Knowledge (XXG)

Cosmological lithium problem

Source 📝

679: 95: 1039: 1073: 1003: 1135:
could affect Li/H ratios in stars. Furthermore, more observations on lithium depletion remain important since present lithium levels might not reflect the initial abundance in the star. In summary, accurate measurements of the primordial lithium abundance is the current focus of progress, and it could be possible that the final answer does not lie in astrophysical solutions.
102:) and the BBN D + He concordance range (wider vertical bands, at 95% CL) should overlap with the observed light element abundances (yellow boxes) to be in agreement. This occurs in He and is well constrained in D, but is not the case for Li, where the observed Li observations lie a factor of 3−4 below the BBN+WMAP prediction. 1051:
Older stars seem to have less lithium than they should, and some younger stars have much more. One proposed model is that lithium produced during a star's youth sinks beneath the star's atmosphere (where it is obscured from direct observation) due to effects the authors describe as "turbulent mixing"
2008:... confirm the peculiar behaviour of Li in the effective temperature range 5600–5900 K ... We found that the immense majority of planet host stars have severely depleted lithium ... At higher and lower temperatures planet-host stars do not appear to show any peculiar behaviour in their Li abundance. 1158:
of particle physics and the standard cosmology, the lithium problem implies errors in the BBN light element predictions. Although standard BBN rests on well-determined physics, the weak and strong interactions are complicated for BBN and therefore might be the weak point in standard BBN calculation.
1134:
Considering the possibility that BBN predictions are sound, the measured value of the primordial lithium abundance should be in error and astrophysical solutions offer revision to it. For example, systematic errors, including ionization correction and inaccurate stellar temperatures determination
1117:
Certain metal-poor stars also contain an abnormally high concentration of lithium. These stars tended to orbit massive objects—neutron stars or black holes—whose gravity evidently pulls heavier lithium to the surface of a hydrogen-helium star, causing more lithium to be observed.
1042:
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, residuals within the paradigm of the Big Bang. Li, Be and B are rare because they are poorly synthesized in the Big Bang and also in stars; the main source of these elements is
656:
second at 8%. Other isotopes including H, H, He, Li, Li, and Be are much rarer; the estimated abundance of primordial lithium is 10 relative to hydrogen. The calculated abundance and ratio of H and He is in agreement with data from observations of young stars.
1216:
provide one possibility, in which decaying dark matter scenarios introduce a rich array of novel processes that can alter light elements during and after BBN, and find the well-motivated origin in supersymmetric cosmologies. With the fully operational
119:
Big Bang nucleosynthesis produced both lithium-7 and beryllium-7, and indeed the latter dominates the primordial synthesis of mass 7 nuclides. On the other hand, the Big Bang produced lithium-6 at levels more than 1000 times smaller.
1108:
occurs. The absence of lithium could also be a way to find new planetary systems. However, this claimed relationship has become a point of contention in the planetary astrophysics community, being frequently denied but also supported.
1103:
despite the surface convective zone not being quite hot enough to burn lithium. It is suspected that the gravitational pull of planets might enhance the churning up of the star's surface, driving the lithium to hotter cores where
1221:(LHC), much of minimal supersymmetry lies within reach, which would revolutionize particle physics and cosmology if discovered; however, results from the ATLAS experiment in 2020 have excluded many supersymmetric models. 2646:
Collaboration, Atlas (2021). "Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$ ^{-1}$ of $ \sqrt{s}$ =13 TeV $ pp$ collision data with the ATLAS detector".
1235:
Nonstandard cosmologies indicate variation of the baryon to photon ratio in different regions. One proposal is a result of large-scale inhomogeneities in cosmic density, different from homogeneity defined in the
1068:
at temperatures above 2.4 million degrees Celsius (most stars easily attain this temperature in their interiors), lithium is more abundant than current computations would predict in later-generation stars.
1099:
Sun-like stars without planets have 10 times the lithium as Sun-like stars with planets in a sample of 500 stars. The Sun's surface layers have less than 1% the lithium of the original formation
98:
This "Schramm plot" depicts primordial abundances of He, D, He, and Li as a function of cosmic baryon content from standard BBN predictions. CMB predictions of Li (narrow vertical bands, at 95%
1015:
Despite the low theoretical abundance of lithium, the actual observable amount is less than the calculated amount by a factor of 3–4. This contrasts with the observed abundance of isotopes of
111:
Minutes after the Big Bang, the universe was made almost entirely of hydrogen and helium, with trace amounts of lithium and beryllium, and negligibly small abundances of all heavier elements.
1056:, a metal-poor globular cluster, are consistent with an inverse relation between lithium abundance and age, but a theoretical mechanism for diffusion has not been formalized. Though it 1232:
regions might behave differently from our own. Additionally, Standard Model couplings and particle masses might vary, and variation in nuclear physics parameters would be needed.
2081:
Ramírez, I.; Fish, J. R.; et al. (2012). "Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets".
1193:
wrote in 2023 that "recent research seems to completely discount" such theories; the magazine held that mainstream lithium nucleosynthesis calculations are probably correct.
2504:
Hammache, F.; Coc, A.; de Séréville, N.; Stefan, I.; Roussel, P.; Ancelin, S.; Assié, M.; Audouin, L.; Beaumel, D.; Franchoo, S.; Fernandez-Dominguez, B. (December 2013).
1185:, resonance reactions, some of which might have evaded experimental detection or whose effects have been underestimated, become possible solutions to the lithium problem. 2380:
Angulo, C.; Casarejos, E.; Couder, M.; Demaret, P.; Leleux, P.; Vanderbist, F.; Coc, A.; Kiener, J.; Tatischeff, V.; Davinson, T.; Murphy, A. S. (September 2005).
1644: 1549: 1441: 1100: 1087:
substellar objects and certain anomalous metal-poor stars. Because lithium is present in cooler, less massive brown dwarfs, but is destroyed in hotter
1162:
Firstly, incorrect or missing reactions could give rise to the lithium problem. For incorrect reactions, major thoughts lie within revision to
1821: 1264: 52: 1091:
stars, its presence in the stars' spectra can be used in the "lithium test" to differentiate the two, as both are smaller than the Sun.
83:) that are consistent with predictions. The discrepancy is highlighted in a so-called "Schramm plot", named in honor of astrophysicist 1423: 32: 1619: 1734:
Korn, A. J.; Grundahl, F.; Richard, O.; Barklem, P. S.; Mashonkina, L.; Collet, R.; Piskunov, N.; Gustafsson, B. (August 2006).
1929: 1841: 1139: 84: 59:. Namely, the most widely accepted models of the Big Bang suggest that three times as much primordial lithium, in particular 1636: 1174: 1052:
and "diffusion," which are suggested to increase or accumulate as the star ages. Spectroscopic observations of stars in
672: 1657:
A mysterious cosmic factory is producing lithium. Scientists are now getting closer at finding out where it comes from
56: 1867: 1351:
Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; et al. (Particle Data Group) (2018-08-17).
2313:
Hou, S. Q.; He, J. J.; Parikh, A.; Kahl, D.; Bertulani, C. A.; Kajino, T.; Mathews, G. J.; Zhao, G. (2017-01-11).
1894: 1202: 1476:
Tanabashi, M.; et al. (2018). "Big-bang nucleosynthesis". In Fields, B. D.; Molaro, P.; Sarkar, S. (eds.).
2792: 88: 48: 1154:
When one considers the possibility that the measured primordial lithium abundance is correct and based on the
1163: 1237: 1952:
Israelian, G.; et al. (2009). "Enhanced lithium depletion in Sun-like stars with orbiting planets".
1477: 1292:
Hou, S. Q.; He, J.J.; Parikh, A.; Kahl, D.; Bertulani, C.A.; Kajino, T.; Mathews, G.J.; Zhao, G. (2017).
1225: 1218: 1044: 1228:
can be one possible solution, and it implies that first, atomic transitions in metals residing in high-
2740: 2693: 2586: 2527: 2462: 2403: 2336: 2277: 2100: 2045: 1973: 1757: 1692: 1607: 1568: 1486: 1450: 1364: 1315: 1182: 2506:"Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem" 1259: 678: 2621: 2730: 2674: 2656: 2574: 2551: 2517: 2505: 2486: 2452: 2440: 2393: 2362: 2326: 2295: 2267: 2216: 2165: 2134: 2090: 2035: 1997: 1963: 1789: 1747: 1716: 1682: 1558: 1506: 1333: 1305: 1076: 87:, which depicts these primordial abundances as a function of cosmic baryon content from standard 40: 2254:
Li, H.; Aoki, W.; Matsuno, T.; Kumar, Y. Bharat; Shi, J.; Suda, T.; Zhao, G.; Zhao, G. (2018).
1439:
Boesgaard, A. M.; Steigman, G. (1985). "Big bang nucleosynthesis – Theories and observations".
94: 2787: 2758: 2602: 2543: 2478: 2421: 2354: 2236: 2185: 2126: 2063: 1989: 1817: 1781: 1773: 1708: 1615: 1419: 1392: 1189: 873: 2782: 2748: 2666: 2594: 2535: 2470: 2411: 2344: 2285: 2256:"Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo" 2226: 2175: 2116: 2108: 2053: 2049: 1981: 1954: 1765: 1700: 1597: 1576: 1494: 1458: 1454: 1382: 1372: 1323: 142: 99: 1518: 1269: 1105: 1057: 666: 2575:"Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances" 2439:
Boyd, Richard N.; Brune, Carl R.; Fuller, George M.; Smith, Christel J. (November 2010).
1142:. They test the framework of Tsallis non-extensive statistics. Their result suggest that 2744: 2590: 2531: 2466: 2407: 2340: 2281: 2104: 1977: 1761: 1696: 1611: 1572: 1490: 1462: 1368: 1319: 2573:; Graves, S.; Howard, M. E.; Jones, K. L.; Kozub, R. L.; Lindhardt, L. (October 2011). 2570: 1581: 1544: 1206: 1155: 1072: 1002: 2753: 2718: 2349: 2314: 1328: 1293: 1038: 2776: 2678: 2555: 2490: 2138: 2112: 1213: 2382:"The 7Be(d,p)2α Cross Section at Big Bang Energies and the Primordial 7Li Abundance" 2299: 1720: 1793: 1254: 44: 2366: 2231: 2204: 2180: 2153: 2058: 2023: 2001: 1845: 1416:
How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind
1337: 170:, so that the observable primordial lithium abundance essentially sums primordial 2670: 1671:"Implications of WMAP Observations on Li Abundance and Stellar Evolution Models" 1240:. However, this possibility requires a large amount of observations to test it. 1084: 795: 744: 441: 381: 197: 122: 2598: 2539: 2474: 2290: 2255: 1498: 1377: 1352: 1925: 1735: 1170: 942: 645: 228: 192: 2762: 2717:
Holder, Gilbert P.; Nollett, Kenneth M.; van Engelen, Alexander (June 2010).
2606: 2547: 2482: 2425: 2358: 2240: 2189: 2130: 2067: 1898: 1777: 1712: 1396: 1603: 1178: 1088: 1020: 916: 846: 771: 541: 492: 407: 306: 280: 172: 151: 146: 68: 60: 20: 1993: 1785: 1387: 1871: 63:, should exist. This contrasts with the observed abundance of isotopes of 2398: 1752: 1687: 1249: 1229: 1138:
Some astronomers suggest that the velocities of nucleons do not follow a
1053: 1032: 1028: 1016: 969: 821: 718: 692: 653: 618: 592: 355: 329: 254: 80: 76: 64: 2569:
O'Malley, P. D.; Bardayan, D. W.; Adekola, A. S.; Ahn, S.; Chae, K. Y.;
1985: 1769: 649: 467: 36: 2121: 1736:"A probable stellar solution to the cosmological lithium discrepancy" 1166:
errors and standard thermonuclear rates according to recent studies.
1065: 1061: 1024: 567: 518: 72: 47:
in our galaxy and the amount that should theoretically exist due to
2661: 2416: 2381: 2331: 2272: 1704: 1310: 644:
The amount of lithium generated in the Big Bang can be calculated.
2735: 2694:"From squarks to gluinos: It's not looking good for supersymmetry" 2522: 2457: 2221: 2170: 2095: 2040: 1968: 1563: 1071: 1037: 1001: 677: 1670: 1146:
is a possible new solution to the cosmological lithium problem.
