Knowledge (XXG)

Coprime integers

Source 📝

667: 1633: 1863: 1445: 987:). Pairwise coprimality is a stronger condition than setwise coprimality; every pairwise coprime finite set is also setwise coprime, but the reverse is not true. For example, the integers 4, 5, 6 are (setwise) coprime (because the only positive integer dividing 100:
The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a
1682:
There is no way to choose a positive integer at random so that each positive integer occurs with equal probability, but statements about "randomly chosen integers" such as the ones above can be formalized by using the notion of
1438:
If one makes the heuristic assumption that such reasoning can be extended to infinitely many divisibility events, one is led to guess that the probability that two numbers are coprime is given by a product over all primes,
1628:{\displaystyle \prod _{{\text{prime }}p}\left(1-{\frac {1}{p^{2}}}\right)=\left(\prod _{{\text{prime }}p}{\frac {1}{1-p^{-2}}}\right)^{-1}={\frac {1}{\zeta (2)}}={\frac {6}{\pi ^{2}}}\approx 0.607927102\approx 61\%.} 871: 954: 414: 1851: 1381: 1332: 257:
of integers can also be called coprime if its elements share no common positive factor except 1. A stronger condition on a set of integers is pairwise coprime, which means that
1742: 1434: 1285: 2507: 2375: 2284: 2240: 1385:
Any finite collection of divisibility events associated to distinct primes is mutually independent. For example, in the case of two events, a number is divisible by primes
2765: 2416: 1785: 1124: 3034: 1184: 2149: 2049: 2006: 1963: 187: 2572: 2113: 2700: 1084: 2665: 2633: 2543: 2448: 2316: 2181: 2084: 2601: 121:
are coprime, the standard way of expressing this fact in mathematical notation is to indicate that their greatest common divisor is one, by the formula
968:
of all the elements of the set is 1. For example, the integers 6, 10, 15 are coprime because 1 is the only positive integer that divides all of them.
3142: 3124: 3097: 1870:
at (2, 1). The root (2, 1) is marked red, its three children are shown in orange, third generation is yellow, and so on in the rainbow order.
777: 2774: 2875: 1243: 2732:
combine rotors of different numbers of teeth. Such combinations work best when the entire set of lengths are pairwise coprime.
289:
The numbers 1 and −1 are the only integers coprime with every integer, and they are the only integers that are coprime with 0.
346: 3021: 698: 236: 888: 705:, in the sense that there is no point with integer coordinates anywhere on the line segment between the origin and 2713:
wear is achieved by choosing the tooth counts of the two gears meshing together to be relatively prime. When a 1:1
670:
Figure 1. The numbers 4 and 9 are coprime. Therefore, the diagonal of a 4 × 9 lattice does not intersect any other
1013:
of integers to be pairwise coprime. Notable examples include the set of all prime numbers, the set of elements in
1207: 1003: 467: 221: 384: 1289:
for example, every 7th integer is divisible by 7. Hence the probability that two numbers are both divisible by
1002:
The concept of pairwise coprimality is important as a hypothesis in many results in number theory, such as the
2054:
This scheme is exhaustive and non-redundant with no invalid members. This can be proved by remarking that, if
1813: 2967:
Saunders, Robert & Randall, Trevor (July 1994), "The family tree of the Pythagorean triplets revisited",
597:
it is a product of invertible elements, and therefore invertible); this also follows from the first point by
3089: 1341: 1087: 1014: 965: 335: 74: 3181: 2994:
Mitchell, Douglas W. (July 2001), "An alternative characterisation of all primitive Pythagorean triples",
1298: 1643: 478: 1703: 1402: 1258: 2865: 2795: 217: 147: 2453: 2321: 2248: 2186: 2790: 2778: 2745: 2383: 1761: 758: 429: 213: 1107: 1151: 419: 377: 373: 3047: 3138: 3120: 3093: 2950: 2871: 2717:
is desired, a gear relatively prime to the two equal-size gears may be inserted between them.
2122: 2013: 1970: 1927: 882: 598: 254: 166: 2548: 2089: 1249:
Informally, the probability that any number is divisible by a prime (or in fact any integer)
3003: 2976: 2670: 1054: 1041: 102: 2638: 2606: 2516: 2421: 2289: 2154: 2057: 3060: 2577: 1685: 1091: 2816: 1676: 1018: 739: 671: 160: 3158:
Lord, Nick (March 2008), "A uniform construction of some infinite coprime sequences",
1234:
are coprime. In this determination, it is convenient to use the characterization that
3175: 2729: 2725: 1672: 1654: 152: 31: 3081: 2721: 1897: 1010: 305: 281:
is coprime, but it is not pairwise coprime since 2 and 4 are not relatively prime.
156: 62: 197:
are relatively prime and that the term "prime" be used instead of coprime (as in
3077: 1867: 721: 17: 2770: 2714: 1030: 666: 470:); in fact the solutions are described by a single congruence relation modulo 971:
If every pair in a set of integers is coprime, then the set is said to be
212:
A fast way to determine whether two numbers are coprime is given by the
2728:
machines combined several loops of key tape of different lengths. Many
58: 35: 701:
would be "visible" via an unobstructed line of sight from the origin
1242:
are coprime if and only if no prime number divides both of them (see
3007: 2980: 1904:(for even–odd and odd–even pairs), and the other tree starting from 1862: 757:
are coprime. As a generalization of this, following easily from the
1210:
can be generalized to any commutative ring, using coprime ideals.
