Knowledge

Copeland–Erdős constant

Source 📝

281: 744: 158: 666: 527: 410: 62: 598: 468: 437: 351: 848: 618: 571: 547: 310: 50: 685: 891: 668:
satisfies these conditions, so the constant 0.003712192634435363748597110122136... is normal in base 10, and 0.003101525354661104...
951: 276:{\displaystyle \displaystyle \sum _{n=1}^{\infty }p_{n}10^{-\left(n+\sum _{k=1}^{n}\lfloor \log _{10}{p_{k}}\rfloor \right)}} 776: 941: 623: 839: 549:
is any natural number greater than or equal to 2, then the constant obtained by concatenating "0." with the
142: 66: 946: 936: 84: 782: 477: 360: 74: 305: 909: 887: 70: 58: 912: 857: 576: 446: 415: 329: 802:
Copeland and Erdős considered 1 a prime, and they defined the constant as 0.12357111317...
83:
By a similar argument, any constant created by concatenating "0." with all primes in an
80:
is a sum of at most six primes. It also follows directly from its normality (see below).
603: 556: 532: 471: 17: 326:
Copeland and Erdős's proof that their constant is normal relies only on the fact that
930: 880: 843: 146: 138: 862: 875: 298: 134:, so the concatenated primes contain arbitrarily long sequences of the digit zero. 36: 779:: the truncated value of this constant multiplied by the appropriate power of 10. 871: 550: 917: 39:
in order. Its value, using the modern definition of prime, is approximately
354: 99: 77: 32: 114: + 1. By Dirichlet's theorem, the arithmetic progression 739:{\displaystyle \displaystyle \sum _{n=1}^{\infty }b^{-p_{n}},\,} 106:
and to 10, will be irrational; for example, primes of the form 4
314: 45: 785:: concatenating all natural numbers, not just primes. 689: 688: 626: 606: 579: 559: 535: 480: 449: 418: 363: 332: 162: 161: 879: 738: 660: 612: 592: 565: 541: 521: 462: 431: 404: 345: 275: 63:Dirichlet's theorem on arithmetic progressions 849:Bulletin of the American Mathematical Society 811: 661:{\displaystyle \lfloor n(\log n)^{2}\rfloor } 8: 655: 627: 262: 234: 822: 149:in 1946 (hence the name of the constant). 886:(5th ed.), Oxford University Press, 861: 734: 723: 715: 705: 694: 687: 649: 625: 605: 584: 578: 558: 534: 498: 485: 479: 454: 448: 423: 417: 381: 368: 362: 337: 331: 255: 250: 241: 228: 217: 198: 188: 178: 167: 160: 882:An Introduction to the Theory of Numbers 43:0.235711131719232931374143... (sequence 795: 470:is any strictly increasing sequence of 31:is the concatenation of "0." with the 7: 846:(1946), "Note on Normal Numbers", 706: 179: 25: 443:prime number. More generally, if 522:{\displaystyle s_{n}=n^{1+o(1)}} 405:{\displaystyle p_{n}=n^{1+o(1)}} 863:10.1090/S0002-9904-1946-08657-7 126:, and those primes are also in 646: 633: 514: 508: 397: 391: 137:In base 10, the constant is a 69:(Hardy and Wright, p. 113) or 1: 763:th digit is 1 if and only if 749:which can be written in base 620:. For example, the sequence 753:as 0.0110101000101000101... 968: 777:Smarandache–Wellin numbers 61:; this can be proven with 913:"Copeland-Erdos Constant" 812:Copeland & Erdős 1946 767:is prime, is irrational. 152:The constant is given by 122:contains primes for all 823:Hardy & Wright 1979 573:representations of the 143:Arthur Herbert Copeland 118: · 10 +  35:representations of the 29:Copeland–Erdős constant 18:Copeland-Erdős constant 952:Mathematical constants 740: 710: 662: 614: 594: 567: 543: 523: 464: 433: 406: 347: 277: 233: 183: 85:arithmetic progression 783:Champernowne constant 741: 690: 672:is normal in base 7. 663: 615: 600:'s is normal in base 595: 593:{\displaystyle s_{n}} 568: 544: 524: 465: 463:{\displaystyle s_{n}} 434: 432:{\displaystyle p_{n}} 407: 348: 346:{\displaystyle p_{n}} 278: 213: 163: 686: 624: 604: 577: 557: 533: 478: 447: 416: 361: 330: 159: 67:Bertrand's postulate 355:strictly increasing 141:, a fact proven by 110: + 1 or 8 942:Irrational numbers 910:Weisstein, Eric W. 736: 735: 675:In any given base 658: 610: 590: 563: 539: 519: 460: 429: 402: 343: 306:continued fraction 273: 272: 613:{\displaystyle b} 566:{\displaystyle b} 542:{\displaystyle b} 322:Related constants 16:(Redirected from 959: 923: 922: 896: 885: 866: 865: 826: 820: 814: 809: 803: 800: 745: 743: 742: 737: 730: 729: 728: 727: 709: 704: 667: 665: 664: 659: 654: 653: 619: 617: 616: 611: 599: 597: 596: 591: 589: 588: 572: 570: 569: 564: 548: 546: 545: 540: 528: 