Knowledge

Neural oscillation

Source đź“ť

795:, whereas delayed-feedback oscillations arise when components of a system affect each other after significant time delays. Limit-cycle oscillations can be complex but there are powerful mathematical tools for analyzing them; the mathematics of delayed-feedback oscillations is primitive in comparison. Linear oscillators and limit-cycle oscillators qualitatively differ in terms of how they respond to fluctuations in input. In a linear oscillator, the frequency is more or less constant but the amplitude can vary greatly. In a limit-cycle oscillator, the amplitude tends to be more or less constant but the frequency can vary greatly. A 1465:
activity when activated by visual stimuli. The frequency of these oscillations was in the range of 40 Hz and differed from the periodic activation induced by the grating, suggesting that the oscillations and their synchronization were due to internal neuronal interactions. Similar findings were shown in parallel by the group of Eckhorn, providing further evidence for the functional role of neural synchronization in feature binding. Since then, numerous studies have replicated these findings and extended them to different modalities such as EEG, providing extensive evidence of the functional role of
1649: 588:, subtypes of cortical cells fire bursts of spikes (brief clusters of spikes) rhythmically at preferred frequencies. Bursting neurons have the potential to serve as pacemakers for synchronous network oscillations, and bursts of spikes may underlie or enhance neuronal resonance. Many of these neurons can be considered intrinsic oscillators, namely, neurons that generate their oscillations intrinsically, as their oscillation frequencies can be modified by local applications of glutamate in-vivo. 398: 1082: 38: 2026: 1217:. Induced activity generally reflects the activity of numerous neurons: amplitude changes in oscillatory activity are thought to arise from the synchronization of neural activity, for instance by synchronization of spike timing or membrane potential fluctuations of individual neurons. Increases in oscillatory activity are therefore often referred to as event-related synchronization, while decreases are referred to as event-related desynchronization. 1034: 1804:(BCIs). For example, a non-invasive BCI can be created by placing electrodes on the scalp and then measuring the weak electric signals. Although individual neuron activities cannot be recorded through non-invasive BCI because the skull damps and blurs the electromagnetic signals, oscillatory activity can still be reliably detected. The BCI was introduced by Vidal in 1973 as challenge of using EEG signals to control objects outside human body. 1050: 819: 1066: 225:
observed as the spectral intensity decreases from the summation of these neurons firing, which can be utilized to differentiate cognitive function or neural isolation. However, new non-linear methods have been used that couple temporal and spectral entropic relationships simultaneously to characterize how neurons are isolated, (the signal's inability to propagate to adjacent neurons), an indicator of impairment (e.g., hypoxia).
912: 1267:
modulations, such as an asymmetry of the intracellular currents that propagate forward and backward down the dendrites. Under this assumption, asymmetries in the dendritic current would cause asymmetries in oscillatory activity measured by EEG and MEG, since dendritic currents in pyramidal cells are generally thought to generate EEG and MEG signals that can be measured at the scalp.
261:(30–70 Hz), and high gamma (70–150 Hz) frequency bands. Faster rhythms such as gamma activity have been linked to cognitive processing. Indeed, EEG signals change dramatically during sleep. In fact, different sleep stages are commonly characterized by their spectral content. Consequently, neural oscillations have been linked to cognitive states, such as 1019:. These ongoing rhythms can change in different ways in response to perceptual input or motor output. Oscillatory activity may respond by increases or decreases in frequency and amplitude or show a temporary interruption, which is referred to as phase resetting. In addition, external activity may not interact with ongoing activity at all, resulting in an additive response. 114:. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is 1661: 221:, also referred to as local synchronization. In addition to local synchronization, oscillatory activity of distant neural structures (single neurons or neural ensembles) can synchronize. Neural oscillations and synchronization have been linked to many cognitive functions such as information transfer, perception, motor control and memory. 1481:, and the disruption of the oscillatory synchronization leads to impairment of behavioral discrimination of chemically similar odorants in bees, and to more similar responses across odors in downstream β-lobe neurons. Recent follow-up of this work has shown that oscillations create periodic integration windows for 59: 1526:
activity when subjects made a movement. Using intra-cortical recordings, similar changes in oscillatory activity were found in the motor cortex when the monkeys performed motor acts that required significant attention. In addition, oscillations at spinal level become synchronised to beta oscillations
1441:
Single-cell intrinsic oscillators serve as valuable tools for decoding temporally-encoded sensory information. This information is encoded through inter-spike intervals, and intrinsic oscillators can act as 'temporal rulers' for precisely measuring these intervals. One notable mechanism for achieving
1207:
Next to evoked activity, neural activity related to stimulus processing may result in induced activity. Induced activity refers to modulation in ongoing brain activity induced by processing of stimuli or movement preparation. Hence, they reflect an indirect response in contrast to evoked responses. A
994:
The Kuramoto model is widely used to study oscillatory brain activity, and several extensions have been proposed that increase its neurobiological plausibility, for instance by incorporating topological properties of local cortical connectivity. In particular, it describes how the activity of a group
929:
Neural field models are another important tool in studying neural oscillations and are a mathematical framework describing evolution of variables such as mean firing rate in space and time. In modeling the activity of large numbers of neurons, the central idea is to take the density of neurons to the
805:
adopt a variety of abstractions in order to describe complex oscillatory dynamics observed in brain activity. Many models are used in the field, each defined at a different level of abstraction and trying to model different aspects of neural systems. They range from models of the short-term behaviour
466:
rarely all fire at exactly the same moment, i.e. fully synchronized. Instead, the probability of firing is rhythmically modulated such that neurons are more likely to fire at the same time, which gives rise to oscillations in their mean activity. (See figure at top of page.) As such, the frequency of
1356:
approximately 100 times per minute. Although all of the heart's cells have the ability to generate action potentials that trigger cardiac contraction, the sinoatrial node normally initiates it, simply because it generates impulses slightly faster than the other areas. Hence, these cells generate the
1275:
Cross-frequency coupling (CFC) describes the coupling (statistical correlation) between a slow wave and a fast wave. There are many kinds, generally written as A-B coupling, meaning the A of a slow wave is coupled with the B of a fast wave. For example, phase–amplitude coupling is where the phase of
1225:
Phase resetting occurs when input to a neuron or neuronal ensemble resets the phase of ongoing oscillations. It is very common in single neurons where spike timing is adjusted to neuronal input (a neuron may spike at a fixed delay in response to periodic input, which is referred to as phase locking)
433:
Neuronal spiking can be classified by its activity pattern. The excitability of neurons can be subdivided in Class I and II. Class I neurons can generate action potentials with arbitrarily low frequency depending on the input strength, whereas Class II neurons generate action potentials in a certain
890:
A neural network model describes a population of physically interconnected neurons or a group of disparate neurons whose inputs or signalling targets define a recognizable circuit. These models aim to describe how the dynamics of neural circuitry arise from interactions between individual neurons.
1807:
After the BCI challenge, in 1988, alpha rhythm was used in a brain rhythm based BCI for control of a physical object, a robot. Alpha rhythm based BCI was the first BCI for control of a robot. In particular, some forms of BCI allow users to control a device by measuring the amplitude of oscillatory
1550:
across the surface of the motor cortex along dominant spatial axes characteristic of the local circuitry of the motor cortex. It has been proposed that motor commands in the form of travelling waves can be spatially filtered by the descending fibres to selectively control muscle force. Simulations
642:
If a group of neurons engages in synchronized oscillatory activity, the neural ensemble can be mathematically represented as a single oscillator. Different neural ensembles are coupled through long-range connections and form a network of weakly coupled oscillators at the next spatial scale. Weakly
224:
The opposite of neuron synchronization is neural isolation, which is when electrical activity of neurons is not temporally synchronized. This is when the likelihood of the neuron to reach its threshold potential for the signal to propagate to the next neuron decreases. This phenomenon is typically
1014:
Both single neurons and groups of neurons can generate oscillatory activity spontaneously. In addition, they may show oscillatory responses to perceptual input or motor output. Some types of neurons will fire rhythmically in the absence of any synaptic input. Likewise, brain-wide activity reveals
1698:
A tremor is an involuntary, somewhat rhythmic, muscle contraction and relaxation involving to-and-fro movements of one or more body parts. It is the most common of all involuntary movements and can affect the hands, arms, eyes, face, head, vocal cords, trunk, and legs. Most tremors occur in the
1139:
if one is interested in stimulus processing; however, spontaneous activity is considered to play a crucial role during brain development, such as in network formation and synaptogenesis. Spontaneous activity may be informative regarding the current mental state of the person (e.g. wakefulness,
