465:{\displaystyle X\subseteq Y} 937:of the convex hull, and the 7234:Hermite–Hadamard inequality 6952:Encyclopedia of Mathematics 6047:"Letter to Henry Oldenburg" 5103:Fultz, Brent (April 2020), 4353:, Argon national laboratory 4087:Epstein & Marden (1987) 2733:holomorphically convex hull 2393:output-sensitive algorithms 2196:. It is the unique maximal 614:Each convex set containing 67:of a shape is the smallest 7484: 6458:Journal of Economic Theory 5997:Mason, Herbert B. (1908), 5619:10.1038/s41598-019-56497-6 4305:Escobar & Kaveh (2020) 4234:Rieffel & Polak (2011) 3840:McCallum & Avis (1979) 3640:Krein & Ĺ mulian (1940) 3135: 3106:combinatorial optimization 3100:Combinatorial optimization 2972:is the convex hull of its 2897:combinatorial optimization 2871:, and several theorems in 2737:complex analytic manifolds 2426:{\displaystyle O(n\log h)} 2384:{\displaystyle O(n\log n)} 2235: 2141: 1918: 1637: 1308: 952:The closed convex hull of 459:Equivalence of definitions 153:{\displaystyle O(n\log n)} 29: 6880:, ACM, pp. 107–112, 6789:Indagationes Mathematicae 6694:Talman, Louis A. (1977), 6595:33 (4): 1140–1153, 1986, 6436:The American Statistician 6289:10.1111/1467-8659.1140235 6222:10.1007/978-3-642-03980-5 6106:10.1007/s11284-007-0421-9 5936:, John Wiley & Sons, 5787:Mathematische Zeitschrift 5677:10.1007/s10702-006-1852-1 5198:10.1007/978-0-8176-4771-1 4702:10.1142/S0218195912600096 4222:Getz & Wilmers (2004) 3588:Krein & Milman (1940) 3562:This example is given by 3419:. See also Douglas Zare, 3017:geometrization conjecture 2953:, according to which the 2889:randomized decision rules 2684:{\displaystyle 1/\alpha } 2536:method for computing the 2110:For the convex hull of a 1969:. However, for any angle 1766:and that encloses all of 1521:, meaning that for every 7420:Applications and related 7224:Fenchel-Young inequality 6492:10.1017/CBO9780511526282 5385:Harris, Bernard (1971), 5035:10.1109/TIT.1983.1056714 4939:(1938), "On convexity", 4767:10.1109/TIT.1985.1057060 4678:(3rd ed.), Springer 3110:polyhedral combinatorics 3094:randomized decision rule 3041:See also the section on 3021:low-dimensional topology 2901:polyhedral combinatorics 2691:that contain the subset. 1786:. For sets of points in 996:. If the convex hull of 945:(or in some sources the 114:problem of intersecting 7180:Legendre transformation 7104:Legendre transformation 6886:10.1145/1060244.1060257 6672:10.1515/crll.1914.144.1 6630:10.2140/pjm.1982.98.183 6494:(inactive 2024-03-18), 6367:Rockafellar, R. Tyrrell 6277:Computer Graphics Forum 5932:Lay, Steven R. (1982), 4385:"2.5. Newton's Polygon" 3844:Graham & Yao (1983) 3252:Schrödinger–HJW theorem 3168:Shapley–Folkman theorem 3158:. These assumptions of 3126:quasiconvex combination 2751:of a point set and its 2743:containing a given set. 2122:. Examples include the 2042:{\displaystyle \theta } 1982:{\displaystyle \theta } 1961:The curve generated by 1947:convex differences tree 1790:, the convex hull is a 1603:Shapley–Folkman theorem 863:; in the plane it is a 7463:Computational geometry 7427:Convexity in economics 7361:(lower) ideally convex 7219:Fenchel–Moreau theorem 7209:CarathĂ©odory's theorem 6053:, University of Oxford 5854:10.4064/sm-9-1-133-138 5533:Computational Geometry 4912:10.1090/conm/453/08801 4900:Toussaint, Godfried T. 4868:10.1214/aop/1176991500 4566:10.1006/jagm.1998.0988 4458:Computational Geometry 4171:Chen & Wang (2003) 4012:Chang & Yap (1986) 3283: 3160:convexity in economics 3138:Convexity in economics 3070: 2931: 2905:convexity in economics 2820: 2782: 2749:Delaunay triangulation 2722:injective metric space 2711:orthogonal convex hull 2685: 2650: 2630: 2564:Orthogonal convex hull 2511: 2461: 2460:{\displaystyle d>3} 2427: 2385: 2347: 2323: 2303: 2283: 2244:computational geometry 2238:Convex hull algorithms 2214: 2190: 2166: 2107: 2084: 2043: 2023: 1983: 1930: 1905: 1885: 1835: 1815: 1780: 1760: 1736: 1709:, or more generally a 1703: 1673: 1635: 1575: 1555: 1535: 1506: 1486: 1466: 1440: 1420: 1391: 1371: 1269: 1182: 1155: 1128: 1108: 1085: 1065: 1034: 1010: 990: 966: 949:) of the convex hull. 920:Topological properties 901: 881: 859:-tuple of points is a 853: 821: 801: 775: 755: 735: 719:CarathĂ©odory's theorem 717:In fact, according to 708: 688: 668: 648: 628: 605: 585: 565: 545: 525: 505: 485: 468: 441:non-Euclidean geometry 418: 398: 374: 339: 313: 287: 265: 241: 216: 193:Delaunay triangulation 185:orthogonal convex hull 181:epigraphs of functions 164:in higher dimensions. 154: 120:computational geometry 48: 7349:Convex series related 7249:Shapley–Folkman lemma 6391:Annals of Mathematics 6313:(3): 238–244 (1980), 5867:Annals of Mathematics 5811:; see also review by 5738:10.1007/3-540-55611-7 5303:Journal of Algorithms 5239:(4), Wiley: 489–505, 5115:10.1017/9781108641449 5013:Kirkpatrick, David G. 5009:Edelsbrunner, Herbert 4854:Annals of Probability 4543:Journal of Algorithms 3828:de Berg et al. (2008) 3812:de Berg et al. (2008) 3716:Demaine et al. (2008) 3692:de Berg et al. (2008) 3680:de Berg et al. (2008) 3656:de Berg et al. (2008) 3480:de Berg et al. (2008) 3405:de Berg et al. (2008) 3265: 3064: 2926: 2821: 2783: 2741:holomorphic functions 2686: 2651: 2631: 2512: 2462: 2428: 2386: 2348: 2324: 2304: 2284: 2215: 2191: 2167: 2150:lower convex envelope 2144:Lower convex envelope 2101: 2085: 2044: 2024: 1984: 1933:The convex hull of a 1928: 1906: 1886: 1836: 1816: 1781: 1761: 1737: 1704: 1674: 1633: 1576: 1556: 1536: 1507: 1487: 1472:, the convex hull of 1467: 1441: 1421: 1392: 1372: 1301:) is weakly compact. 