526: 525: 520: 518: 517: 490: 489: 469: 467: 466: 461: 459: 458: 438: 436: 435: 430: 428: 427: 411: 409: 408: 403: 401: 400: 373: 372: 352: 350: 349: 344: 342: 341: 317: 282: 280: 279: 274: 271: 270: 269: 265: 261: 260: 259: 246: 245: 232: 227: 193: 192: 182: 177: 71:Ramare's theorem 57:The constant is 48: 21: 967: 966: 962: 961: 960: 958: 957: 956: 927: 926: 908: 907: 904: 894: 870: 856:(10): 857–860, 840:Copeland, A. H. 838: 835: 830: 829: 821: 817: 810: 806: 801: 797: 792: 773: 758: 719: 711: 684: 683: 671: 645: 622: 621: 602: 601: 580: 575: 574: 555: 554: 531: 530: 494: 481: 476: 475: 472:natural numbers 450: 445: 444: 419: 414: 413: 377: 364: 359: 358: 333: 328: 327: 324: 309: 291: 251: 237: 206: 202: 194: 184: 157: 156: 44: 23: 22: 15: 12: 11: 5: 965: 963: 955: 954: 949: 944: 939: 929: 928: 925: 924: 903: 902:External links 900: 899: 898: 892: 868: 834: 831: 828: 827: 815: 804: 794: 793: 791: 788: 787: 786: 780: 772: 769: 754: 747: 746: 733: 726: 722: 718: 714: 708: 703: 700: 697: 693: 669: 657: 652: 648: 644: 641: 638: 635: 632: 629: 609: 587: 583: 562: 538: 516: 513: 510: 507: 504: 501: 497: 493: 488: 484: 457: 453: 426: 422: 399: 396: 393: 390: 387: 384: 380: 376: 371: 367: 340: 336: 323: 320: 289: 284: 283: 268: 264: 258: 254: 249: 244: 240: 236: 231: 226: 223: 220: 216: 212: 209: 205: 201: 197: 191: 187: 181: 176: 173: 170: 166: 55: 54: 24: 14: 13: 10: 9: 6: 4: 3: 2: 964: 953: 950: 948: 947:Prime numbers 945: 943: 940: 938: 935: 934: 932: 920: 919: 914: 911: 906: 905: 901: 895: 893:0-19-853171-0 889: 884: 883: 877: 876:Wright, E. M. 873: 869: 864: 859: 855: 851: 850: 845: 841: 837: 836: 832: 825:, p. 112 824: 819: 816: 813: 808: 805: 799: 796: 789: 784: 781: 778: 775: 774: 770: 768: 766: 762: 757: 752: 731: 724: 720: 716: 712: 701: 698: 695: 691: 682: 681: 680: 678: 673: 650: 642: 639: 636: 630: 607: 585: 581: 560: 552: 536: 511: 505: 502: 499: 495: 491: 486: 482: 473: 455: 451: 442: 424: 420: 394: 388: 385: 382: 378: 374: 369: 365: 356: 338: 334: 321: 319: 316: 312: 307: 302: 300: 296: 292: 266: 256: 252: 247: 242: 238: 229: 224: 221: 218: 214: 210: 207: 203: 199: 195: 189: 185: 174: 171: 168: 164: 155: 154: 153: 150: 148: 144: 140: 139:normal number 135: 133: 130: +  129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 90: +  89: 86: 81: 79: 76: 72: 68: 64: 60: 52: 47: 42: 41: 40: 38: 37:prime numbers 34: 30: 19: 916: 881: 872:Hardy, G. H. 853: 847: 818: 807: 798: 764: 760: 755: 750: 748: 676: 674: 440: 325: 303: 299:prime number 294: 287: 285: 151: 136: 131: 127: 123: 119: 115: 111: 107: 103: 95: 91: 87: 82: 56: 28: 26: 679:the number 73:that every 937:Paul Erdős 931:Categories 790:References 759:where the 474:such that 147:Paul Erdős 59:irrational 918:MathWorld 878:(1979) , 844:Erdős, P. 717:− 707:∞ 692:∑ 656:⌋ 640:⁡ 628:⌊ 263:⌋ 248:⁡ 235:⌊ 215:∑ 200:− 180:∞ 165:∑ 771:See also 412:, where 94:, where 833:Sources 439:is the 315:A030168 313::  293:is the 100:coprime 78:integer 49:in the 46:A033308 33:base 10 890:  286:where 308:is ( 888:ISBN 551:base 529:and 357:and 311:OEIS 304:Its 145:and 75:even 51:OEIS 27:The 858:doi 637:log 353:is 318:). 297:th 239:log 102:to 98:is 65:or 933:: 915:. 874:; 854:52 852:, 842:; 301:. 243:10 196:10 128:cd 116:dn 88:dn 53:). 921:. 897:. 867:. 860:: 765:n 761:n 756:b 751:b 732:, 725:n 721:p 713:b 702:1 699:= 696:n 677:b 670:7 651:2 647:) 643:n 634:( 631:n 608:b 586:n 582:s 561:b 553:- 537:b 515:) 512:1 509:( 506:o 503:+ 500:1 496:n 492:= 487:n 483:s 456:n 452:s 441:n 425:n 421:p 398:) 395:1 392:( 389:o 386:+ 383:1 379:n 375:= 370:n 366:p 339:n 335:p 295:n 290:n 288:p 267:) 257:k 253:p 230:n 225:1 222:= 219:k 211:+ 208:n 204:( 190:n 186:p 175:1 172:= 169:n 132:a 124:m 120:a 112:n 108:n 104:d 96:a 92:a 20:)

Index

Copeland-Erdős constant
base 10
prime numbers
A033308
OEIS
irrational
Dirichlet's theorem on arithmetic progressions
Bertrand's postulate
Ramare's theorem
even
integer
arithmetic progression
coprime
normal number
Arthur Herbert Copeland
Paul Erdős
prime number
continued fraction
OEIS
A030168
strictly increasing
natural numbers
base
Smarandache–Wellin numbers
Champernowne constant
Copeland & Erdős 1946
Hardy & Wright 1979
Copeland, A. H.
Erdős, P.
Bulletin of the American Mathematical Society

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.