866:{\displaystyle \gcd \left(n^{a}-1,n^{b}-1\right)=n^{\gcd(a,b)}-1.} 762: 665: 2740:
This concept can be extended to other algebraic structures than
2710: 2574:
This process of "computing the father" can stop only if either
2635:
In these cases, coprimality, implies that the pair is either
663:. This can be viewed as a generalization of Euclid's lemma. 1336:
and the probability that at least one of them is not is
1700:
be the probability that two randomly chosen numbers in
227:
The number of integers coprime with a positive integer
1818: 1407: 1352: 1303: 1263: 685:
are coprime if and only if the point with coordinates
2748: 2673: 2641: 2609: 2580: 2551: 2519: 2456: 2424: 2386: 2324: 2292: 2251: 2189: 2157: 2125: 2092: 2060: 2016: 1973: 1930: 1816: 1764: 1758:
exactly, with work one can show that in the limit as
1706: 1448: 1405: 1344: 1301: 1261: 1154: 1110: 1057: 891: 780: 387: 169: 2863:Graham, R. L.; Knuth, D. E.; Patashnik, O. (1989), 2821:. Boston: Thompson, Bigelow & Brown. p. 49 1646:, the identity relating the product over primes to 2759: 2694: 2659: 2627: 2595: 2566: 2537: 2501: 2442: 2410: 2369: 2310: 2278: 2234: 2175: 2143: 2107: 2078: 2043: 2000: 1957: 1845: 1808:randomly chosen integers being setwise coprime is 1779: 1736: 1627: 1428: 1375: 1326: 1279: 1178: 1118: 1078: 948: 865: 408: 181: 1908:(for odd–odd pairs). The children of each vertex 724:that two randomly chosen integers are coprime is 1226:, it is reasonable to ask how likely it is that 837: 781: 732: 3022:"Cryptology: Key Generators with Long Periods" 2925: 2913: 2901: 949:{\displaystyle S=\{a_{1},a_{2},\dots ,a_{n}\}} 73:, and vice versa. This is equivalent to their 3135:Elementary Number Theory and its Applications 8: 1731: 1707: 943: 898: 3106:Niven, Ivan; Zuckerman, Herbert S. (1966), 2954: 2850: 1896:) can be arranged in two disjoint complete 409:{\displaystyle \mathbb {Z} /a\mathbb {Z} } 277:of different integers in the set. The set 2750: 2749: 2747: 2672: 2640: 2608: 2579: 2550: 2518: 2455: 2423: 2385: 2323: 2291: 2250: 2188: 2156: 2124: 2091: 2059: 2015: 1972: 1929: 1817: 1815: 1763: 1705: 1599: 1590: 1566: 1554: 1537: 1521: 1511: 1510: 1484: 1475: 1454: 1453: 1447: 1406: 1404: 1361: 1351: 1343: 1312: 1302: 1300: 1262: 1260: 1153: 1112: 1111: 1109: 1056: 937: 918: 905: 890: 836: 812: 793: 779: 720:In a sense that can be made precise, the 402: 401: 393: 389: 388: 386: 292:A number of conditions are equivalent to 168: 3108:An Introduction to the Theory of Numbers 3086:An Introduction to the Theory of Numbers 3035:"German Cipher Machines of World War II" 1861: 1846:{\displaystyle {\tfrac {1}{\zeta (k)}}.} 620:As a consequence of the first point, if 512:As a consequence of the third point, if 61:of both of them is 1. Consequently, any 27:Two numbers without shared prime factors 2807: 749:are coprime if and only if the numbers 353:, meaning that there exists an integer 57:if the only positive integer that is a 1874:All pairs of positive coprime numbers 1376:{\displaystyle 1-{\tfrac {1}{p^{2}}}.} 601:, which states that if a prime number 239:, also known as Euler's phi function, 3110:(2nd ed.), John Wiley & Sons 2937: 7: 2709:In machine design, an even, uniform 1327:{\displaystyle {\tfrac {1}{p^{2}}},} 628:are coprime, then so are any powers 613:divides at least one of the factors 2889: 2868:/ A Foundation for Computer Science 1804:More generally, the probability of 1397:; the latter event has probability 1218:Given two randomly chosen integers 1771: 1619: 1393:if and only if it is divisible by 25: 2545:is a "smaller" coprime pair with 1737:{\displaystyle \{1,2,\ldots ,N\}} 1429:{\displaystyle {\tfrac {1}{pq}}.