1291:Krein–Smulian theorem 1270: 1172: 1156: 1129: 1109: 1086: 1066: 1035: 1011: 991: 967: 925:Closed and open hulls 911:Upper and lower hulls 902: 882: 854: 852:{\displaystyle (d+1)} 822: 802: 776: 756: 736: 709: 689: 669: 649: 629: 606: 586: 566: 546: 526: 506: 486: 466: 419: 399: 375: 340: 314: 288: 266: 242: 219:A set of points in a 214: 155: 42: 7239:Krein–Milman theorem 7032:variational analysis 6189:Information Sciences 6045:(October 24, 1676), 5432:10.1007/128_2013_486 5396:, pp. 369–389, 4488:; Katchalski, Meir; 4403:Auel, Asher (2019), 3317:Garrett Birkhoff 3292:Josiah Willard Gibbs 3092:, the risk set of a 3051:developable surfaces 3032:hyperbolic manifolds 2792: 2763: 2696:relative convex hull 2667: 2640: 2620: 2578:Relative convex hull 2471: 2445: 2399: 2357: 2337: 2313: 2293: 2273: 2204: 2180: 2156: 2057: 2033: 1993: 1973: 1895: 1845: 1825: 1805: 1770: 1750: 1717: 1687: 1648: 1565: 1545: 1525: 1496: 1476: 1450: 1430: 1410: 1381: 1361: 1322:Krein–Milman theorem 1311:Krein–Milman theorem 1286:as its convex hull. 1196: 1142: 1118: 1095: 1075: 1055: 1044:or more generally a 1024: 1000: 980: 956: 891: 871: 831: 811: 785: 765: 745: 725: 698: 678: 658: 638: 618: 595: 575: 555: 535: 515: 495: 475: 408: 388: 364: 329: 303: 277: 255: 231: 126: 7468:Geometry processing 7229:Jensen's inequality 7099:Lagrange multiplier 7089:Convex optimization 7084:Convex metric space 6740:Toussaint, Godfried 6719:Toussaint, Godfried 6427:Rousseeuw, Peter J. 6344:Rieffel, Eleanor G. 6098:2008EcoR...23..635N 6086:Ecological Research 5669:2006FoPhL..19...95K 5611:2019NatSR...920253K 5496:Johnson, Charles R. 5245:2004Ecogr..27..489G 4894:; Gassend, Blaise; 4534:Guibas, Leonidas J. 2951:Gauss–Lucas theorem 2529:kinetic convex hull 2525:Dynamic convex hull 2252:linear inequalities 2148:The convex hull or 2051:Hausdorff dimension 1799:upper bound theorem 1792:simplicial polytope 1702:{\displaystyle d=2} 1161:points are needed. 800:{\displaystyle d+1} 354:simple closed curve 297:convex combinations 162:upper bound theorem 77:convex combinations 7357:(cs, bcs)-complete 7328:Algebraic interior 7046:Convex combination 6966:Weisstein, Eric W. 6607:Sontag, Eduardo D. 6601:10.1007/BF01086114 6320:10.1007/BF02760885 6247:Pulleyblank, W. R. 6051:The Newton Project 6008:McCallum, Duncan; 5975:10.1007/BF00993195 5889:10338.dmlcz/100106 5840:Studia Mathematica 5800:10.1007/bf01215899 5599:Scientific Reports 5583:, Academic Press, 4817:10.1007/BF02573985 4733:10.1007/BF02187692 4451:; Bremner, David; 4246:Kirkpatrick (2006) 4135:Pulleyblank (1983) 3788:Rockafellar (1970) 3776:Rockafellar (1970) 3512:Rockafellar (1970) 3464:Rockafellar (1970) 3388:Rockafellar (1970) 3369:closed convex hull 3290:was identified by 3284: 3180:geometric modeling 3174:Geometric modeling 3156:convex preferences 3144:Arrow–Debreu model 3118:linear programming 3071: 2998:Tverberg's theorem 2932: 2929:Tverberg's theorem 2891:. Convex hulls of 2883:, are part of the 2816: 2778: 2681: 2646: 2626: 2548:Related structures 2507: 2457: 2423: 2381: 2343: 2319: 2299: 2279: 2210: 2186: 2162: 2108: 2080: 2039: 2019: 1979: 1951:ErdĹ‘s–Nagy theorem 1931: 1901: 1881: 1831: 1811: 1776: 1756: 1732: 1699: 1669: 1636: 1609:Projective duality 1571: 1551: 1531: 1502: 1482: 1462: 1436: 1416: 1387: 1367: 1265: 1183: 1154:{\displaystyle 2d} 1151: 1124: 1107:{\displaystyle 2d} 1104: 1081: 1061: 1030: 1006: 986: 962: 931:closed convex hull 897: 877: 849: 817: 797: 771: 751: 731: 704: 684: 664: 644: 624: 601: 581: 561: 541: 521: 501: 481: 469: 445:real vector spaces 414: 394: 370: 335: 309: 283: 261: 247:may be defined as 237: 217: 150: 49: 7453:Closure operators 7435: 7434: 6987:Eric W. Weisstein 6752:Weeks, Jeffrey R. 6394:, Second Series, 6359:978-0-262-01506-6 6268:978-3-642-68876-8 6077:978-3-642-08638-0 5926:10.1109/34.273735 5870:, Second Series, 5441:978-3-319-05773-6 5294:Graham, Ronald L. 5268:Gibbs, Willard J. 5186:Zelevinsky, A. V. 5050:Epstein, D. B. A. 5042:Epstein, D. B. A. 4979:Stachel, Hellmuth 4921:978-0-8218-4239-3 4782:Chazelle, Bernard 4749:Chazelle, Bernard 4589:Birkhoff, Garrett 4538:Hershberger, John 4258:Kim et al. (2019) 3913:Laurentini (1994) 3901:Westermann (1976) 3286:A convex hull in 3224:local convex hull 3114:indicator vectors 3075:robust statistics 3005:hyperbolic spaces 2990:discrete geometry 2978:Russo–Dye theorem 2962:spectral analysis 2893:indicator vectors 2877:robust statistics 2873:discrete geometry 2658:3D reconstruction 2649:{\displaystyle p} 2629:{\displaystyle p} 2534:rotating calipers 2441:. For dimensions 2346:{\displaystyle n} 2322:{\displaystyle n} 2302:{\displaystyle h} 2282:{\displaystyle n} 2222:pointwise minimum 2213:{\displaystyle f} 2189:{\displaystyle f} 2165:{\displaystyle f} 1904:{\displaystyle n} 1834:{\displaystyle d} 1814:{\displaystyle n} 1797:According to the 1779:{\displaystyle S} 1759:{\displaystyle S} 1626:Finite point sets 1574:{\displaystyle X} 1554:{\displaystyle X} 1534:{\displaystyle X} 1505:{\displaystyle Y} 1485:{\displaystyle X} 1439:{\displaystyle Y} 1419:{\displaystyle X} 1390:{\displaystyle X} 1377:is a superset of 1370:{\displaystyle X} 1258: 1127:{\displaystyle X} 1084:{\displaystyle d} 1064:{\displaystyle X} 1033:{\displaystyle X} 1009:{\displaystyle X} 989:{\displaystyle X} 965:{\displaystyle X} 947:relative interior 900:{\displaystyle X} 880:{\displaystyle X} 820:{\displaystyle X} 774:{\displaystyle X} 754:{\displaystyle d} 741:is a subset of a 734:{\displaystyle X} 707:{\displaystyle X} 687:{\displaystyle X} 667:{\displaystyle X} 647:{\displaystyle X} 627:{\displaystyle X} 604:{\displaystyle X} 584:{\displaystyle Y} 564:{\displaystyle X} 544:{\displaystyle Y} 524:{\displaystyle X} 504:{\displaystyle X} 484:{\displaystyle X} 453:oriented matroids 417:{\displaystyle S} 397:{\displaystyle S} 373:{\displaystyle X} 338:{\displaystyle X} 325:with vertices in 321:The union of all 312:{\displaystyle X} 286:{\displaystyle X} 264:{\displaystyle X} 240:{\displaystyle X} 223:is defined to be 16:(Redirected from 7475: 7353:(cs, lcs)-closed 7299:Effective domain 7254:Robinson–Ursescu 7130:Convex conjugate 7021: 7014: 7007: 6998: 6979: 6978: 6960: 6934: 6918:(4): 1206–1215, 6904: 6872: 6834: 6814: 6805: 6782: 6773: 6747: 6735: 6734: 6714: 6690: 6649: 6632: 6591:, translated in 6590: 6574: 6549: 6526: 6520: 6512: 6473: 6451: 6422: 6381: 6362: 6339: 6322: 6299: 6271: 6242: 6204: 6178: 6169: 6148: 6139: 6130:(6): 1689–1694, 6116: 6080: 6054: 6038: 6004: 5993: 5954: 5928: 5908: 5891: 5857: 5856: 5810: 5777: 5776: 5775: 5766:, archived from 5729:Axioms and Hulls 5724:Knuth, Donald E. 5719: 5710: 5701:(5): 2035–2053, 5687: 5662: 5660:quant-ph/0305068 5639: 5630: 5593: 5575: 5574:, E75-A: 321–329 5566: 5549: 5526: 5517: 5491: 5482: 5473:(1–3): 181–187, 5452: 