2315:"Non-Extensive Statistics to the Cosmological Lithium Problem" 1294:"Non-extensive statistics to the cosmological lithium problem" 2024:"Lithium depletion in solar-like stars: no planet connection" 1201:
Under the assumptions of all correct calculation, solutions
652:, comprising roughly 92% of the atoms in the Universe, with 2719:"On Possible Variation in the Cosmological Baryon Fraction" 2622:"The lithium problem: Why the element keeps disappearing" 1599:
From First Light to Reionization the End of the Dark Ages
1079:
is the first in which evidence of lithium has been found.
995:
The P-P II branch is dominant at temperatures of 14 to
2203:
Delgado Mena, E.; Israelian, G.; et al. (2014).
1868:"First Detection of Lithium from an Exploding Star" 1669:Richard, O.; Michaud, G.; Richer, J. (2005-01-20). 2441:"New nuclear physics for big bang nucleosynthesis" 1126:Possible solutions fall into three broad classes. 2205:"Li depletion in solar analogues with exoplanets" 31:refers to the discrepancy between the primordial 2152:Figueira, P.; Faria, J. P.; et al. (2014). 1930:"Want a planet? You might want to avoid lithium" 1113:Higher than expected lithium in metal-poor stars 2022:Baumann, P.; Ramírez, I.; et al. (2010). 1637:"The Cosmic Explosions That Made the Universe" 1363:(3). American Physical Society (APS): 030001. 1550:Annual Review of Nuclear and Particle Science 219:These isotopes are produced by the reactions 39:as inferred from observations of metal-poor ( 8: 1947: 1945: 1943: 1920: 1918: 1916: 1442:Annual Review of Astronomy and Astrophysics 1409: 1407: 1095:Less lithium in Sun-like stars with planets 2154:"Exoplanet hosts reveal lithium depletion" 1538: 1536: 1534: 1532: 1530: 1528: 1287: 1285: 2752: 2734: 2660: 2521: 2456: 2415: 2397: 2348: 2330: 2289: 2271: 2230: 2220: 2179: 2169: 2120: 2094: 2057: 2039: 1967: 1807: 1805: 1803: 1751: 1686: 1580: 1562: 1414:Langmuir, C. H.; Broecker, W. S. (2012). 1386: 1376: 1327: 1309: 1006:Stable nuclides of the first few elements 55:cosmic baryon density predictions of the 1035:) that are consistent with predictions. 93: 1835: 1833: 1281: 1209:or standard cosmology might be needed. 1514: 1504: 1647:from the original on 21 February 2017 7: 1265:List of unsolved problems in physics 1816:. Oxford: Oxford University Press. 1463:10.1146/annurev.aa.23.090185.001535 1197:Solutions beyond the Standard Model 1582:10.1146/annurev-nucl-102010-130445 1485:. Vol. 98. pp. 377–382. 14: 671:In stars, lithium-7 is made in a 115:Lithium synthesis in the Big Bang 1844:. Universe Today. Archived from 1545:"The primordial lithium problem" 682:Proton–proton II chain reaction 2620:Alastair Gunn (16 June 2023). 1418:. Princeton University Press. 1140:Maxwell-Boltzmann distribution 1: 2386:Astrophysical Journal Letters 1181:, an important factor in the 1011:Observed abundance of lithium 2209:Astronomy & Astrophysics 2158:Astronomy & Astrophysics 1635:Woo, M. (21 February 2017). 1353:"Review of Particle Physics" 673:proton-proton chain reaction 2754:10.1088/0004-637X/716/2/907 2692:Sutter, Paul (2021-01-07). 2350:10.3847/1538-4357/834/2/165 2232:10.1051/0004-6361/201321493 2181:10.1051/0004-6361/201424218 2059:10.1051/0004-6361/201015137 1329:10.3847/1538-4357/834/2/165 687: 436: 223: 2809: 2626:BBC Science Focus Magazine 2599:10.1103/PhysRevC.84.042801 2540:10.1103/PhysRevC.88.062802 2475:10.1103/PhysRevD.82.105005 2113:10.1088/0004-637X/756/1/46 2028:Astronomy and Astrophysics 1893:Reid, N. (10 March 2002). 1499:10.1103/PhysRevD.98.030001 1449:. Palo Alto, CA: 319–378. 1378:10.1103/physrevd.98.030001 664: 195:lithium from the decay of 2319:The Astrophysical Journal 2260:The Astrophysical Journal 2083:The Astrophysical Journal 1675:The Astrophysical Journal 1298:The Astrophysical Journal 1150:Nuclear physics solutions 1083:Lithium is also found in 2291:10.3847/2041-8213/aaa438 1895:"L Dwarf Classification" 1814:Nature's Building Blocks 1064:due to collision with a 49:Big Bang nucleosynthesis 2671:10.1007/JHEP02(2021)143 2050:2010A&A...519A..87B 1455:1985ARA&A..23..319B 1144:1.069 < q < 1.082 1130:Astrophysical solutions 1596:Stiavelli, M. (2009). 