} 1244:Fundamental theorem of arithmetic 733:§ Probability of coprimality 163:proposed an alternative notation 3137:(3rd ed.), Addison-Wesley, 1280:{\displaystyle {\tfrac {1}{p}};} 991:of them is 1), but they are not 216:and its faster variants such as 2870:, Addison-Wesley, p. 115, 2835:prime when no whole number but 2686: 2674: 2654: 2642: 2532: 2520: 2502:{\displaystyle (m,n)=(b,2b-a)} 2496: 2475: 2469: 2457: 2437: 2425: 2370:{\displaystyle (m,n)=(b,a-2b)} 2364: 2343: 2337: 2325: 2305: 2293: 2279:{\displaystyle 2b<a<3b,} 2235:{\displaystyle (m,n)=(a-2b,b)} 2229: 2208: 2202: 2190: 2170: 2158: 2073: 2061: 2038: 2017: 1995: 1974: 1952: 1931: 1833: 1827: 1768: 1581: 1575: 852: 840: 368:. In ring-theoretic language, 1: 3117:Number Theory and Its History 2760:{\displaystyle \mathbb {Z} ;} 2411:{\displaystyle b<a<2b,} 1780:{\displaystyle N\to \infty ,} 1689:. For each positive integer 550:. That is, we may "divide by 77:(GCD) being 1. One says also 1858:Generating all coprime pairs 1119:{\displaystyle \mathbb {Z} } 1090:: with this definition, two 105:are coprime, by definition. 2949:This theorem was proved by 1190:is a third ideal such that 1179:{\displaystyle AB=A\cap B;} 1136:are coprime. If the ideals 1128:are coprime if and only if 699:Cartesian coordinate system 578:, then so is their product 265:are coprime for every pair 3198: 3133:Rosen, Kenneth H. (1992), 2953:in 1881. For a proof, see 2926:Niven & Zuckerman 1966 2914:Niven & Zuckerman 1966 2902:Niven & Zuckerman 1966 1920:are generated as follows: 1214:Probability of coprimality 1102:) in the ring of integers 1025:Coprimality in ring ideals 731:, which is about 61% (see 489:is equal to their product 145:. In their 1989 textbook 3048:"Origins of One-time pad" 1900:, one tree starting from 1208:Chinese remainder theorem 1004:Chinese remainder theorem 985:mutually relatively prime 977:pairwise relatively prime 468:Chinese remainder theorem 3061:"Vernam-Vigenère cipher" 2839:will divide each of them 2818:A Treatise on Arithmetic 2815:Eaton, James S. (1872). 2144:{\displaystyle a>3b,} 2044:{\displaystyle (m+2n,n)} 2001:{\displaystyle (2m+n,m)} 1958:{\displaystyle (2m-n,m)} 1744:are coprime. Although 1657:, and the evaluation of 237:Euler's totient function 182:{\displaystyle a\perp b} 3090:Oxford University Press 2955:Hardy & Wright 2008 2904:, p. 22, Theorem 2.3(b) 2851:Hardy & Wright 2008 2775:greatest common divisor 2567:{\displaystyle m>n.} 2108:{\displaystyle a>b,} 2086:is a coprime pair with 1047:are called coprime (or 966:greatest common divisor 432:for an unknown integer 75:greatest common divisor 3115:Ore, Oystein (1988) , 2761: 2696: 2695:{\displaystyle (3,1).} 2661: 2629: 2597: 2568: 2539: 2503: 2444: 2412: 2371: 2312: 2280: 2236: 2177: 2145: 2109: 2080: 2045: 2002: 1959: 1871: 1847: 1781: 1738: 1629: 1430: 1377: 1328: 1281: 1180: 1120: 1080: 1079:{\displaystyle A+B=R.} 1009:It is possible for an 950: 867: 674: 574:are both coprime with 554:" when working modulo 410: 347:multiplicative inverse 222:Lehmer's GCD algorithm 183: 3059:Gustavus J. Simmons. 3037:. 2014. p. 16; p. 22. 2762: 2697: 2662: 2660:{\displaystyle (2,1)} 2630: 2628:{\displaystyle a=3b.