5418: 5417: 5416: 5410: 5404:, archived from 5391: 5381: 5372: 5349: 5336:Convex Polytopes 5331:GrĂĽnbaum, Branko 5326: 5279: 5263: 5228: 5218: 5173: 5127: 5099: 5089:10.1090/noti2137 5083:(8): 1116–1123, 5074: 5064: 5037: 5004: 4987: 4977:Dirnböck, Hans; 4973: 4932: 4896:O'Rourke, Joseph 4892:Demaine, Erik D. 4887: 4870: 4847: 4827: 4810: 4790: 4777: 4744: 4735: 4712: 4684:Chan, Timothy M. 4679: 4655: 4625: 4584: 4559: 4528: 4511: 4481: 4465:(5–6): 265–301, 4444: 4426:10.1090/noti1810 4409: 4399: 4376: 4354: 4347:Fan, Ky (1959), 4333: 4327: 4321: 4314: 4308: 4303:, page 336, and 4294: 4288: 4279: 4273: 4267: 4261: 4255: 4249: 4243: 4237: 4231: 4225: 4219: 4213: 4207: 4201: 4192: 4186: 4180: 4174: 4168: 4162: 4156: 4150: 4144: 4138: 4132: 4126: 4120: 4114: 4108: 4102: 4096: 4090: 4084: 4078: 4072: 4066: 4060: 4054: 4048: 4042: 4036: 4030: 4021: 4015: 4009: 4003: 3997: 3991: 3985: 3979: 3973: 3967: 3961: 3955: 3949: 3943: 3940:Toussaint (1986) 3937: 3931: 3925: 3916: 3910: 3904: 3898: 3887: 3884:Toussaint (1983) 3881: 3875: 3869: 3863: 3857: 3851: 3837: 3831: 3821: 3815: 3809: 3803: 3797: 3791: 3785: 3779: 3773: 3767: 3761: 3755: 3749: 3743: 3737: 3731: 3725: 3719: 3713: 3707: 3704:Rappoport (1992) 3701: 3695: 3689: 3683: 3677: 3671: 3665: 3659: 3653: 3647: 3644:Schneider (1993) 3637: 3631: 3625: 3619: 3613: 3607: 3601: 3595: 3585: 3579: 3573: 3567: 3560: 3554: 3540: 3534: 3521: 3515: 3509: 3503: 3497: 3491: 3477: 3471: 3461: 3452: 3446: 3440: 3434: 3428: 3414: 3408: 3402: 3391: 3385: 3376: 3365:closure operator 3359:The terminology 3357: 2982:unitary elements 2943:Newton polytopes 2869:unitary elements 2825: 2823: 2822: 2817: 2812: 2811: 2800: 2787: 2785: 2784: 2779: 2777: 2776: 2771: 2718:hyperconvex hull 2690: 2688: 2687: 2682: 2677: 2655: 2653: 2652: 2647: 2635: 2633: 2632: 2627: 2574: 2560: 2544:of a point set. 2516: 2514: 2513: 2508: 2503: 2502: 2495: 2466: 2464: 2463: 2458: 2435:Chan's algorithm 2433:. These include 2432: 2430: 2429: 2424: 2390: 2388: 2387: 2382: 2352: 2350: 2349: 2344: 2328: 2326: 2325: 2320: 2308: 2306: 2305: 2300: 2288: 2286: 2285: 2280: 2260:undirected graph 2258:of the hull, an 2226:convex conjugate 2219: 2217: 2216: 2211: 2195: 2193: 2192: 2187: 2171: 2169: 2168: 2163: 2089: 2087: 2086: 2081: 2073: 2048: 2046: 2045: 2040: 2028: 2026: 2025: 2020: 2003: 1988: 1986: 1985: 1980: 1910: 1908: 1907: 1902: 1890: 1888: 1887: 1882: 1877: 1876: 1869: 1840: 1838: 1837: 1832: 1820: 1818: 1817: 1812: 1788:general position 1785: 1783: 1782: 1777: 1765: 1763: 1762: 1757: 1741: 1739: 1738: 1733: 1731: 1730: 1725: 1708: 1706: 1705: 1700: 1678: 1676: 1675: 1670: 1668: 1667: 1662: 1580: 1578: 1577: 1572: 1560: 1558: 1557: 1552: 1540: 1538: 1537: 1532: 1511: 1509: 1508: 1503: 1491: 1489: 1488: 1483: 1471: 1469: 1468: 1463: 1445: 1443: 1442: 1437: 1425: 1423: 1422: 1417: 1396: 1394: 1393: 1388: 1376: 1374: 1373: 1368: 1347:closure operator 1341:Closure operator 1284:upper half-plane 1274: 1272: 1271: 1266: 1264: 1260: 1259: 1257: 1256: 1255: 1236: 1225: 1224: 1179:upper half-plane 1160: 1158: 1157: 1152: 1133: 1131: 1130: 1125: 1113: 1111: 1110: 1105: 1090: 1088: 1087: 1082: 1070: 1068: 1067: 1062: 1039: 1037: 1036: 1031: 1015: 1013: 1012: 1007: 995: 993: 992: 987: 971: 969: 968: 963: 939:open convex hull 933:of a set is the 906: 904: 903: 898: 886: 884: 883: 878: 858: 856: 855: 850: 826: 824: 823: 818: 806: 804: 803: 798: 780: 778: 777: 772: 760: 758: 757: 752: 740: 738: 737: 732: 713: 711: 710: 705: 693: 691: 690: 685: 673: 671: 670: 665: 653: 651: 650: 645: 633: 631: 630: 625: 610: 608: 607: 602: 590: 588: 587: 582: 570: 568: 567: 562: 550: 548: 547: 542: 530: 528: 527: 522: 510: 508: 507: 502: 490: 488: 487: 482: 430:obstacle problem 423: 421: 420: 415: 403: 401: 400: 395: 379: 377: 376: 371: 344: 342: 341: 336: 318: 316: 315: 310: 292: 290: 289: 284: 270: 268: 267: 262: 246: 244: 243: 238: 159: 157: 156: 151: 100:closure operator 86:Convex hulls of 21: 7483: 7482: 7478: 7477: 7476: 7474: 7473: 7472: 7458:Convex analysis 7438: 7437: 7436: 7431: 7415: 7382: 7337: 7268: 7194: 7185:Semi-continuity 7170:Convex function 7151:Logarithmically 7118: 7079:Convex geometry 7060: 7051:Convex function 7034: 7028:Convex analysis 7025: 6964: 6963: 6945: 6942: 6937: 6924:10.2307/2533254 6907: 6875: 6854:10.2307/2046536 6837: 6826:(68): 517–526, 6817: 6785: 6750: 6738: 6732:10.1.1.155.5671 6717: 6693: 6652: 6605: 6577: 6529: 6513: 6502: 6478:Schneider, Rolf 6476: 6454: 6425: 6404:10.2307/1970292 6384: 6371:Convex Analysis 6365: 6360: 6342: 6302: 6274: 6269: 6245: 6232: 6207: 6181: 6167:10.4171/ZAA/952 6151: 6119: 6083: 6078: 6057: 6041: 6007: 5996: 5957: 5944: 5931: 5911: 5880:10.2307/1968735 5860: 5825: 5813:Hans Rademacher 5780: 5773: 5771: 5748: 5722: 5690: 5642: 5596: 5591: 5578: 5569: 5529: 5494: 5461:Herrlich, Horst 5459: 5442: 5421: 5414: 5412: 5408: 5389: 5384: 5352: 5347: 5329: 5298:Yao, F. Frances 5292: 5280:; reprinted in 5266: 5226: 5221: 5208: 5182:Kapranov, M. M. 5178:Gel'fand, I. M. 5176: 5147:10.2307/2044692 5130: 5125: 5102: 5072: 5067: 5040: 5017:Seidel, Raimund 5007: 4985: 4976: 4955:10.2307/2302604 4935: 4922: 4890: 4850: 4830: 4808:10.1.1.113.8709 4788: 4780: 4747: 4715: 4682: 4672:Schwarzkopf, O. 4664:van Kreveld, M. 4658: 4628: 4607:10.2307/1989687 4587: 4557:10.1.1.134.6921 4532:Basch, Julien; 4531: 4484: 4453:Seidel, Raimund 4447: 4407: 4402: 4379: 4357: 4346: 4342: 4337: 4336: 4328: 4324: 4315: 4311: 4295: 4291: 4280: 4276: 4268: 4264: 4256: 4252: 4244: 4240: 4232: 4228: 4220: 4216: 4208: 4204: 4193: 4189: 4181: 4177: 4169: 4165: 4157: 4153: 4145: 4141: 4133: 4129: 4121: 4117: 4109: 4105: 4097: 4093: 4085: 4081: 4073: 4069: 4061: 4057: 4049: 4045: 4039:Prasolov (2004) 4037: 4033: 4022: 4018: 4010: 4006: 4000:Chazelle (1985) 3998: 3994: 3986: 3982: 3974: 3970: 3964:Herrlich (1992) 3962: 3958: 3950: 3946: 3938: 3934: 3926: 3919: 3911: 3907: 3899: 3890: 3882: 3878: 3870: 3866: 3858: 3854: 3838: 3834: 3824:Chazelle (1993) 3822: 3818: 3810: 3806: 3798: 3794: 3786: 3782: 3774: 3770: 3762: 3758: 3750: 3746: 3738: 3734: 3726: 3722: 3714: 3710: 3702: 3698: 3690: 3686: 3678: 3674: 3668:GrĂĽnbaum (2003) 3666: 3662: 3654: 3650: 3638: 3634: 3626: 3622: 3616:Kiselman (2002) 3614: 3610: 3602: 3598: 3586: 3582: 3574: 3570: 3561: 3557: 3543:GrĂĽnbaum (2003) 3541: 3537: 3524:Steinitz (1914) 3522: 3518: 3510: 3506: 3498: 3494: 3478: 3474: 3462: 3455: 3447: 3443: 3435: 3431: 3427:, May 16, 2014. 