1543:Fields, B. D. (2011). 1238:cosmological principle 1212:Dark matter decay and 1169:Second, starting from 1080: 1048: 1007: 683: 103: 2723:Astrophysical Journal 1602:. Weinheim, Germany: 1226:fundamental constants 1219:Large Hadron Collider 1101:protosolar gas clouds 1075: 1045:cosmic ray spallation 1041: 1005: 681: 648:is the most abundant 97: 1928:(11 November 2009). 1183:triple-alpha process 16:Problem in astronomy 2745:2010ApJ...716..907H 2591:2011PhRvC..84d2801O 2532:2013PhRvC..88f2802H 2467:2010PhRvD..82j5005B 2408:2005ApJ...630L.105A 2341:2017ApJ...834..165H 2282:2018ApJ...852L..31L 2105:2012ApJ...756...46R 1986:10.1038/nature08483 1978:2009Natur.462..189I 1848:on 25 February 2011 1812:Emsley, J. (2001). 1770:10.1038/nature05011 1762:2006Natur.442..657K 1697:2005ApJ...619..538R 1612:2009fflr.book.....S 1573:2011ARNPS..61...47F 1491:2018PhRvD..98c0001T 1369:2018PhRvD..98c0001T 1320:2017ApJ...834..165H 1260:Isotopes of lithium 29:lithium discrepancy 1465:. A86-14507 04–90. 1173:'s discovery of a 1122:Proposed solutions 1081: 1077:Nova Centauri 2013 1060:into two atoms of 1049: 1008: 684: 141:later decayed via 104: 2579:Physical Review C 2510:Physical Review C 2445:Physical Review D 2009: 1962:(7270): 189–191. 1823:978-0-19-850341-5 1746:(7103): 657–659. 1357:Physical Review D 1190:BBC Science Focus 991: 990: 661:The P-P II branch 640: 639: 432:and destroyed by 428: 427: 149:53.22 days) into 107:Origin of lithium 2800: 2767: 2766: 2756: 2738: 2714: 2708: 2707: 2705: 2704: 2689: 2683: 2682: 2664: 2643: 2637: 2636: 2634: 2632: 2617: 2611: 2610: 2566: 2560: 2559: 2525: 2501: 2495: 2494: 2460: 2436: 2430: 2429: 2419: 2401: 2399:astro-ph/0508454 2392:(2): L105–L108. 2377: 2371: 2370: 2352: 2334: 2310: 2304: 2303: 2293: 2275: 2251: 2245: 2244: 2234: 2224: 2200: 2194: 2193: 2183: 2173: 2149: 2143: 2142: 2124: 2098: 2078: 2072: 2071: 2061: 2043: 2019: 2013: 2012: 2010: 2007: 1971: 1949: 1938: 1937: 1922: 1911: 1910: 1908: 1906: 1897:. Archived from 1890: 1884: 1883: 1881: 1879: 1874:on 1 August 2015 1870:. Archived from 1864: 1858: 1857: 1855: 1853: 1837: 1828: 1827: 1809: 1798: 1797: 1755: 1753:astro-ph/0608201 1731: 1725: 1724: 1690: 1688:astro-ph/0409672 1666: 1660: 1659: 1654: 1652: 1632: 1626: 1625: 1593: 1587: 1586: 1584: 1566: 1540: 1523: 1522: 1516: 1512: 1510: 1502: 1484: 1473: 1467: 1466: 1436: 1430: 1429: 1411: 1402: 1401:and 2019 update. 1400: 1390: 1380: 1348: 1342: 1341: 1331: 1313: 1289: 1145: 998: 987: 985: 984: 977: 976: 960: 958: 957: 950: 949: 934: 932: 931: 924: 923: 910: 901: 892: 891: 889: 888: 880: 879: 864: 862: 861: 854: 853: 838: 836: 835: 828: 827: 813: 811: 810: 803: 802: 789: 788: 786: 785: 778: 777: 762: 760: 759: 752: 751: 736: 734: 733: 726: 725: 710: 708: 707: 700: 699: 688: 636: 634: 633: 626: 625: 610: 608: 607: 600: 599: 584: 582: 581: 574: 573: 559: 557: 556: 549: 548: 535: 533: 532: 525: 524: 510: 508: 507: 500: 499: 484: 482: 481: 474: 473: 459: 457: 456: 449: 448: 437: 424: 422: 421: 414: 413: 399: 397: 396: 389: 388: 373: 371: 370: 363: 362: 347: 345: 344: 337: 336: 323: 321: 320: 313: 312: 298: 296: 295: 288: 287: 272: 270: 269: 262: 261: 246: 244: 243: 236: 235: 224: 215: 213: 212: 205: 204: 190: 188: 187: 180: 179: 169: 167: 166: 159: 158: 143:electron capture 140: 138: 137: 130: 129: 2808: 2807: 2803: 2802: 2801: 2799: 2798: 2797: 2793:Nucleosynthesis 2773: 2772: 2771: 2770: 2716: 2715: 2711: 2702: 2700: 2691: 2690: 2686: 2645: 2644: 2640: 2630: 2628: 2619: 2618: 2614: 2571:Cizewski, J. A. 2568: 2567: 2563: 2503: 2502: 2498: 2438: 2437: 2433: 2379: 2378: 2374: 2312: 2311: 2307: 2253: 2252: 2248: 2202: 2201: 2197: 2151: 2150: 2146: 2080: 2079: 2075: 2021: 2020: 2016: 2006: 1951: 1950: 1941: 1924: 1923: 1914: 1904: 1902: 1892: 1891: 1887: 1877: 1875: 1866: 1865: 1861: 1851: 1849: 1839: 1838: 1831: 1824: 1811: 1810: 1801: 1733: 1732: 1728: 1668: 1667: 1663: 1650: 1648: 1634: 1633: 1629: 1622: 1595: 1594: 1590: 1542: 1541: 1526: 1513: 1503: 1482: 1475: 1474: 1470: 1438: 1437: 1433: 1426: 1413: 1412: 1405: 1350: 1349: 1345: 1291: 1290: 1283: 1278: 1270:Lithium burning 1246: 1199: 1152: 