} 2598: 2569: 2540: 2538:{\displaystyle (m,n)} 2504: 2445: 2443:{\displaystyle (a,b)} 2413: 2372: 2313: 2311:{\displaystyle (a,b)} 2281: 2237: 2178: 2176:{\displaystyle (a,b)} 2146: 2110: 2081: 2079:{\displaystyle (a,b)} 2046: 2003: 1960: 1865: 1848: 1782: 1739: 1644:Riemann zeta function 1630: 1431: 1378: 1329: 1282: 1181: 1121: 1081: 1017:, and the set of all 951: 868: 669: 479:least common multiple 411: 319:There exist integers 184: 3160:Mathematical Gazette 2996:Mathematical Gazette 2969:Mathematical Gazette 2866:Concrete Mathematics 2796:Superpartient number 2746: 2671: 2639: 2607: 2596:{\displaystyle a=2b} 2578: 2549: 2517: 2454: 2422: 2384: 2322: 2290: 2249: 2187: 2155: 2123: 2090: 2058: 2014: 1971: 1928: 1814: 1762: 1704: 1653:is an example of an 1446: 1403: 1342: 1299: 1259: 1152: 1108: 1055: 1015:Sylvester's sequence 889: 778: 651:divides the product 430:congruence relations 385: 218:binary GCD algorithm 167: 148:Concrete Mathematics 109:Notation and testing 3020:Klaus Pommerening. 2928:, p.7, Theorem 1.10 2916:, p. 6, Theorem 1.8 2779:coprime polynomials 956:can also be called 877:Coprimality in sets 759:Euclidean algorithm 214:Euclidean algorithm 2757: 2692: 2657: 2625: 2593: 2564: 2535: 2499: 2440: 2408: 2367: 2308: 2276: 2232: 2173: 2141: 2105: 2076: 2041: 1998: 1955: 1872: 1843: 1838: 1777: 1734: 1625: 1520: 1463: 1426: 1421: 1373: 1368: 1324: 1319: 1277: 1272: 1176: 1148:are coprime, then 1116: 1076: 946: 863: 717:. (See figure 1.) 675: 605:divides a product 558:. Furthermore, if 466:, has a solution ( 406: 179: 113:When the integers 3144:978-0-201-57889-8 3126:978-0-486-65620-5 3099:978-0-19-921986-5 3046:Dirk Rijmenants. 1837: 1751:will never equal 1605: 1585: 1547: 1514: 1506: 1490: 1457: 1449: 1420: 1367: 1318: 1271: 1088:Bézout's identity 1086:This generalizes 995:coprime (because 677:The two integers 336:Bézout's identity 189:to indicate that 16:(Redirected from 3189: 3167: 3147: 3129: 3111: 3102: 3088:(6th ed.), 3064: 3057: 3051: 3044: 3038: 3031: 3025: 3018: 3012: 3010: 2991: 2985: 2983: 2964: 2958: 2947: 2941: 2935: 2929: 2923: 2917: 2911: 2905: 2899: 2893: 2887: 2881: 2880: 2860: 2854: 2848: 2842: 2841: 2831:Two numbers are 2828: 2826: 2812: 2791:Euclid's orchard 2777:is 1 are called 2768: 2766: 2764: 2763: 2758: 2753: 2720:In pre-computer 2701: 2699: 2698: 2693: 2666: 2664: 2663: 2658: 2634: 2632: 2631: 2626: 2602: 2600: 2599: 2594: 2573: 2571: 2570: 2565: 2544: 2542: 2541: 2536: 2508: 2506: 2505: 2500: 2449: 2447: 2446: 2441: 2417: 2415: 2414: 2409: 2376: 2374: 2373: 2368: 2317: 2315: 2314: 2309: 2285: 2283: 2282: 2277: 2241: 2239: 2238: 2233: 2182: 2180: 2179: 2174: 2150: 2148: 2147: 2142: 2114: 2112: 2111: 2106: 2085: 2083: 2082: 2077: 2050: 2048: 2047: 2042: 2007: 2005: 2004: 1999: 1964: 1962: 1961: 1956: 1919: 1907: 1903: 1895: 1885: 1854: 1852: 1850: 1849: 1844: 1839: 1836: 1819: 1807: 1800: 1793: 1787:the probability 1786: 1784: 1783: 1778: 1757: 1750: 1743: 1741: 1740: 1735: 1699: 1692: 1670: 1663: 1652: 1641: 1634: 1632: 1631: 1626: 1606: 1604: 1603: 1591: 1586: 1584: 1567: 1562: 1561: 1553: 1549: 1548: 1546: 1545: 1544: 1522: 1519: 1515: 1512: 1496: 1492: 1491: 1489: 1488: 1476: 1462: 1458: 1455: 1437: 1435: 1433: 1432: 1427: 1422: 1419: 1408: 1396: 1392: 1388: 1384: 1382: 1380: 1379: 1374: 1369: 1366: 1365: 1353: 1335: 1333: 1331: 1330: 1325: 1320: 1317: 1316: 1304: 1292: 1288: 1286: 1284: 1283: 1278: 1273: 1264: 1252: 1241: 1237: 1233: 1229: 1225: 1221: 1205: 1201: 1197: 1193: 1189: 1186:furthermore, if 1185: 1183: 1182: 1177: 1147: 1143: 1139: 1135: 1131: 1127: 1125: 1123: 1122: 1117: 1115: 1101: 1097: 1092:principal ideals 1085: 1083: 1082: 1077: 1046: 1042:commutative ring 1039: 1035: 998: 981:mutually coprime 973:pairwise coprime 955: 953: 952: 947: 942: 941: 923: 922: 910: 909: 872: 870: 869: 864: 856: 855: 828: 824: 817: 816: 798: 797: 770: 756: 752: 748: 744: 730: 716: 704: 696: 684: 680: 662: 658: 654: 650: 647:are coprime and 646: 642: 635: 631: 627: 623: 616: 612: 608: 604: 596: 592: 577: 573: 557: 