3415: 3411: 3403: 3394: 3386: 3379: 3358: 3354: 3349: 3329:Hans Rademacher 3313:Henry Oldenburg 3305: 3296:stoichiometries 3281: 3277: 3266:Convex hull of 3260: 3240:quantum physics 3236: 3234:Quantum physics 3207: 3176: 3140: 3134: 3102: 3090:decision theory 3088:In statistical 3059: 3043:Brownian motion 2994:Radon's theorem 2966:numerical range 2935:Newton polygons 2921: 2857: 2849:polynomial time 2795: 2790: 2789: 2766: 2761: 2760: 2757:Voronoi diagram 2665: 2664: 2638: 2637: 2618: 2617: 2584: 2583: 2582: 2581: 2580: 2575: 2567: 2566: 2561: 2550: 2480: 2469: 2468: 2443: 2442: 2397: 2396: 2355: 2354: 2335: 2334: 2311: 2310: 2291: 2290: 2271: 2270: 2254:describing the 2240: 2234: 2202: 2201: 2198:convex function 2178: 2177: 2154: 2153: 2146: 2140: 2096: 2055: 2054: 2031: 2030: 1991: 1990: 1971: 1970: 1963:Brownian motion 1959: 1957:Brownian motion 1939:polygonal chain 1923: 1917: 1915:Simple polygons 1893: 1892: 1854: 1843: 1842: 1823: 1822: 1803: 1802: 1768: 1767: 1748: 1747: 1720: 1715: 1714: 1711:convex polytope 1685: 1684: 1657: 1646: 1645: 1642: 1640:Convex polytope 1628: 1623: 1615:projective dual 1611: 1595: 1563: 1562: 1543: 1542: 1523: 1522: 1494: 1493: 1474: 1473: 1448: 1447: 1428: 1427: 1408: 1407: 1379: 1378: 1359: 1358: 1343: 1338: 1313: 1307: 1282:) has the open 1280:witch of Agnesi 1247: 1240: 1203: 1199: 1194: 1193: 1175:witch of Agnesi 1167: 1140: 1139: 1116: 1115: 1093: 1092: 1073: 1072: 1053: 1052: 1022: 1021: 998: 997: 978: 977: 954: 953: 927: 922: 913: 889: 888: 869: 868: 829: 828: 809: 808: 783: 782: 763: 762: 743: 742: 723: 722: 696: 695: 676: 675: 656: 655: 636: 635: 616: 615: 593: 592: 573: 572: 553: 552: 533: 532: 513: 512: 493: 492: 473: 472: 461: 437:bounding volume 406: 405: 386: 385: 362: 361: 327: 326: 301: 300: 295:The set of all 275: 274: 253: 252: 229: 228: 221:Euclidean space 209: 197:Voronoi diagram 173:Brownian motion 169:simple polygons 124: 123: 73:Euclidean space 61:convex envelope 35: 28: 23: 22: 15: 12: 11: 5: 7481: 7479: 7471: 7470: 7465: 7460: 7455: 7450: 7440: 7439: 7433: 7432: 7430: 7429: 7423: 7421: 7417: 7416: 7414: 7413: 7408: 7406:Strong duality 7403: 7398: 7392: 7390: 7384: 7383: 7381: 7380: 7345: 7343: 7339: 7338: 7336: 7335: 7330: 7321: 7316: 7314:John ellipsoid 7311: 7306: 7301: 7296: 7282: 7276: 7274: 7270: 7269: 7267: 7266: 7261: 7256: 7251: 7246: 7241: 7236: 7231: 7226: 7221: 7216: 7211: 7205: 7203: 7201:results (list) 7196: 7195: 7193: 7192: 7187: 7182: 7177: 7175:Invex function 7172: 7163: 7158: 7153: 7148: 7143: 7137: 7132: 7126: 7124: 7120: 7119: 7117: 7116: 7111: 7106: 7101: 7096: 7091: 7086: 7081: 7076: 7074:Choquet theory 7070: 7068: 7062: 7061: 7059: 7058: 7053: 7048: 7042: 7040: 7039:Basic concepts 7036: 7035: 7026: 7024: 7023: 7016: 7009: 7001: 6995: 6994: 6980: 6961: 6941: 6940:External links 6938: 6936: 6935: 6905: 6873: 6848:(2): 376–377, 6835: 6815: 6796:(2): 179–184, 6783: 6764:(2): 127–149, 6748: 6736: 6715: 6706:(1–2): 62–70, 6691: 6650: 6623:(1): 183–201, 6603: 6582:(6): 239–256, 6575: 6540:(4): 187–202, 6527: 6500: 6474: 6465:(1): 223–227, 6452: 6443:(4): 382–387, 6431:Tukey, John W. 6423: 6398:(3): 470–493, 6382: 6363: 6358: 6340: 6300: 6283:(4): 235–240, 6272: 6267: 6243: 6230: 6205: 6196:(3): 157–171, 6179: 6160:(2): 303–314, 6149: 6117: 6092:(3): 635–639, 6081: 6076: 6055: 6039: 6022:(5): 201–206, 6005: 5994: 5955: 5942: 5929: 5920:(2): 150–162, 5909: 5874:(3): 556–583, 5858: 5823: 5794:(1): 208–210, 5778: 5746: 5720: 5688: 5640: 5594: 5589: 5576: 5567: 5547:10.1.1.14.4965 5540:(2): 129–144, 5527: 5492: 5457: 5440: 5419: 5382: 5363:(4): 299–301, 5350: 5345: 5327: 5310:(4): 324–331, 5290: 5264: 5219: 5206: 5174: 5128: 5123: 5100: 5065: 5038: 5029:(4): 551–559, 5005: 4996:(2): 105–118, 4974: 4949:(4): 199–209, 4933: 4920: 4888: 4861:(1): 144–150, 4848: 4828: 4801:(1): 377–409, 4778: 4761:(4): 509–517, 4745: 4726:(2): 155–182, 4713: 4696:(4): 341–364, 4680: 4668:Overmars, Mark 4656: 4639:(5): 223–228, 4626: 4601:(2): 357–378, 4585: 4529: 4502:(1): 109–114, 4482: 4445: 4420:(3): 330–340, 4400: 4377: 4368:(5): 216–219, 4355: 4343: 4341: 4338: 4335: 4334: 4322: 4309: 4289: 4282:Hautier (2014) 4274: 4262: 4250: 4238: 4226: 4214: 4202: 4197:, p. 137–140; 4187: 4175: 4163: 4151: 4139: 4127: 4115: 4103: 4091: 4079: 4067: 4063:Gardner (1984) 4055: 4051:Johnson (1976) 4043: 4031: 4016: 4004: 3992: 3980: 3968: 3956: 3944: 3932: 3917: 3905: 3888: 3876: 3864: 3852: 3832: 3816: 3804: 3792: 3790:, p. 149. 3780: 3768: 3756: 3744: 3732: 3720: 3708: 3696: 3694:, p. 245. 3684: 3682:, p. 256. 3672: 3660: 3658:, p. 254. 3648: 3632: 3620: 3608: 3596: 3580: 3576:Whitley (1986) 3568: 3555: 3535: 3516: 3504: 3492: 3472: 3453: 3441: 3437:Oberman (2007) 3429: 3409: 3392: 3377: 3361:convex closure 3351: 3350: 3348: 3345: 3304: 3301: 3288:thermodynamics 3279: 3275: 3259: 3258:Thermodynamics 3256: 3235: 3232: 3206: 3203: 3175: 3172: 3136:Main article: 3133: 3130: 3101: 3098: 3058: 3055: 3028:triangulations 3013:ruled surfaces 2937:of univariate 2920: 2917: 2856: 2853: 2815: 2810: 2807: 2804: 2799: 2775: 2770: 2745: 2744: 2729: 2714: 2707: 2700:simple polygon 2692: 2680: 2676: 2672: 2661: 2645: 2625: 2610: 2603: 2596: 2587:For instance: 2576: 2569: 2568: 2562: 2555: 2554: 2553: 2552: 2551: 2549: 2546: 2506: 2501: 2498: 2494: 2490: 2487: 2483: 2479: 2476: 2456: 2453: 2450: 2422: 2419: 2416: 2413: 2410: 2407: 2404: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2342: 2318: 2298: 2278: 2248:representation 2236:Main article: 2233: 2230: 2209: 2185: 2161: 2152:of a function 2142:Main article: 2139: 2136: 2120:ruled surfaces 2095: 2092: 2079: 2076: 2072: 2068: 2065: 2062: 2038: 2018: 2015: 2012: 2009: 2006: 2002: 1998: 1978: 1958: 1955: 1935:simple polygon 1919:Main article: 1916: 1913: 1900: 1880: 1875: 1872: 1868: 1864: 1861: 1857: 1853: 1850: 1830: 1810: 1775: 1755: 1729: 1724: 1698: 1695: 1692: 1681:convex polygon 1666: 1661: 1656: 1653: 