1562:
and when performing slow finger movements. These findings may indicate that the human brain controls continuous movements intermittently. In support, it was shown that these movement discontinuities are directly correlated to oscillatory activity in a cerebello-thalamo-cortical loop, which may
1464:
The functional role of synchronized oscillatory activity in the brain was mainly established in experiments performed on awake kittens with multiple electrodes implanted in the visual cortex. These experiments showed that groups of spatially segregated neurons engage in synchronous oscillatory
1316:
hypothesis. According to this idea, synchronous oscillations in neuronal ensembles bind neurons representing different features of an object. For example, when a person looks at a tree, visual cortex neurons representing the tree trunk and those representing the branches of the same tree would
1249:
are obtained from an electroencephalogram by stimulus-locked averaging, i.e. averaging different trials at fixed latencies around the presentation of a stimulus. As a consequence, those signal components that are the same in each single measurement are conserved and all others, i.e. ongoing or
1226:
and may also occur in neuronal ensembles when the phases of their neurons are adjusted simultaneously. Phase resetting is fundamental for the synchronization of different neurons or different brain regions because the timing of spikes can become phase locked to the activity of other neurons.
471:
oscillations does not need to match the firing pattern of individual neurons. Isolated cortical neurons fire regularly under certain conditions, but in the intact brain, cortical cells are bombarded by highly fluctuating synaptic inputs and typically fire seemingly at random. However, if the
1266:
because ongoing brain oscillations may not be symmetric and thus amplitude modulations may result in a baseline shift that does not average out. This model implies that slow event-related responses, such as asymmetric alpha activity, could result from asymmetric brain oscillation amplitude
1460:
Synchronization of neuronal firing may serve as a means to group spatially segregated neurons that respond to the same stimulus in order to bind these responses for further joint processing, i.e. to exploit temporal synchrony to encode relations. Purely theoretical formulations of the
53:
reflecting their summed activity. Figure illustrates how synchronized patterns of action potentials may result in macroscopic oscillations that can be measured outside the scalp. When these neural oscillation patterns of synchronization break down, a reduction of signal intensity
1628:: for instance, stage N1 refers to the transition of the brain from alpha waves (common in the awake state) to theta waves, whereas stage N3 (deep or slow-wave sleep) is characterized by the presence of delta waves. The normal order of sleep stages is N1 → N2 → N3 → N2 → REM. 1472:
Gilles Laurent and colleagues showed that oscillatory synchronization has an important functional role in odor perception. Perceiving different odors leads to different subsets of neurons firing on different sets of oscillatory cycles. These oscillations can be disrupted by
1166:
studies suggest that visual perception is dependent on both the phase and amplitude of cortical oscillations. For instance, the amplitude and phase of alpha activity at the moment of visual stimulation predicts whether a weak stimulus will be perceived by the subject.
459:(MEG). The electric potentials generated by single neurons are far too small to be picked up outside the scalp, and EEG or MEG activity always reflects the summation of the synchronous activity of thousands or millions of neurons that have similar spatial orientation. 570:, different oscillatory varieties of these neuronal models can be determined, allowing for the classification of types of neuronal responses. The oscillatory dynamics of neuronal spiking as identified in the Hodgkin–Huxley model closely agree with empirical findings. 429:
in membrane potential. These rhythmic changes in membrane potential do not reach the critical threshold and therefore do not result in an action potential. They can result from postsynaptic potentials from synchronous inputs or from intrinsic properties of neurons.
840:
A model of a biological neuron is a mathematical description of the properties of nerve cells, or neurons, that is designed to accurately describe and predict its biological processes. One of the most successful neuron models is the Hodgkin–Huxley model, for which
1283:
is a coupling between theta wave and gamma wave in the hippocampal network. During a theta wave, 4 to 8 non-overlapping neuron ensembles are activated in sequence. This has been hypothesized to form a neural code representing multiple items in a temporal frame
442:
A group of neurons can also generate oscillatory activity. Through synaptic interactions, the firing patterns of different neurons may become synchronized and the rhythmic changes in electric potential caused by their action potentials may accumulate
1104:
activity in the absence of an explicit task, such as sensory input or motor output, and hence also referred to as resting-state activity. It is opposed to induced activity, i.e. brain activity that is induced by sensory stimuli or motor responses.