553: 549: 534: 520:are coprime and 519: 515: 507: 492: 488: 484: 473: 465: 450: 435: 424: 417: 415: 413: 412: 407: 405: 397: 392: 371: 367: 356: 352: 344: 333: 322: 315: 311: 299: 295: 280: 276: 264: 260: 249: 234: 231:, between 1 and 230: 208: 200: 196: 192: 188: 186: 185: 180: 144: 132: 120: 116: 103:reduced fraction 96: 90: 86: 80: 72: 69:does not divide 68: 51:relatively prime 44: 40: 21: 3197: 3196: 3192: 3191: 3190: 3188: 3187: 3186: 3172: 3171: 3157: 3154: 3152:Further reading 3145: 3132: 3127: 3114: 3105: 3100: 3076: 3073: 3068: 3067: 3058: 3054: 3045: 3041: 3032: 3028: 3019: 3015: 3008:10.2307/3622017 2993: 2992: 2988: 2981:10.2307/3618576 2966: 2965: 2961: 2948: 2944: 2936: 2932: 2924: 2920: 2912: 2908: 2900: 2896: 2888: 2884: 2878: 2862: 2861: 2857: 2849: 2845: 2824: 2822: 2814: 2813: 2809: 2804: 2787: 2744: 2743: 2741: 2738: 2736:Generalizations 2707: 2669: 2668: 2637: 2636: 2605: 2604: 2576: 2575: 2547: 2546: 2515: 2514: 2509:along branch 1. 2452: 2451: 2420: 2419: 2382: 2381: 2377:along branch 2; 2320: 2319: 2288: 2287: 2247: 2246: 2242:along branch 3; 2185: 2184: 2153: 2152: 2121: 2120: 2088: 2087: 2056: 2055: 2012: 2011: 1969: 1968: 1926: 1925: 1909: 1905: 1901: 1887: 1875: 1860: 1823: 1812: 1811: 1809: 1805: 1795: 1792: 1788: 1760: 1759: 1752: 1749: 1745: 1702: 1701: 1698: 1694: 1690: 1686:natural density 1665: 1658: 1647: 1639: 1595: 1571: 1533: 1526: 1505: 1501: 1500: 1480: 1468: 1464: 1444: 1443: 1412: 1401: 1400: 1398: 1394: 1390: 1386: 1357: 1340: 1339: 1337: 1308: 1297: 1296: 1294: 1290: 1257: 1256: 1254: 1250: 1239: 1235: 1231: 1227: 1223: 1219: 1216: 1203: 1199: 1195: 1191: 1187: 1150: 1149: 1145: 1141: 1137: 1133: 1129: 1106: 1105: 1103: 1099: 1095: 1053: 1052: 1044: 1037: 1033: 1027: 996: 962:setwise coprime 933: 914: 901: 887: 886: 879: 832: 808: 789: 788: 784: 776: 775: 765: 754: 750: 746: 742: 740:natural numbers 725: 706: 702: 686: 682: 678: 660: 656: 652: 648: 644: 640: 633: 629: 625: 621: 614: 610: 606: 602: 594: 591: 585: 579: 575: 572: 565: 559: 555: 551: 536: 521: 517: 513: 494: 490: 486: 482: 471: 452: 437: 433: 422: 420:integers modulo 383: 382: 380: 369: 358: 354: 350: 342: 324: 320: 313: 309: 300:being coprime: 297: 293: 287: 278: 266: 262: 258: 240: 232: 228: 206: 198: 194: 190: 165: 164: 134: 122: 118: 114: 111: 94: 92:is coprime with 88: 84: 78: 70: 66: 42: 38: 28: 23: 22: 18:Coprime integer 15: 12: 11: 5: 3195: 3193: 3185: 3184: 3174: 3173: 3170: 3169: 3153: 3150: 3149: 3148: 3143: 3130: 3125: 3112: 3103: 3098: 3072: 3069: 3066: 3065: 3052: 3039: 3026: 3013: 2986: 2959: 2951:Ernesto Cesàro 2942: 2930: 2918: 2906: 2894: 2882: 2876: 2855: 2843: 2806: 2805: 2803: 2800: 2799: 2798: 2793: 2786: 2783: 2756: 2752: 2737: 2734: 2730:rotor machines 2706: 2703: 2691: 2688: 2685: 2682: 2679: 2676: 2656: 2653: 2650: 2647: 2644: 2624: 2621: 2618: 2615: 2612: 2592: 2589: 2586: 2583: 2563: 2560: 2557: 2554: 2534: 2531: 2528: 2525: 2522: 2511: 2510: 2498: 2495: 2492: 2489: 2486: 2483: 2480: 2477: 2474: 2471: 2468: 2465: 2462: 2459: 2450:is a child of 2439: 2436: 2433: 2430: 2427: 2407: 2404: 2401: 2398: 2395: 2392: 2389: 2378: 2366: 2363: 2360: 2357: 2354: 2351: 2348: 2345: 2342: 2339: 2336: 2333: 2330: 2327: 2318:is a child of 2307: 2304: 2301: 2298: 2295: 2275: 2272: 2269: 2266: 2263: 2260: 2257: 2254: 2243: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2195: 2192: 2183:is a child of 2172: 2169: 2166: 2163: 2160: 2140: 2137: 2134: 2131: 2128: 2104: 2101: 2098: 2095: 2075: 2072: 2069: 2066: 2063: 2052: 2051: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 2008: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1965: 