1638:Main article: 1627: 1624: 1622: 1619: 1610: 1607: 1594: 1591: 1583: 1582: 1570: 1550: 1530: 1513: 1501: 1481: 1461: 1458: 1455: 1435: 1415: 1403:non-decreasing 1398: 1386: 1366: 1342: 1339: 1337: 1334: 1330:Choquet theory 1309:Main article: 1306: 1305:Extreme points 1303: 1276: 1275: 1263: 1254: 1250: 1246: 1243: 1239: 1234: 1231: 1228: 1223: 1218: 1215: 1212: 1209: 1206: 1202: 1166: 1163: 1150: 1147: 1136:cross-polytope 1123: 1103: 1100: 1080: 1060: 1029: 1005: 985: 961: 926: 923: 921: 918: 912: 909: 896: 876: 848: 845: 842: 839: 836: 816: 796: 793: 790: 770: 750: 730: 703: 683: 663: 643: 623: 600: 580: 560: 551:that contains 540: 520: 500: 480: 460: 457: 413: 393: 369: 346: 345: 334: 319: 308: 293: 282: 271: 260: 236: 208: 205: 149: 146: 143: 140: 137: 134: 131: 96:extreme points 65:convex closure 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7480: 7469: 7466: 7464: 7461: 7459: 7456: 7454: 7451: 7449: 7446: 7445: 7443: 7428: 7425: 7424: 7422: 7418: 7412: 7409: 7407: 7404: 7402: 7399: 7397: 7394: 7393: 7391: 7389: 7385: 7378: 7376: 7370: 7368: 7362: 7358: 7354: 7350: 7347: 7346: 7344: 7340: 7334: 7331: 7329: 7325: 7322: 7320: 7317: 7315: 7312: 7310: 7307: 7305: 7302: 7300: 7297: 7295: 7291: 7287: 7283: 7281: 7278: 7277: 7275: 7271: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7244:Mazur's lemma 7242: 7240: 7237: 7235: 7232: 7230: 7227: 7225: 7222: 7220: 7217: 7215: 7212: 7210: 7207: 7206: 7204: 7202: 7197: 7191: 7190:Subderivative 7188: 7186: 7183: 7181: 7178: 7176: 7173: 7171: 7167: 7164: 7162: 7159: 7157: 7154: 7152: 7149: 7147: 7144: 7142: 7138: 7136: 7133: 7131: 7128: 7127: 7125: 7121: 7115: 7112: 7110: 7107: 7105: 7102: 7100: 7097: 7095: 7092: 7090: 7087: 7085: 7082: 7080: 7077: 7075: 7072: 7071: 7069: 7067: 7066:Topics (list) 7063: 7057: 7054: 7052: 7049: 7047: 7044: 7043: 7041: 7037: 7033: 7029: 7022: 7017: 7015: 7010: 7008: 7003: 7002: 6999: 6992: 6988: 6984: 6983:"Convex Hull" 6981: 6977: 6976: 6971: 6970:"Convex Hull" 6967: 6962: 6958: 6954: 6953: 6948: 6947:"Convex hull" 6944: 6943: 6939: 6933: 6929: 6925: 6921: 6917: 6913: 6912: 6906: 6903: 6899: 6895: 6891: 6887: 6883: 6879: 6874: 6871: 6867: 6863: 6859: 6855: 6851: 6847: 6843: 6842: 6836: 6833: 6829: 6825: 6821: 6816: 6813: 6809: 6804: 6799: 6795: 6791: 6790: 6784: 6781: 6777: 6772: 6767: 6763: 6759: 6758: 6753: 6749: 6745: 6741: 6737: 6733: 6728: 6724: 6720: 6716: 6713: 6709: 6705: 6701: 6697: 6692: 6689: 6685: 6681: 6677: 6673: 6669: 6666:(144): 1–40, 6665: 6661: 6660: 6655: 6651: 6648: 6644: 6640: 6636: 6631: 6626: 6622: 6618: 6617: 6612: 6608: 6604: 6602: 6598: 6594: 6589: 6585: 6581: 6576: 6573: 6569: 6565: 6561: 6557: 6553: 6548: 6543: 6539: 6535: 6534: 6528: 6524: 6518: 6511: 6507: 6503: 6501:0-521-35220-7 6497: 6493: 6489: 6485: 6484: 6479: 6475: 6472: 6468: 6464: 6460: 6459: 6453: 6450: 6446: 6442: 6438: 6437: 6432: 6429:; Ruts, Ida; 6428: 6424: 6421: 6417: 6413: 6409: 6405: 6401: 6397: 6393: 6392: 6387: 6383: 6380: 6376: 6372: 6368: 6364: 6361: 6355: 6351: 6350: 6345: 6341: 6338: 6334: 6330: 6326: 6321: 6316: 6312: 6308: 6307: 6301: 6298: 6294: 6290: 6286: 6282: 6278: 6273: 6270: 6264: 6260: 6256: 6252: 6248: 6244: 6241: 6237: 6233: 6231:3-540-40714-6 6227: 6223: 6219: 6215: 6211: 6206: 6203: 6199: 6195: 6191: 6190: 6185: 6180: 6177: 6173: 6168: 6163: 6159: 6155: 6150: 6147: 6143: 6138: 6133: 6129: 6125: 6124: 6118: 6115: 6111: 6107: 6103: 6099: 6095: 6091: 6087: 6082: 6079: 6073: 6069: 6065: 6061: 6056: 6052: 6048: 6044: 6043:Newton, Isaac 6040: 6037: 6033: 6029: 6025: 6021: 6017: 6016: 6011: 6006: 6003:, p. 698 6002: 6001: 5995: 5992: 5988: 5984: 5980: 5976: 5972: 5968: 5964: 5960: 5956: 5953: 5949: 5945: 5943:0-471-09584-2 5939: 5935: 5930: 5927: 5923: 5919: 5915: 5910: 5907: 5903: 5899: 5895: 5890: 5885: 5881: 5877: 5873: 5869: 5868: 5863: 5859: 5855: 5850: 5846: 5842: 5841: 5836: 5832: 5831:Milman, David 5828: 5824: 5822: 5818: 5814: 5809: 5805: 5801: 5797: 5793: 5789: 5788: 5783: 5779: 5770:on 2017-06-20 5769: 5765: 5761: 5757: 5753: 5749: 5747:3-540-55611-7 5743: 5739: 5735: 5731: 5730: 5725: 5721: 5718: 5714: 5709: 5704: 5700: 5696: 5695: 5689: 5686: 5682: 5678: 5674: 5670: 5666: 5661: 5656: 5653:(1): 95–102, 5652: 5648: 5647: 5641: 5638: 5634: 5629: 5624: 5620: 5616: 5612: 5608: 5604: 5600: 5595: 5592: 5590:9780080540221 5586: 5582: 5577: 5573: 5568: 5565: 5561: 5557: 5553: 5548: 5543: 5539: 5535: 5534: 5528: 5525: 5521: 5516: 5511: 5507: 5503: 5502: 5497: 5493: 5490: 5486: 5481: 5476: 5472: 5468: 5467: 5462: 5458: 5456: 5451: 5447: 5443: 5437: 5433: 5429: 5425: 5420: 5411:on 2021-02-28 5407: 5403: 5399: 5395: 5388: 5383: 5380: 5376: 5371: 5366: 5362: 5358: 5357: 5351: 5348: 5346:9780387004242 5342: 5338: 5337: 5332: 5328: 5325: 5321: 5317: 5313: 5309: 5305: 5304: 5299: 5295: 5291: 5289: 5285: 5284: 5277: 5273: 5269: 5265: 5262: 5258: 5254: 5250: 5246: 5242: 5238: 5234: 5233: 5225: 5220: 5217: 5213: 5209: 5207:0-8176-3660-9 5203: 5199: 5195: 5191: 5187: 5183: 5179: 5175: 5172: 5168: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5136: 5135: 5129: 5126: 5124:9781108641449 5120: 5116: 5112: 5108: 5107: 5101: 5098: 5094: 5090: 5086: 5082: 5078: 5071: 5066: 5063: 5059: 5055: 5051: 5047: 5043: 5039: 5036: 5032: 5028: 5024: 5023: 5018: 5014: 5010: 5006: 5003: 4999: 4995: 4991: 4984: 4980: 4975: 4972: 4968: 4964: 4960: 4956: 4952: 4948: 4944: 4943: 4938: 4934: 4931: 4927: 4923: 4917: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4886: 4882: 4878: 4874: 4869: 4864: 4860: 4856: 4855: 4849: 4846: 4842: 4838: 4834: 4829: 4826: 4822: 4818: 4814: 4809: 4804: 4800: 4796: 4795: 4787: 4783: 4779: 4776: 4772: 4768: 4764: 4760: 4756: 4755: 4750: 4746: 4743: 4739: 4734: 4729: 4725: 4721: 4720: 4714: 4711: 4707: 4703: 4699: 4695: 4691: 4690: 4685: 4681: 4677: 4673: 4669: 4665: 4661: 4657: 4654: 4650: 4646: 4642: 4638: 4634: 4633: 4627: 4624: 4620: 4616: 4612: 4608: 4604: 4600: 4596: 4595: 4590: 4586: 4583: 4579: 4575: 4571: 4567: 4563: 4558: 4553: 4549: 4545: 4544: 4539: 4535: 4530: 4527: 4523: 4519: 4515: 4510: 4505: 4501: 4497: 4496: 4491: 4487: 4483: 4480: 4476: 4472: 4468: 4464: 4460: 4459: 4454: 4450: 4446: 4443: 4439: 4435: 4431: 4427: 4423: 4419: 