982:
of coupled phase oscillators is one of the most abstract and fundamental models used to investigate neural oscillations and synchronization. It captures the activity of a local system (e.g., a single neuron or neural ensemble) by its circular
393:
at all levels of organization. Three different levels have been widely recognized: the micro-scale (activity of a single neuron), the meso-scale (activity of a local group of neurons) and the macro-scale (activity of different brain regions).
1212:
often increases during increased mental activity such as during object representation. Because induced responses may have different phases across measurements and therefore would cancel out during averaging, they can only be obtained using
956: 228:
Neural oscillations have been most widely studied in neural activity generated by large groups of neurons. Large-scale activity can be measured by techniques such as EEG. In general, EEG signals have a broad spectral content similar to
1144:, are part of spontaneous activity. Statistical analysis of power fluctuations of alpha activity reveals a bimodal distribution, i.e. a high- and low-amplitude mode, and hence shows that resting-state activity does not just reflect a 164:
published in 1890 his observations of spontaneous electrical activity of the brain of rabbits and dogs that included rhythmic oscillations altered by light, detected with electrodes directly placed on the surface of the brain. Before
946:
that deals with large-scale systems. Models based on these principles have been used to provide mathematical descriptions of neural oscillations and EEG rhythms. They have for instance been used to investigate visual hallucinations.
327:
to describe how neural activity evolves over time. In particular, it aims to relate dynamic patterns of brain activity to cognitive functions such as perception and memory. In very abstract form, neural oscillations can be analyzed
1418:
Neuronal spiking is generally considered the basis for information transfer in the brain. For such a transfer, information needs to be coded in a spiking pattern. Different types of coding schemes have been proposed, such as
1707:
tremor. It is argued that tremors are likely to be multifactorial in origin, with contributions from neural oscillations in the central nervous systems, but also from peripheral mechanisms such as reflex loop resonances.
1581:
activity, are extensively linked to memory function. Theta rhythms are very strong in rodent hippocampi and entorhinal cortex during learning and memory retrieval, and they are believed to be vital to the induction of
1446:(NPLL). In this mechanism, cortical oscillators undergo modulation influenced by the firing rates of thalamocortical 'phase detectors,' which, in turn, gauge the disparity between the cortical and sensory periodicity. 62:
Autocorrelations and spike raster plots of two single-units recorded from the secondary somatosensory cortex of a monkey. The top neuron is oscillating spontaneously at approximately 30 Hz. The bottom neuron is not
5513:
Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988). "Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat".
610:
with one another via synapses and affect the timing of spike trains in the post-synaptic neurons. Depending on the properties of the connection, such as the coupling strength, time delay and whether coupling is
1863: 1388:. Central pattern generators are neuronal circuits that—when activated—can produce rhythmic motor patterns in the absence of sensory or descending inputs that carry specific timing information. Examples are 1748:
is disrupted. The thalamic loss of input allows the frequency of the thalamo-cortical column to slow into the theta or delta band as identified by MEG and EEG by machine learning. TCD can be treated with
125:). More than 50 years later, intrinsic oscillatory behavior was encountered in vertebrate neurons, but its functional role is still not fully understood. The possible roles of neural oscillations include 1383:
Synchronized firing of neurons also forms the basis of periodic motor commands for rhythmic movements. These rhythmic outputs are produced by a group of interacting neurons that form a network, called a
681: – the major immune cells of the brain – have been shown to play an important role in shaping network connectivity, and thus, influencing neuronal network oscillations both 1329:
recordings providing increasing evidence for a close relation between synchronous oscillatory activity and a variety of cognitive functions such as perceptual grouping and attentional top-down control.
4114:
Bressloff PC, Cowan JD (2003) Spontaneous pattern formation in primary visual cortex. In: J Hogan, AR Krauskopf, M di Bernado, RE Wilson (Eds.), Nonlinear dynamics and chaos: where do we go from here?
149:
and is thought to play a key role in processing neural information. Numerous experimental studies support a functional role of neural oscillations; a unified interpretation, however, is still lacking.
2048:
Ahissar, E. & Vaadia, E. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87, 8935-8939 (1990).