1954: 1951: 1948: 1945: 1942: 1939: 1936: 1933: 1859: 1856: 1842: 1835: 1832: 1829: 1826: 1822: 1790: 1776: 1773: 1770: 1767: 1747: 1733: 1730: 1727: 1724: 1721: 1718: 1715: 1712: 1709: 1696: 1677:Leonhard Euler 1642:refers to the 1636: 1635: 1624: 1621: 1618: 1615: 1612: 1609: 1602: 1598: 1594: 1589: 1583: 1580: 1577: 1574: 1570: 1565: 1560: 1557: 1552: 1543: 1540: 1536: 1532: 1529: 1525: 1518: 1509: 1504: 1499: 1495: 1487: 1483: 1479: 1474: 1471: 1467: 1461: 1452: 1425: 1418: 1415: 1411: 1372: 1364: 1360: 1356: 1350: 1347: 1323: 1315: 1311: 1307: 1276: 1270: 1267: 1215: 1212: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1114: 1075: 1072: 1069: 1066: 1063: 1060: 1026: 1023: 1019:Fermat numbers 945: 940: 936: 932: 929: 926: 921: 917: 913: 908: 904: 900: 897: 894: 878: 875: 874: 873: 862: 859: 854: 851: 848: 845: 842: 839: 835: 831: 827: 823: 820: 815: 811: 807: 804: 801: 796: 792: 787: 783: 672:lattice points 599:Euclid's lemma 593:(i.e., modulo 589: 583: 570: 563: 510: 509: 475: 436:, of the form 428:Every pair of 426: 404: 400: 396: 391: 339: 317: 286: 283: 235:, is given by 178: 175: 172: 161:Oren Patashnik 110: 107: 55:mutually prime 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3194: 3183: 3182:Number theory 3180: 3179: 3177: 3165: 3161: 3156: 3155: 3151: 3146: 3140: 3136: 3131: 3128: 3122: 3118: 3113: 3109: 3104: 3101: 3095: 3091: 3087: 3083: 3079: 3075: 3074: 3070: 3062: 3056: 3053: 3049: 3043: 3040: 3036: 3033:David Mowry. 3030: 3027: 3023: 3017: 3014: 3009: 3005: 3001: 2997: 2990: 2987: 2982: 2978: 2974: 2970: 2963: 2960: 2957:, Theorem 332 2956: 2952: 2946: 2943: 2939: 2934: 2931: 2927: 2922: 2919: 2915: 2910: 2907: 2903: 2898: 2895: 2891: 2886: 2883: 2879: 2877:0-201-14236-8 2873: 2869: 2867: 2859: 2856: 2852: 2847: 2844: 2840: 2838: 2834: 2820: 2819: 2811: 2808: 2801: 2797: 2794: 2792: 2789: 2788: 2784: 2782: 2780: 2776: 2772: 2769:for example, 2754: 2735: 2733: 2731: 2727: 2726:Vernam cipher 2723: 2718: 2716: 2712: 2704: 2702: 2689: 2683: 2680: 2677: 2651: 2648: 2645: 2622: 2619: 2616: 2613: 2610: 2590: 2587: 2584: 2581: 2561: 2558: 2555: 2552: 2529: 2526: 2523: 2513:In all cases 2493: 2490: 2487: 2484: 2481: 2478: 2472: 2466: 2463: 2460: 2434: 2431: 2428: 2405: 2402: 2399: 2396: 2393: 2390: 2387: 2379: 2361: 2358: 2355: 2352: 2349: 2346: 2340: 2334: 2331: 2328: 2302: 2299: 2296: 2273: 2270: 2267: 2264: 2261: 2258: 2255: 2252: 2244: 2226: 2223: 2220: 2217: 2214: 2211: 2205: 2199: 2196: 2193: 2167: 2164: 2161: 2138: 2135: 2132: 2129: 2126: 2118: 2117: 2116: 2102: 2099: 2096: 2093: 2070: 2067: 2064: 2035: 2032: 2029: 2026: 2023: 2020: 2009: 1992: 1989: 1986: 1983: 1980: 1977: 1966: 1949: 1946: 1943: 1940: 1937: 1934: 1923: 1922: 1921: 1917: 1913: 1899: 1898:ternary trees 1894: 1890: 1883: 1879: 1869: 1864: 1857: 1855: 1840: 1830: 1824: 1820: 1802: 1799: 1774: 1765: 1756: 1728: 1725: 1722: 1719: 1716: 1713: 1710: 1688: 1687: 1680: 1678: 1674: 1673:Basel problem 1668: 1661: 1656: 1655:Euler product 1650: 1645: 1622: 1616: 1613: 1610: 1607: 1600: 1596: 1592: 1587: 1578: 1572: 1568: 1563: 1558: 1555: 1550: 1541: 1538: 1534: 1530: 1527: 1523: 1516: 1507: 1502: 1497: 1493: 1485: 1481: 1477: 1472: 1469: 1465: 1459: 1450: 1442: 1441: 1440: 1423: 1416: 1413: 1409: 1370: 1362: 1358: 1354: 1348: 1345: 1321: 1313: 1309: 1305: 1274: 1268: 1265: 1247: 1245: 1213: 1211: 1209: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1093: 1089: 1073: 1070: 1067: 1064: 1061: 1058: 1050: 1043: 1032: 1024: 1022: 1020: 1016: 1012: 1007: 1005: 1000: 997:gcd(4, 6) = 2 994: 990: 986: 982: 978: 974: 969: 967: 963: 959: 938: 934: 930: 927: 924: 919: 