4415: 4414: 4406: 4401: 4398: 4394: 4390: 4386: 4382: 4378: 4375: 4371: 4367: 4363: 4362: 4356: 4352: 4351: 4345: 4344: 4339: 4331: 4326: 4323: 4319: 4313: 4310: 4306: 4302: 4298: 4297:Newton (1676) 4293: 4290: 4287: 4283: 4278: 4275: 4271: 4266: 4263: 4259: 4254: 4251: 4247: 4242: 4239: 4235: 4230: 4227: 4223: 4218: 4215: 4211: 4210:Worton (1995) 4206: 4203: 4200: 4196: 4191: 4188: 4184: 4179: 4176: 4172: 4167: 4164: 4160: 4159:Nicola (2000) 4155: 4152: 4148: 4143: 4140: 4136: 4131: 4128: 4124: 4123:Harris (1971) 4119: 4116: 4112: 4107: 4104: 4100: 4095: 4092: 4088: 4083: 4080: 4076: 4071: 4068: 4064: 4059: 4056: 4052: 4047: 4044: 4040: 4035: 4032: 4029: 4025: 4020: 4017: 4013: 4008: 4005: 4001: 3996: 3993: 3989: 3984: 3981: 3977: 3972: 3969: 3965: 3960: 3957: 3953: 3948: 3945: 3941: 3936: 3933: 3929: 3924: 3922: 3918: 3914: 3909: 3906: 3902: 3897: 3895: 3893: 3889: 3885: 3880: 3877: 3873: 3868: 3865: 3861: 3856: 3853: 3849: 3845: 3841: 3836: 3833: 3829: 3825: 3820: 3817: 3814:, p. 13. 3813: 3808: 3805: 3801: 3796: 3793: 3789: 3784: 3781: 3778:, p. 36. 3777: 3772: 3769: 3765: 3764:Seaton (2017) 3760: 3757: 3753: 3748: 3745: 3741: 3740:Sedykh (1981) 3736: 3733: 3729: 3724: 3721: 3717: 3712: 3709: 3705: 3700: 3697: 3693: 3688: 3685: 3681: 3676: 3673: 3670:, p. 57. 3669: 3664: 3661: 3657: 3652: 3649: 3645: 3641: 3636: 3633: 3629: 3624: 3621: 3617: 3612: 3609: 3605: 3600: 3597: 3593: 3589: 3584: 3581: 3577: 3572: 3569: 3566:, Remark 2.6. 3565: 3564:Talman (1977) 3559: 3556: 3552: 3551:Sakuma (1977) 3548: 3544: 3539: 3536: 3533: 3529: 3528:Gustin (1947) 3525: 3520: 3517: 3514:, p. 99. 3513: 3508: 3505: 3501: 3500:Sontag (1982) 3496: 3493: 3489: 3488:Andrew (1979) 3485: 3481: 3476: 3473: 3469: 3465: 3460: 3458: 3454: 3450: 3445: 3442: 3438: 3433: 3430: 3426: 3422: 3418: 3413: 3410: 3406: 3401: 3399: 3397: 3393: 3390:, p. 12. 3389: 3384: 3382: 3378: 3374: 3370: 3366: 3362: 3356: 3353: 3346: 3344: 3342: 3338: 3334: 3331:'s review of 3330: 3326: 3322: 3318: 3314: 3310: 3302: 3300: 3297: 3293: 3289: 3274:compounds. Mg 3273: 3269: 3264: 3257: 3255: 3253: 3249: 3245: 3241: 3233: 3231: 3229: 3228:neighborhoods 3225: 3220: 3216: 3212: 3204: 3202: 3200: 3196: 3192: 3187: 3185: 3181: 3173: 3171: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3139: 3131: 3129: 3127: 3123: 3119: 3115: 3111: 3107: 3099: 3097: 3095: 3091: 3086: 3084: 3080: 3076: 3068: 3063: 3056: 3054: 3052: 3048: 3044: 3039: 3037: 3033: 3029: 3026: 3022: 3018: 3014: 3010: 3006: 3001: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2970:normal matrix 2967: 2963: 2958: 2956: 2952: 2948: 2944: 2940: 2936: 2930: 2925: 2918: 2916: 2914: 2910: 2909:BĂ©zier curves 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2854: 2852: 2850: 2846: 2841: 2838: 2837:convex layers 2834: 2829: 2813: 2808: 2805: 2802: 2773: 2758: 2754: 2750: 2742: 2738: 2734: 2730: 2727: 2723: 2719: 2715: 2712: 2708: 2705: 2701: 2697: 2693: 2678: 2674: 2670: 2662: 2659: 2643: 2623: 2615: 2611: 2608: 2604: 2601: 2597: 2594: 2590: 2589: 2588: 2579: 2573: 2565: 2559: 2547: 2545: 2543: 2539: 2535: 2530: 2526: 2522: 2520: 2496: 2492: 2488: 2481: 2474: 2454: 2451: 2448: 2440: 2436: 2417: 2414: 2411: 2408: 2402: 2394: 2375: 2372: 2369: 2366: 2360: 2340: 2332: 2316: 2296: 2276: 2267: 2265: 2261: 2257: 2253: 2249: 2245: 2239: 2231: 2229: 2227: 2223: 2207: 2200:majorized by 2199: 2183: 2175: 2159: 2151: 2145: 2137: 2135: 2133: 2129: 2125: 2121: 2117: 2113: 2105: 2100: 2093: 2091: 2077: 2074: 2070: 2066: 2063: 2060: 2052: 2036: 2016: 2013: 2010: 2007: 2004: 2000: 1996: 1989:in the range 1976: 1968: 1964: 1956: 1954: 1952: 1948: 1944: 1940: 1936: 1927: 1922: 1914: 1912: 1898: 1870: 1866: 1862: 1855: 1848: 1828: 1808: 1800: 1795: 1793: 1789: 1773: 1753: 1745: 1727: 1712: 1696: 1693: 1690: 1682: 1664: 1654: 1651: 1641: 1632: 1625: 1621:Special cases 1620: 1618: 1616: 1608: 1606: 1604: 1600: 1599:Minkowski sum 1593:Minkowski sum 1592: 1590: 1588: 1568: 1548: 1528: 1520: 1519: 1514: 1499: 1479: 1459: 1456: 1453: 1433: 1413: 1405: 1404: 1399: 1384: 1364: 1356: 1352: 1351: 1350: 1348: 1340: 1335: 1333: 1331: 1327: 1323: 1318: 1317:extreme point 1312: 1304: 1302: 1300: 1299:weak topology 1296: 1292: 1287: 1285: 1281: 1261: 1252: 1248: 1244: 1241: 1237: 1232: 1229: 1226: 1213: 1210: 1207: 1200: 1192: 1191: 1190: 1188: 1180: 1176: 1171: 1164: 1162: 1148: 1145: 1137: 1121: 1101: 1098: 1078: 1058: 1049: 1047: 1043: 1027: 1019: 1016:is already a 1003: 983: 975: 959: 950: 948: 944: 940: 936: 932: 924: 919: 917: 910: 908: 894: 874: 866: 862: 843: 840: 837: 814: 794: 791: 788: 768: 748: 728: 720: 715: 701: 681: 661: 641: 621: 612: 598: 578: 558: 538: 518: 498: 478: 465: 458: 456: 454: 450: 449:affine spaces 446: 442: 438: 433: 431: 427: 426:spanning tree 411: 391: 383: 367: 359: 356:with minimum 355: 351: 332: 324: 320: 306: 299:of points in 298: 294: 280: 272: 258: 250: 249: 248: 234: 226: 222: 213: 206: 204: 202: 198: 194: 190: 189:convex layers 186: 182: 178: 174: 170: 165: 163: 144: 141: 138: 135: 129: 121: 117: 113: 109: 105: 101: 97: 93: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 46: 41: 37: 33: 19: 7448:Convex hulls 7411:Weak duality 7374: 7366: 7286:Orthogonally 7279: 6973: 6950: 6915: 6909: 6877: 6845: 6839: 6823: 6819: 6793: 6787: 6761: 6755: 6743: 6722: 6703: 6699: 6663: 6657: 6654:Steinitz, E. 6620: 6614: 6592: 6579: 6537: 6531: 6482: 6462: 6456: 6440: 6434: 6395: 6389: 6370: 6348: 6310: 6304: 6280: 6276: 6250: 6213: 6193: 6187: 6184:Wood, Derick 6157: 6153: 6127: 6121: 6089: 6085: 6059: 6050: 6019: 6013: 5999: 5969:(2): 87–98, 5966: 5962: 5933: 5917: 5913: 5871: 5865: 5844: 5838: 5791: 5785: 5782:KĹ‘nig, DĂ©nes 5772:, retrieved 5768:the original 5728: 5698: 5692: 5650: 5644: 5605:(1): 20253, 5602: 5598: 5580: 5571: 5537: 5531: 5508:(1): 89–94, 5505: 5499: 5470: 5464: 5423: 5413:, retrieved 5406:the original 5393: 5360: 5354: 5335: 5307: 5301: 5281: 5275: 5271: 5236: 5230: 5189: 5138: 5132: 5105: 5080: 5076: 5053: 5026: 5020: 4993: 4989: 4946: 4940: 4937:Dines, L. L. 4903: 4858: 4852: 4839:(1): 29–39, 4836: 4832: 4798: 4792: 4758: 4752: 4723: 4717: 4693: 4687: 4675: 4636: 4630: 4598: 4592: 4547: 4541: 4499: 4493: 4486:Bárány, Imre 4462: 4456: 4417: 4411: 4388: 4365: 4359: 4349: 4330:Dines (1938) 4325: 4318:White (1923) 4312: 4292: 4286:Fultz (2020) 4277: 4270:Gibbs (1873) 4265: 4253: 4241: 4229: 4217: 4205: 4190: 4183:Mason (1908) 4178: 4166: 4154: 4147:Katoh (1992) 4142: 4130: 4118: 4106: 4099:Weeks (1993) 4094: 4082: 4070: 4058: 4046: 4034: 4024:Artin (1967) 4019: 4007: 3995: 3988:Brown (1979) 3983: 3976:Rossi (1961) 3971: 3959: 3947: 3935: 3908: 3879: 3867: 3855: 3835: 3819: 3807: 3795: 3783: 3771: 3759: 3747: 3735: 3723: 3711: 3699: 3687: 3675: 3663: 3651: 3635: 3623: 3611: 3599: 3583: 3571: 3558: 3538: 3519: 3507: 3495: 3475: 3449:Knuth (1992) 3444: 3432: 3425:MathOverflow 3412: 3407:, p. 3. 