3358:
Suffczynski P, Kalitzin S, Pfurtscheller G, Lopes da Silva FH (December 2001). "Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention".
998:
Simulations using the Kuramoto model with realistic long-range cortical connectivity and time-delayed interactions reveal the emergence of slow patterned fluctuations that reproduce resting-state
3545:
Ahissar, E., Haidarliu, S., and Zacksenhouse, M. (1997). Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc Natl Acad Sci USA 94, 11633-11638.
868:, or highly idealized neuron models such as the leaky integrate-and-fire neuron, originally developed by Lapique in 1907. Such models only capture salient membrane dynamics such as spiking or 857:. The model is so successful at describing these characteristics that variations of its "conductance-based" formulation continue to be utilized in neuron models over a half a century later. 417:
resulting from changes in the electric membrane potential. Neurons can generate multiple action potentials in sequence forming so-called spike trains. These spike trains are the basis for
1461:
binding-by-synchrony hypothesis were proposed first, but subsequently extensive experimental evidence has been reported supporting the potential role of synchrony as a relational code.
483:
play an important role in producing neural ensemble synchrony by generating a narrow window for effective excitation and rhythmically modulating the firing rate of excitatory neurons.
1778:
in clinical trials and in quantifying effects in pre-clinical studies. These biomarkers are often named "EEG biomarkers" or "Neurophysiological Biomarkers" and are quantified using
472:
probability of a large group of neurons firing is rhythmically modulated at a common frequency, they will generate oscillations in the mean field. (See also figure at top of page.)
960: 1598:. Tight coordination of single-neuron spikes with local theta oscillations is linked to successful memory formation in humans, as more stereotyped spiking predicts better memory. 7121: 5462:
Gray CM, König P, Engel AK, Singer W (March 1989). "Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties".
1727: 957: 903:. Similarly, it was shown that simulations of neural networks with a phenomenological model for neuronal response failures can predict spontaneous broadband neural oscillations. 3395:"Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations" 434:
frequency band, which is relatively insensitive to changes in input strength. Class II neurons are also more prone to display sub-threshold oscillations in membrane potential.
987:
alone and hence ignores the amplitude of oscillations (amplitude is constant). Interactions amongst these oscillators are introduced by a simple algebraic form (such as a
272:
Although neural oscillations in human brain activity are mostly investigated using EEG recordings, they are also observed using more invasive recording techniques such as
891:
Local interactions between neurons can result in the synchronization of spiking activity and form the basis of oscillatory activity. In particular, models of interacting
2857:
Mureşan RC, Jurjuţ OF, Moca VV, Singer W, Nikolić D (March 2008). "The oscillation score: an efficient method for estimating oscillation strength in neuronal activity".
1427:. Neural oscillations could create periodic time windows in which input spikes have larger effect on neurons, thereby providing a mechanism for decoding temporal codes. 5949:
Murthy VN, Fetz EE (December 1996). "Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior".
7272: 5414:
Ahissar, E., Nelinger, G., Assa, E., Karp, O. & Saraf-Sinik, I. Thalamocortical loops as temporal demodulators across senses. Communications Biology 6, 562 (2023).
3966:
Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (December 2000). "Inhibition-based rhythms: experimental and mathematical observations on network dynamics".
343:
The functions of neural oscillations are wide-ranging and vary for different types of oscillatory activity. Examples are the generation of rhythmic activity such as a
1081: 799:
is an example of a limit-cycle oscillation in that the frequency of beats varies widely, while each individual beat continues to pump about the same amount of blood.
711:
on a much slower time scale. That is, the concentration levels of certain neurotransmitters are known to regulate the amount of oscillatory activity. For instance,
4072:
Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (October 2000). "Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals".
507:
loops tend to cause oscillatory activity where frequency is inversely related to the delay time. An example of such a feedback loop is the connections between the
1033: 627:. Certain network structures promote oscillatory activity at specific frequencies. For example, neuronal activity generated by two populations of interconnected 6333:
Heitmann S, Boonstra T, Gong P, Breakspear M, Ermentrout B (2015). "The rhythms of steady posture: Motor commands as spatially organized oscillation patterns".
2109: 1049: 959: 675:
measures. Coherent activity of large-scale brain activity may form dynamic links between brain areas required for the integration of distributed information.