915: 911: 906: 902: 895: 892: 884: 876: 860: 857: 849: 846: 843: 833: 829: 825: 821: 818: 813: 809: 805: 802: 799: 794: 790: 785: 774: 773: 772: 768: 764: 760: 741: 736: 734: 729: 723: 718: 714: 710: 700: 694: 690: 673: 668: 664: 637: 618: 600: 588: 582: 569: 562: 547: 543: 539: 532: 528: 524: 506: 502: 498: 480: 476: 469: 463: 459: 455: 448: 444: 440: 431: 427: 421: 398: 394: 379: 375: 365: 361: 348: 340: 337: 331: 327: 318: 308:divides both 307: 303: 302: 301: 290: 284: 282: 274: 270: 256: 251: 247: 243: 238: 225: 223: 219: 215: 210: 204: 176: 173: 170: 162: 158: 154: 153:Ronald Graham 150: 149: 142: 138: 130: 126: 108: 106: 104: 98: 93: 83: 76: 65:that divides 64: 60: 56: 52: 48: 37: 33: 32:number theory 19: 3163: 3159: 3134: 3116: 3107: 3085: 3082:Wright, E.M. 3055: 3042: 3029: 3016: 2999: 2995: 2989: 2972: 2968: 2962: 2945: 2933: 2921: 2909: 2897: 2885: 2864: 2858: 2846: 2836: 2832: 2830: 2823:. Retrieved 2817: 2810: 2739: 2722:cryptography 2719: 2708: 2705:Applications 2512: 2053: 1915: 1911: 1892: 1888: 1881: 1877: 1873: 1803: 1797: 1754: 1684: 1681: 1675:, solved by 1666: 1659: 1648: 1637: 1248: 1217: 1048: 1028: 1011:infinite set 1008: 1001: 992: 988: 984: 980: 976: 972: 970: 961: 957: 885:of integers 880: 766: 737: 727: 719: 712: 708: 692: 688: 676: 638: 619: 586: 580: 567: 560: 545: 541: 537: 530: 526: 522: 511: 504: 500: 496: 461: 457: 453: 446: 442: 438: 363: 359: 341:The integer 329: 325: 306:prime number 291: 288: 272: 268: 252: 245: 241: 226: 211: 202: 157:Donald Knuth 146: 140: 136: 128: 124: 112: 99: 91: 81: 63:prime number 54: 50: 46: 29: 3078:Hardy, G.H. 3002:: 273–275, 2975:: 190–193, 2771:polynomials 1868:tree rooted 1794:approaches 1611:0.607927102 1513:prime  1456:prime  722:probability 82:is prime to 3071:References 2938:Rosen 1992 2825:10 January 2715:gear ratio 2010:Branch 3: 1967:Branch 2: 1924:Branch 1: 735:, below). 357:such that 323:such that 285:Properties 279:{2, 3, 4} 3119:, Dover, 2491:− 2356:− 2215:− 1941:− 1825:ζ 1772:∞ 1769:→ 1723:… 1679:in 1735. 1620:% 1614:≈ 1608:≈ 1597:π 1573:ζ 1556:− 1539:− 1531:− 1508:∏ 1473:− 1451:∏ 1349:− 1202:contains 1194:contains 1168:∩ 1049:comaximal 928:… 858:− 819:− 800:− 362:≡ 1 (mod 174:⊥ 3176:Category 3084:(2008), 2940:, p. 140 2890:Ore 1988 2833:mutually 2785:See also 993:pairwise 659:divides 540:≡ 525:≡ 456:≡ 441:≡ 36:integers 3166:: 66–70 2892:, p. 47 2767:⁠ 2742:⁠ 2724:, some 1853:⁠ 1810:⁠ 1671:is the 1436:⁠ 1399:⁠ 1383:⁠ 1338:⁠ 1334:⁠ 1295:⁠ 1287:⁠ 1255:⁠ 1198:, then 1126:⁠ 1104:⁠ 1098:) and ( 964:if the 958:coprime 655:, then 609:, then 535:, then 493:, i.e. 416:⁠ 381:⁠ 376:in the 349:modulo 59:divisor 47:coprime 3141:  3123:  3096:  2874:  2853:, p. 6 2773:whose 2151:then 2115:then 1906:(3, 1) 1902:(2, 1) 1886:(with 1693:, let 1660:ζ 1649:ζ 1640:ζ 1206:. The 1031:ideals 769:> 1 703:(0, 0) 345:has a 159:, and 34:, two 2802:Notes 2418:then 2286:then 1891:> 1638:Here 1051:) if 1040:in a 755:2 – 1 751:2 – 1 697:in a 544:(mod 529:(mod 460:(mod 445:(mod 372:is a 334:(see 203:prime 143:) = 1 131:) = 1 3139:ISBN 3121:ISBN 3094:ISBN 2872:ISBN 2827:2022 2711:gear 2556:> 2397:< 2391:< 2265:< 2259:< 2130:> 2097:> 1866:The 1389:and 1238:and 1230:and 1222:and 1140:and 1132:and 1036:and 1029:Two 975:(or 763:base 753:and 745:and 738:Two 681:and 643:and 632:and 624:and 615:b, c 516:and 503:) = 495:lcm( 485:and 477:The 451:and 378:ring 374:unit 321:x, y 312:and 296:and 261:and 193:and 123:gcd( 117:and 45:are 41:and 3004:doi 2977:doi 2837:one 2667:or 2603:or 2380:if 2245:if 2119:if 1664:as 1662:(2) 1651:(2) 1293:is 1253:is 1246:). 1144:of 999:). 