1143: 1132: 1124: 1115: 1106:lithium burning 1097: 1013: 996: 983: 981: 980: 979: 975: 972: 971: 970: 968: 956: 954: 953: 952: 948: 945: 944: 943: 941: 930: 928: 927: 926: 922: 919: 918: 917: 915: 908: 899: 887: 884: 883: 882: 878: 876: 875: 874: 872: 871: 860: 858: 857: 856: 852: 849: 848: 847: 845: 834: 832: 831: 830: 826: 824: 823: 822: 820: 809: 807: 806: 805: 801: 798: 797: 796: 794: 784: 782: 781: 780: 776: 774: 773: 772: 770: 769: 758: 756: 755: 754: 750: 747: 746: 745: 743: 732: 730: 729: 728: 724: 721: 720: 719: 717: 706: 704: 703: 702: 698: 695: 694: 693: 691: 669: 667:Lithium burning 663: 632: 630: 629: 628: 624: 621: 620: 619: 617: 606: 604: 603: 602: 598: 595: 594: 593: 591: 580: 578: 577: 576: 572: 570: 569: 568: 566: 555: 553: 552: 551: 547: 544: 543: 542: 540: 531: 529: 528: 527: 523: 521: 520: 519: 517: 506: 504: 503: 502: 498: 495: 494: 493: 491: 480: 478: 477: 476: 472: 470: 469: 468: 466: 455: 453: 452: 451: 447: 444: 443: 442: 440: 420: 418: 417: 416: 412: 410: 409: 408: 406: 395: 393: 392: 391: 387: 384: 383: 382: 380: 369: 367: 366: 365: 361: 358: 357: 356: 354: 343: 341: 340: 339: 335: 332: 331: 330: 328: 319: 317: 316: 315: 311: 309: 308: 307: 305: 294: 292: 291: 290: 286: 283: 282: 281: 279: 268: 266: 265: 264: 260: 257: 256: 255: 253: 242: 240: 239: 238: 234: 231: 230: 229: 227: 211: 209: 208: 207: 203: 200: 199: 198: 196: 186: 184: 183: 182: 178: 175: 174: 173: 171: 165: 163: 162: 161: 157: 154: 153: 152: 150: 136: 134: 133: 132: 128: 125: 124: 123: 121: 117: 109: 25:lithium problem 17: 12: 11: 5: 2806: 2804: 2796: 2795: 2790: 2785: 2775: 2774: 2769: 2768: 2729:(2): 907–913. 2709: 2684: 2638: 2612: 2561: 2496: 2451:(10): 105005. 2431: 2417:10.1086/491732 2372: 2305: 2246: 2195: 2144: 2073: 2014: 1939: 1912: 1901:on 21 May 2013 1885: 1859: 1840:Cain, Fraser. 1829: 1822: 1799: 1726: 1705:10.1086/426470 1681:(1): 538–548. 1661: 1627: 1620: 1588: 1524: 1515:|journal= 1468: 1431: 1425:978-0691140063 1424: 1403: 1343: 1280: 1279: 1277: 1274: 1273: 1272: 1267: 1262: 1257: 1252: 1245: 1242: 1207:Standard Model 1198: 1195: 1156:Standard Model 1151: 1148: 1131: 1128: 1123: 1120: 1114: 1111: 1096: 1093: 1012: 1009: 993: 992: 989: 988: 982: 973: 965: 962: 955: 946: 939: 936: 929: 920: 912: 911: 909:0.383 MeV 906: 903: 900:0.861 MeV 897: 894: 885: 877: 869: 866: 859: 850: 843: 840: 833: 825: 818: 815: 808: 799: 791: 790: 783: 775: 767: 764: 757: 748: 741: 738: 731: 722: 715: 712: 705: 696: 662: 659: 642: 641: 638: 637: 631: 622: 615: 612: 605: 596: 589: 586: 579: 571: 564: 561: 554: 545: 537: 536: 530: 522: 515: 512: 505: 496: 489: 486: 479: 471: 464: 461: 454: 445: 430: 429: 426: 425: 419: 411: 404: 401: 394: 385: 378: 375: 368: 359: 352: 349: 342: 333: 325: 324: 318: 310: 303: 300: 293: 284: 277: 274: 267: 258: 251: 248: 241: 232: 210: 201: 185: 176: 164: 155: 135: 126: 116: 113: 108: 105: 15: 13: 10: 9: 6: 4: 3: 2: 2805: 2794: 2791: 2789: 2786: 2784: 2781: 2780: 2778: 2764: 2760: 2755: 2750: 2746: 2742: 2737: 2732: 2728: 2724: 2720: 2713: 2710: 2699: 2695: 2688: 2685: 2680: 2676: 2672: 2668: 2663: 2658: 2654: 2650: 2642: 2639: 2627: 2623: 2616: 2613: 2608: 2604: 2600: 2596: 2592: 2588: 2585:(4): 042801. 2584: 2580: 2576: 2572: 2565: 2562: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2524: 2519: 2516:(6): 062802. 2515: 2511: 2507: 2500: 2497: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2459: 2454: 2450: 2446: 2442: 2435: 2432: 2427: 2423: 2418: 2413: 2409: 2405: 2400: 2395: 2391: 2387: 2383: 2376: 2373: 2368: 2364: 2360: 2356: 2351: 2346: 2342: 2338: 2333: 2328: 2324: 2320: 2316: 2309: 2306: 2301: 2297: 2292: 2287: 2283: 2279: 2274: 2269: 2265: 2261: 2257: 2250: 2247: 2242: 2238: 2233: 2228: 2223: 2218: 2214: 2210: 2206: 2199: 2196: 2191: 2187: 2182: 2177: 2172: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2136: 2132: 2128: 2123: 2118: 2114: 2110: 2106: 2102: 2097: 2092: 2088: 2084: 2077: 2074: 2069: 2065: 2060: 2055: 2051: 2047: 2042: 2037: 2033: 2029: 2025: 2018: 2015: 2011: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1970: 1965: 1961: 1957: 1956: 1948: 1946: 1944: 1940: 1935: 1931: 1927: 1921: 1919: 1917: 1913: 1900: 1896: 1889: 1886: 1873: 1869: 1863: 1860: 1847: 1843: 1842:"Brown Dwarf" 1836: 1834: 1830: 1825: 1819: 1815: 1808: 1806: 1804: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1754: 1749: 1745: 1741: 1737: 1730: 1727: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1689: 1684: 1680: 1676: 1672: 1665: 1662: 1658: 1646: 1642: 1638: 1631: 1628: 1623: 1621:9783527627370 1617: 1613: 1609: 1606:. p. 8. 