1893: 1365:. In the absence of extrinsic neural and hormonal control, cells in the SA node will rhythmically discharge. The sinoatrial node is richly innervated by the 581:
behavior that does not result in action potentials, may also contribute to oscillatory activity by facilitating synchronous activity of neighboring neurons.
574: 426: 297: 860:
The Hodgkin–Huxley model is too complicated to understand using classical mathematical techniques, so researchers often turn to simplifications such as the
643:
coupled oscillators can generate a range of dynamics including oscillatory activity. Long-range connections between different brain structures, such as the
7295: 853:
and consists of nonlinear differential equations that approximate the electrical characteristics of a neuron, including the generation and propagation of
810:
arise from interactions between individual neurons, to models of how behaviour can arise from abstract neural modules that represent complete subsystems.
1254:-locked to the stimulus or event. Evoked activity is often considered to be independent from ongoing brain activity, although this is an ongoing debate. 447:). That is, synchronized firing patterns result in synchronized input into other cortical areas, which gives rise to large-amplitude oscillations of the 4664:
Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (January 2002). "Dynamic brain sources of visual evoked responses".
938:. Instead of modelling individual neurons, this approach approximates a group of neurons by its average properties and interactions. It is based on the 784:
Noise-driven harmonic oscillators realistically simulate alpha rhythm in the waking EEG as well as slow waves and spindles in the sleep EEG. Successful
5659:
Stopfer M, Bhagavan S, Smith BH, Laurent G (November 1997). "Impaired odour discrimination on desynchronization of odour-encoding neural assemblies".
6832:
Shusterman V, Troy WC (June 2008). "From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks".
3444:
Llinás RR (December 1988). "The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function".
2659:
Dement W, Kleitman N (November 1957). "Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming".
1680:. These pathological oscillations often consist of an aberrant version of a normal oscillation. For example, one of the best known types is the 1065: 311:
Neural oscillations are commonly studied within a mathematical framework and belong to the field of "neurodynamics", an area of research in the
145:
involves determining how oscillations are generated and what their roles are. Oscillatory activity in the brain is widely observed at different
1967:
Napoli, Nicholas J.; Demas, Matthew; Stephens, Chad L.; Kennedy, Kellie D.; Harrivel, Angela R.; Barnes, Laura E.; Pope, Alan T. (2020-03-03).
1183:
at which it spikes. Often, a neuron's firing rate depends on the summed activity it receives. Frequency changes are also commonly observed in
7183: 5710:
MacLeod K, Bäcker A, Laurent G (October 1998). "Who reads temporal information contained across synchronized and oscillatory spike trains?".
4648: 3625: 3106: 1159:. The temporal evolution of resting state networks is correlated with fluctuations of oscillatory EEG activity in different frequency bands. 6088:
Salenius S, Portin K, Kajola M, Salmelin R, Hari R (June 1997). "Cortical control of human motoneuron firing during isometric contraction".
5608:
MacLeod K, Laurent G (November 1996). "Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies".
1162:
Ongoing brain activity may also have an important role in perception, as it may interact with activity related to incoming stimuli. Indeed,
7526: 7265: 1878: 1783: 1745: 652: 520: 1699:
hands. In some people, tremor is a symptom of another neurological disorder. Many different forms of tremor have been identified, such as
788:
algorithms were based on such models. Several other EEG components are better described by limit-cycle or delayed-feedback oscillations.
7547: 7320: 4715:
Mäkinen V, Tiitinen H, May P (February 2005). "Auditory event-related responses are generated independently of ongoing brain activity".
1779: 527:. In a whole-brain network model with realistic anatomical connectivity and propagation delays between brain areas, oscillations in the 4301:
Fox MD, Raichle ME (September 2007). "Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging".
7204: 4596:
Pfurtscheller G, Lopes da Silva FH (November 1999). "Event-related EEG/MEG synchronization and desynchronization: basic principles".
958: 531:
emerge from the partial synchronisation of subsets of brain areas oscillating in the gamma-band (generated at the mesoscopic level).
351:
of sensory features in perception, such as the shape and color of an object. Neural oscillations also play an important role in many
7039: 5821: 3187: 612: 7063:
Bozinovski S (August 1990). "Mobile robot trajectory control: From fixed rails to direct bioelectric control.". In Kaynak O (ed.).