989:all 983:or 960:or 883:set 838:gcd 782:gcd 761:in 639:If 481:of 418:of 332:= 1 304:No 255:set 220:or 209:). 205:to 201:is 133:or 87:or 53:or 30:In 3178:: 3164:92 3162:, 3092:, 3080:; 3000:85 2998:, 2973:78 2971:, 2829:. 2781:. 1914:, 1880:, 1801:. 1796:6/ 1753:6/ 1669:/6 1617:61 1395:pq 1196:BC 1021:. 1006:. 979:, 881:A 861:1. 771:: 726:6/ 711:, 691:, 653:bc 636:. 617:. 607:bc 566:, 527:bs 523:br 505:ab 499:, 491:ab 472:ab 360:by 338:). 330:by 328:+ 326:ax 271:, 253:A 250:. 224:. 155:, 151:, 139:, 127:, 97:. 49:, 3168:. 3063:. 3050:. 3024:. 3011:. 3006:: 2984:. 2979:: 2755:; 2751:Z 2690:. 2687:) 2684:1 2681:, 2678:3 2675:( 2655:) 2652:1 2649:, 2646:2 2643:( 2623:. 2620:b 2617:3 2614:= 2611:a 2591:b 2588:2 2585:= 2582:a 2562:. 2559:n 2553:m 2533:) 2530:n 2527:, 2524:m 2521:( 2497:) 2494:a 2488:b 2485:2 2482:, 2479:b 2476:( 2473:= 2470:) 2467:n 2464:, 2461:m 2458:( 2438:) 2435:b 2432:, 2429:a 2426:( 2406:, 2403:b 2400:2 2394:a 2388:b 2365:) 2362:b 2359:2 2353:a 2350:, 2347:b 2344:( 2341:= 2338:) 2335:n 2332:, 2329:m 2326:( 2306:) 2303:b 2300:, 2297:a 2294:( 2274:, 2271:b 2268:3 2262:a 2256:b 2253:2 2230:) 2227:b 2224:, 2221:b 2218:2 2212:a 2209:( 2206:= 2203:) 2200:n 2197:, 2194:m 2191:( 2171:) 2168:b 2165:, 2162:a 2159:( 2139:, 2136:b 2133:3 2127:a 2103:, 2100:b 2094:a 2074:) 2071:b 2068:, 2065:a 2062:( 2039:) 2036:n 2033:, 2030:n 2027:2 2024:+ 2021:m 2018:( 1996:) 1993:m 1990:, 1987:n 1984:+ 1981:m 1978:2 1975:( 1953:) 1950:m 1947:, 1944:n 1938:m 1935:2 1932:( 1918:) 1916:n 1912:m 1910:( 1893:n 1889:m 1884:) 1882:n 1878:m 1876:( 1841:. 1834:) 1831:k 1828:( 1821:1 1806:k 1798:π 1791:N 1789:P 1775:, 1766:N 1755:π 1748:N 1746:P 1732:} 1729:N 1726:, 1720:, 1717:2 1714:, 1711:1 1708:{ 1697:N 1695:P 1691:N 1667:π 1623:. 1601:2 1593:6 1588:= 1582:) 1579:2 1576:( 1569:1 1564:= 1559:1 1551:) 1542:2 1535:p 1528:1 1524:1 1517:p 1503:( 1498:= 1494:) 1486:2 1482:p 1478:1 1470:1 1466:( 1460:p 1424:. 1417:q 1414:p 1410:1 1391:q 1387:p 1371:. 1363:2 1359:p 1355:1 1346:1 1322:, 1314:2 1310:p 1306:1 1291:p 1275:; 1269:p 1266:1 1251:p 1240:b 1236:a 1232:b 1228:a 1224:b 1220:a 1204:C 1200:A 1192:A 1188:C 1174:; 1171:B 1165:A 1162:= 1159:B 1156:A 1146:R 1142:B 1138:A 1134:b 1130:a 1113:Z 1100:b 1096:a 1094:( 1074:. 1071:R 1068:= 1065:B 1062:+ 1059:A 1045:R 1038:B 1034:A 944:} 939:n 935:a 931:, 925:, 920:2 916:a 912:, 907:1 903:a 899:{ 896:= 893:S 853:) 850:b 847:, 844:a 841:( 834:n 830:= 826:) 822:1 814:b 810:n 806:, 803:1 795:a 791:n 786:( 767:n 747:b 743:a 728:π 715:) 713:b 709:a 707:( 695:) 693:b 689:a 687:( 683:b 679:a 661:c 657:a 649:a 645:b 641:a 634:b 630:a 626:b 622:a 611:p 603:p 595:a 590:2 587:b 584:1 581:b 576:a 571:2 568:b 564:1 561:b 556:a 552:b 548:) 546:a 542:s 538:r 533:) 531:a 518:b 514:a 508:. 501:b 497:a 487:b 483:a 474:. 464:) 462:b 458:m 454:x 449:) 447:a 443:k 439:x 434:x 425:. 423:a 403:Z 399:a 395:/ 390:Z 370:b 366:) 364:a 355:y 351:a 343:b 316:. 314:b 310:a 298:b 294:a 275:) 273:b 269:a 267:( 263:b 259:a 248:) 246:n 244:( 242:φ 233:n 229:n 207:b 199:a 195:b 191:a 177:b 171:a 141:b 137:a 135:( 129:b 125:a 119:b 115:a 95:b 89:a 85:b 79:a 71:b 67:a 43:b 39:a 20:)

Index

Coprime integer
number theory
integers
divisor
prime number
greatest common divisor
reduced fraction
Concrete Mathematics
Ronald Graham
Donald Knuth
Oren Patashnik
Euclidean algorithm
binary GCD algorithm
Lehmer's GCD algorithm
Euler's totient function
set
prime number
Bézout's identity
multiplicative inverse
unit
ring
integers modulo
congruence relations
Chinese remainder theorem
least common multiple
Euclid's lemma

lattice points
Cartesian coordinate system
probability

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.