1605: 1601: 1600: 1592: 1589: 1583: 1578: 1574: 1570: 1565: 1560: 1556: 1552: 1551: 1546: 1539: 1537: 1535: 1533: 1531: 1529: 1525: 1520: 1508: 1500: 1496: 1492: 1488: 1481: 1480: 1472: 1469: 1464: 1460: 1456: 1452: 1448: 1444: 1443: 1435: 1432: 1427: 1421: 1417: 1410: 1408: 1404: 1398: 1394: 1389: 1388:10044/1/68623 1384: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1347: 1344: 1339: 1335: 1330: 1325: 1321: 1317: 1312: 1307: 1303: 1299: 1295: 1288: 1286: 1282: 1275: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1247: 1243: 1241: 1239: 1233: 1231: 1227: 1222: 1220: 1215: 1214:supersymmetry 1210: 1208: 1205:the existing 1204: 1196: 1194: 1192: 1191: 1186: 1184: 1180: 1176: 1172: 1167: 1165: 1164:cross section 1160: 1157: 1149: 1147: 1141: 1136: 1129: 1127: 1121: 1119: 1112: 1110: 1107: 1102: 1094: 1092: 1090: 1086: 1078: 1074: 1070: 1067: 1063: 1059: 1055: 1046: 1040: 1036: 1034: 1030: 1026: 1022: 1018: 1010: 1004: 1000: 986: 966: 963: 959: 940: 937: 933: 914: 913: 907: 904: 898: 895: 890: 870: 867: 863: 844: 841: 837: 819: 816: 812: 793: 792: 787: 768: 765: 761: 742: 739: 735: 716: 713: 709: 690: 689: 686: 685: 680: 676: 674: 668: 660: 658: 655: 651: 647: 635: 616: 613: 609: 590: 587: 583: 565: 562: 558: 539: 538: 534: 516: 513: 509: 490: 487: 483: 465: 462: 458: 439: 438: 435: 434: 433: 423: 405: 402: 398: 379: 376: 372: 353: 350: 346: 327: 326: 322: 304: 301: 297: 278: 275: 271: 252: 249: 245: 226: 225: 222: 221: 220: 217: 214: 194: 189: 168: 148: 144: 139: 114: 112: 106: 101: 96: 92: 91:predictions. 90: 86: 85:David Schramm 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 41:Population II 38: 34: 30: 26: 22: 2726: 2722: 2712: 2701:. Retrieved 2697: 2687: 2652: 2648: 2641: 2629:. Retrieved 2625: 2615: 2582: 2578: 2564: 2513: 2509: 2499: 2448: 2444: 2434: 2389: 2385: 2375: 2322: 2318: 2308: 2263: 2259: 2249: 2212: 2208: 2198: 2161: 2157: 2147: 2086: 2082: 2076: 2031: 2027: 2017: 2005: 1959: 1953: 1933: 1903:. Retrieved 1899:the original 1888: 1876:. Retrieved 1872:the original 1862: 1850:. Retrieved 1846:the original 1813: 1743: 1739: 1729: 1678: 1674: 1664: 1656: 1649:. Retrieved 1640: 1630: 1598: 1591: 1557:(1): 47–68. 1554: 1548: 1478: 1471: 1446: 1440: 1434: 1415: 1360: 1356: 1346: 1301: 1297: 1255:Halo nucleus 1234: 1223: 1211: 1200: 1188: 1187: 1168: 1161: 1153: 1137: 1133: 1125: 1116: 1098: 1082: 1050: 1014: 994: 670: 643: 431: 218: 118: 110: 28: 24: 18: 1852:17 November 1651:21 February 1085:brown dwarf 2777:Categories 2703:2021-10-29 2662:2010.14293 2332:1701.04149 2325:(2): 165. 2273:1801.00090 2266:(2): L31. 2122:2152/34872 1479:The Review 1311:1701.04149 1304:(2): 165. 1276:References 1171:Fred Hoyle 1058:transmutes 997:23 MK 665:See also: 646:Hydrogen-1 193:radiogenic 45:halo stars 2763:0004-637X 2736:0907.3919 2698:Space.com 2679:256039464 2607:0556-2813 2556:119110688 2548:0556-2813 2523:1312.0894 2491:119265813 2483:1550-7998 2458:1008.0848 2426:0004-637X 2359:1538-4357 2241:0004-6361 2222:1311.6414 2190:0004-6361 2171:1409.0890 2139:119199829 2131:0004-637X 2096:1207.0499 2089:(1): 46. 2068:0004-6361 2041:1008.0575 1969:0911.4198 1926:Plait, P. 1778:1476-4687 1713:0004-637X 1604:Wiley-VCH 1564:1203.3551 1517:ignored ( 1507:cite book 1397:2470-0010 1224:Changing 1179:carbon-12 1175:resonance 1089:red dwarf 147:half-life 61:lithium-7 33:abundance 21:astronomy 2788:Big Bang 2300:54205417 1994:19907489 1934:Discover 1786:16900193 1721:14299934 1645:Archived 1250:Big Bang 1244:See also 1230:redshift 1054:NGC 6397 1017:hydrogen 654:helium-4 65:hydrogen 2783:Lithium 2741:Bibcode 2655:: 143. 