3368: 3360: 3355: 3309:Isaac Newton 3306: 3285: 3237: 3208: 3188: 3184:BĂ©zier curve 3177: 3141: 3103: 3087: 3072: 3047:space curves 3040: 3009:ideal points 3002: 2959: 2933: 2858: 2855:Applications 2845:convex skull 2842: 2833:circumradius 2828:alpha shapes 2746: 2726:metric space 2607:conical hull 2585: 2523: 2268: 2264:face lattice 2241: 2147: 2109: 2094:Space curves 1960: 1946: 1942: 1932: 1796: 1643: 1612: 1596: 1584: 1516: 1401: 1354: 1344: 1314: 1295:Banach space 1288: 1277: 1184: 1050: 951: 938: 930: 928: 914: 716: 613: 491:, for every 470: 434: 350:bounded sets 347: 218: 201:convex skull 177:space curves 166: 102:, and every 92:compact sets 85: 64: 60: 56: 50: 36: 7401:Duality gap 7396:Dual system 7280:Convex hull 6386:Rossi, Hugo 6214:Polynomials 6010:Avis, David 5847:: 133–138, 5827:Krein, Mark 4660:de Berg, M. 4550:(1): 1–28, 4490:Pach, János 4449:Avis, David 4381:Artin, Emil 4320:, page 520. 4316:See, e.g., 4301:Auel (2019) 4075:Reay (1979) 3860:Chan (2012) 3604:Okon (2000) 3484:Graham scan 3341:Lloyd Dines 3244:state space 3230:of points. 3191:chain girth 3152:budget sets 3083:Tukey depth 2974:eigenvalues 2939:polynomials 2919:Mathematics 2881:Tukey depth 2865:eigenvalues 2861:polynomials 2614:visual hull 2600:linear hull 2593:affine hull 2519:linear time 2331:Graham scan 2232:Computation 2228:operation. 2116:developable 2112:space curve 1587:antimatroid 1046:compact set 976:containing 974:half-spaces 382:rubber band 360:containing 207:Definitions 116:half-spaces 108:algorithmic 104:antimatroid 57:convex hull 18:Convex span 7442:Categories 7324:Radial set 7294:Convex set 7056:Convex set 6911:Biometrics 6547:1603.08409 5959:Lee, D. T. 5821:48.0835.01 5774:2011-09-15 5415:2020-01-01 5141:(1): 171, 5046:Marden, A. 4340:References 3848:Lee (1983) 3592:Lay (1982) 3547:Lay (1982) 3468:Lay (1982) 3373:Fan (1959) 3215:home range 3199:skin girth 3164:non-convex 3057:Statistics 2986:C*-algebra 2947:asymptotic 2913:home range 1821:points in 1518:idempotent 1114:points of 1042:finite set 1018:closed set 807:points in 571:, because 69:convex set 45:convex set 7309:Hypograph 6975:MathWorld 6957:EMS Press 6894:1853/3736 6727:CiteSeerX 6688:122998337 6337:121352925 5862:Krein, M. 5808:128041360 5542:CiteSeerX 5288:pp. 33–54 5278:: 382–404 5232:Ecography 5171:119501393 5097:221659506 4803:CiteSeerX 4552:CiteSeerX 3830:, p. 256. 3549:, p. 21; 3545:, p. 16; 3466:, p. 12; 3268:magnesium 3132:Economics 3025:canonical 2863:, matrix 2679:α 2500:⌋ 2486:⌊ 2415:⁡ 2373:⁡ 2138:Functions 2128:sphericon 2078:θ 2067:π 2064:− 2037:θ 2017:π 2011:θ 1997:π 1977:θ 1874:⌋ 1860:⌊ 1655:⊂ 1457:⊆ 1355:extensive 1233:≥ 1227:⁡ 358:perimeter 323:simplices 142:⁡ 88:open sets 7333:Zonotope 7304:Epigraph 6902:15514388 6832:43432008 6647:18446330 6609:(1982), 6572:84179479 6517:citation 6480:(1993), 6369:(1970), 6297:20137707 6114:30843551 5991:28600832 5833:(1940), 5815:(1922), 5726:(1992), 5685:15995449 5637:31882982 5450:24287952 5333:(2003), 5261:14592779 4981:(1997), 4825:26605267 4784:(1993), 4674:(2008), 4653:44537056 4442:76650751 4383:(1967), 3594:, p. 43. 3470:, p. 17. 3219:Outliers 3211:ethology 3205:Ethology 2704:geodesic 2542:diameter 2437:and the 2174:epigraph 1679:forms a 1187:open set 943:interior 865:triangle 53:geometry 7388:Duality 7290:Pseudo- 7264:Ursescu 7161:Pseudo- 7135:Concave 7114:Simplex 7094:Duality 6993:, 2007. 6959:, 2001 6932:2533254 6870:0835903 6862:2046536 6812:0404097 6780:1241189 6712:0463985 6680:1580890 6639:0644949 6588:0630708 6564:3765242 6510:1216521 6420:0133479 6412:1970292 6379:0274683 6329:0570883 6240:2082772 6176:1768994 6146:2286077 6094:Bibcode 6036:0552534 5983:0724699 5952:0655598 5906:0002009 5898:1968735 5764:5452191 5756:1226891 5717:1881029 5665:Bibcode 5628:6934831 5607:Bibcode 5564:2107032 5524:0460358 5489:1173256 5402:0356305 5379:0020800 5324:0729228 5241:Bibcode 5216:1264417 5163:0722439 5155:2044692 5062:0903852 5052:(ed.), 5002:1622664 4971:1524247 4963:2302604 4930:2405683 4885:0972777 4877:2244202 4775:0798557 4742:0834056 4710:2994585 4623:1501815 4615:1989687 4582:8013433 4574:1670903 4526:0663877 4518:2044407 4479:1447243 4434:3889348 4397:0237460 3375:, p.48. 3335: ( 3319: ( 3303:History 3142:In the 3079:bagplot 3067:bagplot 2992:, both 2885:bagplot 1943:pockets 941:is the 935:closure 861:simplex 81:bounded 7371:, and 7342:Series 7259:Simons 7166:Quasi- 7156:Proper 7141:Closed 6930:  6900:  6868:  6860:  6830:  6810:  6778:  6729:  6710:  6686:  6678:  6645:  6637:  6586:  6570:  6562:  6508:  6498:  6418:  6410:  6377:  6356:  6335:  6327:  6295:  6265:  6238:  6228:  6174:  6144:  6112:  6074:  6034:  5989:  5981:  5950:  5940:  5904:  5896:  5819:  5806:  5762:  5754:  5744:  5715:  5683:  5635:  5625:  5587:  5562:  5544:  5522:  5487:  5455:p. 143 5453:; see 5448:  5438:  5400:  5377:  5343:  5322:  5259:  5214:  5204:  5169:  5161:  5153:  5121:  5095:  5060:  5000:  4969:  4961:  4928:  4918:  4883:  4875:  4823:  4805:  4773:  4740:  4708:  4651:  4621:  4613:  4580:  4572:  4554:  4524:  4516:  4477:  4440:  4432:  4395:  4299:; see 3325:German 3272:carbon 3242:, the 2976:. The 2964:, the 2867:, and 2755:, the 2256:facets 2049:. The 1744:vertex 1515:It is 1400:It is 1353:It is 225:convex 199:, and 179:, and 55:, the 7199:Main 6928:JSTOR 6898:S2CID 6858:JSTOR 6828:JSTOR 6684:S2CID 6643:S2CID 6568:S2CID 6542:arXiv 6408:JSTOR 6333:S2CID 6293:S2CID 6110:S2CID 5987:S2CID 5894:JSTOR 5804:S2CID 5760:S2CID 5681:S2CID 5655:arXiv 