2631:17 June 2587:Bibcode 2528:Bibcode 2463:Bibcode 2404:Bibcode 2337:Bibcode 2278:Bibcode 2215:: A92. 2164:: A21. 2101:Bibcode 2046:Bibcode 2034:: A87. 1974:Bibcode 1905:6 March 1878:29 July 1794:3943644 1758:Bibcode 1693:Bibcode 1643:. BBC. 1608:Bibcode 1569:Bibcode 1487:Bibcode 1451:Bibcode 1365:Bibcode 1316:Bibcode 1019:(H and 967:2  964:→  938:+  905:/  896:+  868:+  842:→  817:+  766:+  740:→  714:+  650:nuclide 614:+  588:→  563:+  514:+  488:→  463:+  403:+  377:→  351:+  302:+  276:→  250:+  67:(H and 37:lithium 2761:  2677:  2605:  2554:  2546:  2489:  2481:  2424:  2367:568182 2365:  2357:  2298:  2239:  2188:  2137:  2129:  2066:  2002:388656 2000:  1992:  1955:Nature 1820:  1792:  1784:  1776:  1740:Nature 1719:  1711:  1618:  1422:  1395:  1338:568182 1336:  1203:beyond 1066:proton 1062:helium 1025:helium 1023:) and 961:  935:  902:  893:  881:ν 865:  839:  814:  779:γ 763:  737:  711:  611:  585:  560:  511:  485:  460:  415:γ 400:  374:  348:  314:γ 299:  273:  247:  73:helium 71:) and 23:, the 2731:arXiv 2675:S2CID 2657:arXiv 2552:S2CID 2518:arXiv 2487:S2CID 2453:arXiv 2394:arXiv 2363:S2CID 2327:arXiv 2296:S2CID 2268:arXiv 2217:arXiv 2166:arXiv 2135:S2CID 2091:arXiv 2036:arXiv 1998:S2CID 1964:arXiv 1790:S2CID 1748:arXiv 1717:S2CID 1683:arXiv 1641:earth 1559:arXiv 1483:(PDF) 1334:S2CID 1306:arXiv 2759:ISSN 2649:Jhep 2633:2023 2603:ISSN 2544:ISSN 2479:ISSN 2422:ISSN 2355:ISSN 2237:ISSN 2186:ISSN 2127:ISSN 2064:ISSN 1990:PMID 1907:2013 1880:2015 1854:2009 1818:ISBN 1782:PMID 1774:ISSN 1709:ISSN 1653:2017 1616:ISBN 1519:help 1420:ISBN 1393:ISSN 1031:and 191:and 79:and 53:WMAP 2749:doi 2727:716 2667:doi 2595:doi 2536:doi 2471:doi 2412:doi 2390:630 2345:doi 2323:834 2286:doi 2264:852 2227:doi 2213:562 2176:doi 2162:570 2117:hdl 2109:doi 2087:756 2054:doi 2032:519 1982:doi 1960:462 1766:doi 1744:442 1701:doi 1679:619 1577:doi 1495:doi 1459:doi 1383:hdl 1373:doi 1324:doi 1302:834 1177:in 89:BBN 57:CMB 35:of 27:or 19:In 2779:: 2757:. 2747:. 2739:. 2725:. 2721:. 2696:. 2673:. 2665:. 2653:02 2651:. 2624:. 2601:. 2593:. 2583:84 2581:. 2577:. 2550:. 2542:. 2534:. 2526:. 2514:88 2512:. 2508:. 2485:. 2477:. 2469:. 2461:. 2449:82 2447:. 2443:. 2420:. 2410:. 2402:. 2388:. 2384:. 2361:. 2353:. 2343:. 2335:. 2321:. 2317:. 2294:. 2284:. 2276:. 2262:. 2258:. 2235:. 2225:. 2211:. 2207:. 2184:. 2174:. 2160:. 2156:. 2133:. 2125:. 2115:. 2107:. 2099:. 2085:. 2062:. 2052:. 2044:. 2030:. 2026:. 2004:. 1996:. 1988:. 1980:. 1972:. 1958:. 1942:^ 1932:. 1915:^ 1832:^ 1802:^ 1788:. 1780:. 1772:. 1764:. 1756:. 1742:. 1738:. 1715:. 1707:. 1699:. 1691:. 1677:. 1673:. 1655:. 1639:. 1614:. 1575:. 1567:. 1555:61 1553:. 1547:. 1527:^ 1511:: 1509:}} 1505:{{ 1493:. 1457:. 1447:23 1445:. 1406:^ 1391:. 1381:. 1371:. 1361:98 1359:. 1355:. 1332:. 1322:. 1314:. 1300:. 1296:. 1284:^ 1033:He 1029:He 999:. 978:He 925:Li 855:Li 804:Be 753:Be 727:He 701:He 675:. 627:He 601:He 550:Li 501:Li 450:Be 390:Be 364:He 338:He 289:Li 263:He 216:. 206:Be 181:Li 160:Li 131:Be 100:CL 81:He 77:He 43:) 2765:. 2751:: 2743:: 2733:: 2706:. 2681:. 2669:: 2659:: 2635:. 2609:. 2597:: 2589:: 2558:. 2538:: 2530:: 2520:: 2493:. 2473:: 2465:: 2455:: 2428:. 2414:: 2406:: 2396:: 2369:. 2347:: 2339:: 2329:: 2302:. 2288:: 2280:: 2270:: 2243:. 2229:: 2219:: 2192:. 2178:: 2168:: 2141:. 2119:: 2111:: 2103:: 2093:: 2070:. 2056:: 2048:: 2038:: 1984:: 1976:: 1966:: 1936:. 1909:. 1882:. 1856:. 1826:. 1796:. 1768:: 1760:: 1750:: 1723:. 1703:: 1695:: 1685:: 1624:. 1610:: 1585:. 1579:: 1571:: 1561:: 1521:) 1501:. 1497:: 1489:: 1461:: 1453:: 1428:. 1399:. 1385:: 1375:: 1367:: 1340:. 1326:: 1318:: 1308:: 1047:. 1027:( 1021:H 974:2 951:H 947:1 921:3 886:e 851:3 829:e 800:4 749:4 723:2 697:2 623:2 597:2 575:p 546:3 526:p 497:3 475:n 446:4 386:4 360:2 334:2 285:3 259:2 237:H 233:1 202:4 177:3 156:3 145:( 127:4 75:( 69:H 51:+

Index

astronomy
abundance
lithium
Population II
halo stars
Big Bang nucleosynthesis
WMAP
CMB
lithium-7
hydrogen
H
helium
He
He
David Schramm
BBN

CL

4
Be

electron capture
half-life

3
Li


3
Li

radiogenic

4
Be


1
H


2
He


3
Li


γ


2
He

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.