5409:(PDF) 5390:(PDF) 5257:S2CID 5227:(PDF) 5167:S2CID 5151:JSTOR 5093:S2CID 5073:(PDF) 4986:(PDF) 4959:JSTOR 4873:JSTOR 4821:S2CID 4789:(PDF) 4649:S2CID 4611:JSTOR 4578:S2CID 4514:JSTOR 4438:S2CID 4408:(PDF) 3347:Notes 3333:KĹ‘nig 3036:knots 2988:. In 2984:in a 2968:of a 2955:roots 2538:width 2124:oloid 2104:oloid 1683:when 1446:with 1040:is a 721:, if 7319:Lens 7273:Sets 7123:Maps 7030:and 6664:1914 6523:link 6496:ISBN 6354:ISBN 6263:ISBN 6226:ISBN 6072:ISBN 5938:ISBN 5742:ISBN 5633:PMID 5585:ISBN 5446:PMID 5436:ISBN 5341:ISBN 5202:ISBN 5119:ISBN 4916:ISBN 3337:1922 3321:1935 3195:hull 3154:and 3108:and 2996:and 2941:and 2899:and 2843:The 2826:The 2753:dual 2747:The 2731:The 2709:The 2694:The 2612:The 2605:The 2598:The 2591:The 2540:and 2452:> 2118:and 2014:< 2008:< 1613:The 1426:and 1173:The 929:The 348:For 195:and 112:dual 7373:(Hw 6985:by 6920:doi 6890:hdl 6882:doi 6850:doi 6798:doi 6766:doi 6668:doi 6625:doi 6597:doi 6552:doi 6488:doi 6467:doi 6445:doi 6400:doi 6315:doi 6285:doi 6255:doi 6218:doi 6198:doi 6162:doi 6132:doi 6128:135 6102:doi 6064:doi 6024:doi 5971:doi 5922:doi 5884:hdl 5876:doi 5849:doi 5817:JFM 5796:doi 5734:doi 5703:doi 5699:354 5673:doi 5623:PMC 5615:doi 5552:doi 5510:doi 5475:doi 5428:doi 5365:doi 5312:doi 5249:doi 5194:doi 5143:doi 5111:doi 5085:doi 5031:doi 4951:doi 4908:doi 4863:doi 4841:doi 4813:doi 4763:doi 4728:doi 4698:doi 4641:doi 4603:doi 4562:doi 4504:doi 4467:doi 4422:doi 4370:doi 3486:by 3311:to 3238:In 3178:In 3146:of 3104:In 3073:In 3030:of 3019:in 2960:In 2412:log 2370:log 2242:In 2102:An 1713:in 1315:An 1071:is 447:or 139:log 63:or 51:In 7444:: 7365:(H 7363:, 7359:, 7355:, 7292:) 7288:, 7168:) 7146:K- 6989:, 6972:, 6968:, 6955:, 6949:, 6926:, 6916:51 6914:, 6896:, 6888:, 6866:MR 6864:, 6856:, 6846:97 6844:, 6824:17 6822:, 6808:MR 6806:, 6794:38 6792:, 6776:MR 6774:, 6762:52 6760:, 6725:, 6708:MR 6704:29 6702:, 6698:, 6682:, 6676:MR 6674:, 6662:, 6641:, 6635:MR 6633:, 6621:98 6619:, 6613:, 6584:MR 6566:, 6560:MR 6558:, 6550:, 6538:11 6536:, 6519:}} 6515:{{ 6506:MR 6504:, 6463:14 6461:, 6441:53 6439:, 6416:MR 6414:, 6406:, 6396:74 6375:MR 6331:, 6325:MR 6323:, 6311:34 6309:, 6291:, 6281:11 6279:, 6261:, 6236:MR 6234:, 6224:, 6212:, 6194:33 6192:, 6172:MR 6170:, 6158:19 6156:, 6142:MR 6140:, 6126:, 6108:, 6100:, 6090:23 6088:, 6070:, 6049:, 6032:MR 6030:, 6018:, 5985:, 5979:MR 5977:, 5967:12 5965:, 5948:MR 5946:, 5918:16 5916:, 5902:MR 5900:, 5892:, 5882:, 5872:41 5843:, 5837:, 5829:; 5802:, 5792:14 5790:, 5758:, 5752:MR 5750:, 5740:, 5713:MR 5711:, 5697:, 5679:, 5671:, 5663:, 5651:19 5649:, 5631:, 5621:, 5613:, 5601:, 5560:MR 5558:, 5550:, 5538:30 5536:, 5520:MR 5518:, 5506:15 5504:, 5485:MR 5483:, 5471:44 5469:, 5444:, 5434:, 5398:MR 5392:, 5375:MR 5373:, 5361:53 5359:, 5320:MR 5318:, 5306:, 5296:; 5274:, 5255:, 5247:, 5237:27 5235:, 5229:, 5212:MR 5210:, 5200:, 5184:; 5180:; 5165:, 5159:MR 5157:, 5149:, 5139:90 5137:, 5117:, 5091:, 5081:67 5079:, 5075:, 5058:MR 5044:; 5027:29 5025:, 5015:; 5011:; 4998:MR 4992:, 4988:, 4967:MR 4965:, 4957:, 4947:45 4945:, 4926:MR 4924:, 4914:, 4898:; 4881:MR 4879:, 4871:, 4859:17 4857:, 4837:20 4835:, 4819:, 4811:, 4799:10 4797:, 4791:, 4771:MR 4769:, 4759:31 4757:, 4738:MR 4736:, 4722:, 4706:MR 4704:, 4694:22 4692:, 4670:; 4666:; 4662:; 4647:, 4635:, 4619:MR 4617:, 4609:, 4599:38 4597:, 4576:, 4570:MR 4568:, 4560:, 4548:31 4546:, 4536:; 4522:MR 4520:, 4512:, 4500:86 4498:, 4475:MR 4473:, 4461:, 4436:, 4430:MR 4428:, 4418:66 4416:, 4410:, 4393:MR 4387:, 4364:, 4284:; 4026:; 3920:^ 3891:^ 3846:; 3842:; 3826:; 3590:; 3530:; 3526:; 3456:^ 3423:, 3395:^ 3380:^ 3065:A 3053:. 3038:. 2915:. 2521:. 2090:. 1911:. 1794:. 1349:: 1181:). 455:. 203:. 191:, 187:, 175:, 171:, 59:, 7379:) 7377:) 7375:x 7369:) 7367:x 7351:( 7326:/ 7284:( 7139:( 7020:e 7013:t 7006:v 6922:: 6892:: 6884:: 6852:: 6800:: 6768:: 6670:: 6627:: 6599:: 6554:: 6544:: 6525:) 6490:: 6469:: 6447:: 6402:: 6317:: 6287:: 6257:: 6220:: 6200:: 6164:: 6134:: 6104:: 6096:: 6066:: 6026:: 6020:9 5973:: 5924:: 5886:: 5878:: 5851:: 5845:9 5798:: 5736:: 5705:: 5675:: 5667:: 5657:: 5617:: 5609:: 5603:9 5554:: 5512:: 5477:: 5430:: 5367:: 5314:: 5308:4 5276:2 5251:: 5243:: 5196:: 5145:: 5113:: 5087:: 5033:: 4994:1 4953:: 4910:: 4865:: 4843:: 4815:: 4765:: 4730:: 4724:1 4700:: 4643:: 4637:9 4605:: 4564:: 4506:: 4469:: 4463:7 4424:: 4372:: 4366:9 4332:. 4307:. 4272:. 4260:. 4248:. 4236:. 4224:. 4212:. 4185:. 4173:. 4149:. 4125:. 4113:. 4101:. 4089:. 4077:. 4065:. 4053:. 4041:. 4014:. 4002:. 3990:. 3978:. 3966:. 3954:. 3942:. 3930:. 3915:. 3903:. 3886:. 3874:. 3862:. 3850:. 3802:. 3766:. 3754:. 3742:. 3730:. 3718:. 3706:. 3630:. 3618:. 3606:. 3578:. 3553:. 3502:. 3490:. 3451:. 3439:. 3280:3 3278:C 3276:2 3270:– 2814:. 2809:1 2806:+ 2803:n 2798:R 2774:n 2769:R 2728:. 2675:/ 2671:1 2644:p 2624:p 2505:) 2497:2 2493:/ 2489:d 2482:n 2478:( 2475:O 2455:3 2449:d 2421:) 2418:h 2409:n 2406:( 2403:O 2379:) 2376:n 2367:n 2364:( 2361:O 2341:n 2317:n 2297:h 2277:n 2208:f 2184:f 2160:f 2075:2 2071:/ 2061:1 2005:2 2001:/ 1899:n 1879:) 1871:2 1867:/ 1863:d 1856:n 1852:( 1849:O 1829:d 1809:n 1774:S 1754:S 1728:d 1723:R 1697:2 1694:= 1691:d 1665:d 1660:R 1652:S 1581:. 1569:X 1549:X 1529:X 1512:. 1500:Y 1480:X 1460:Y 1454:X 1434:Y 1414:X 1397:. 1385:X 1365:X 1262:} 1253:2 1249:x 1245:+ 1242:1 1238:1 1230:y 1222:| 1217:) 1214:y 1211:, 1208:x 1205:( 1201:{ 1149:d 1146:2 1122:X 1102:d 1099:2 1079:d 1059:X 1028:X 1004:X 984:X 960:X 895:X 875:X 847:) 844:1 841:+ 838:d 835:( 815:X 795:1 792:+ 789:d 769:X 749:d 729:X 702:X 682:X 662:X 642:X 622:X 599:X 579:Y 559:X 539:Y 519:X 499:X 479:X 412:S 392:S 368:X 333:X 307:X 281:X 259:X 235:X 148:) 145:n 136:n 133:( 130:O 47:. 34:. 20:)

Index

Convex span
Hull (watercraft) § Hull shapes

convex set
geometry
convex set
Euclidean space
convex combinations
bounded
open sets
compact sets
extreme points
closure operator
antimatroid
algorithmic
dual
half-spaces
computational geometry
upper bound theorem
simple polygons
Brownian motion
space curves
epigraphs of functions
orthogonal convex hull
convex layers
Delaunay triangulation
Voronoi diagram
convex skull

Euclidean space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