1684:
oscillation, which is typical of generalized or absence epileptic seizures, and which resembles normal sleep spindle oscillations.
562:
are critical in the generation of action potentials. The dynamics of these ion channels have been captured in the well-established
7135:
Lebedev MA, Nicolelis MA (April 2017). "Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation".
4346:"Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest" 5914:
Pfurtscheller G, Aranibar A (June 1977). "Event-related cortical desynchronization detected by power measurements of scalp EEG".
3655:"Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices" 2742:
Varela F, Lachaux JP, Rodriguez E, Martinerie J (April 2001). "The brainweb: phase synchronization and large-scale integration".
146: 1883: 7258: 1551:
have shown that ongoing wave activity in cortex can elicit steady muscle force with physiological levels of EEG-EMG coherence.
1250:
spontaneous activity, are averaged out. That is, event-related potentials only reflect oscillations in brain activity that are
444: 1500:
and in somatosensory perception. However, recent findings argue against a clock-like function of cortical gamma oscillations.
7346: 7315: 7194: 792: 499:
play an important role here. Because all brain areas are bidirectionally coupled, these connections between brain areas form
6290:
Rubino D, Robbins KA, Hatsopoulos NG (December 2006). "Propagating waves mediate information transfer in the motor cortex".
6045:"Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man" 3489:"In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range" 7381: 233:, but also reveal oscillatory activity in specific frequency bands. The first discovered and best-known frequency band is 3704:"Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans" 1801: 1795: 372: 5255:
Dimitrijevic MR, Gerasimenko Y, Pinter MM (November 1998). "Evidence for a spinal central pattern generator in humans".
4550:
Tallon-Baudry C, Bertrand O (April 1999). "Oscillatory gamma activity in humans and its role in object representation".
2810:"Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study" 1621: 1199:
is not so common because the frequency of oscillatory activity is often related to the time delays between brain areas.
1152: 999: 715:
concentration has been shown to be positively correlated with frequency of oscillations in induced stimuli. A number of
5557:
Wehr M, Laurent G (November 1996). "Odour encoding by temporal sequences of firing in oscillating neural assemblies".
5118:
Singer W (1993). "Synchronization of cortical activity and its putative role in information processing and learning".
4907:"Magnetoencephalography - Theory, instrumentation, and applications to noninvasive studies of the working human brain" 1739: 778: 663:
that support oscillatory activity. Oscillations recorded from multiple cortical areas can become synchronized to form
160:
discovered electrical activity in the cerebral hemispheres of rabbits and monkeys and presented his findings in 1875.
31: 566:
that describes how action potentials are initiated and propagated by means of a set of differential equations. Using
1640:
are thought to have properties that define early connectivity of circuits and synapses between cells in the retina.
7552: 1945: 1930: 1312:
in the 1990s when the studies of the visual system of the brain by Gray, Singer and others appeared to support the
752: 664: 559: 337: 217:. In large-scale oscillations, amplitude changes are considered to result from changes in synchronization within a 170: 1648: 1262:
It has recently been proposed that even if phases are not aligned across trials, induced activity may still cause
861: 777:, and vibrations of every sort. They generally arise when a physical system is perturbed by a small degree from a 7557: 2198:
Fries P (October 2005). "A mechanism for cognitive dynamics: neuronal communication through neuronal coherence".
1558:, which is associated with the cerebellum. These oscillations are also observed in motor output of physiological 1528: 1385: 1378: 1184: 873: 603: 585: 516: 491:
Neural oscillation can also arise from interactions between different brain areas coupled through the structural
421:
and information transfer in the brain. Spike trains can form all kinds of patterns, such as rhythmic spiking and
161: 134: 1514:
Oscillations have been commonly reported in the motor system. Pfurtscheller and colleagues found a reduction in
865: 823: 563: 7567: 7511: 7396: 1915: 1617: 1366: 773:
oscillators. Harmonic oscillations appear very frequently in nature—examples are sound waves, the motion of a
5761:
Buhusi CV, Meck WH (October 2005). "What makes us tick? Functional and neural mechanisms of interval timing".
90:
or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in
7022:
Bozinovski S, Sestakov M, Bozinovska L (November 1988). "Using EEG alpha rhythm to control a mobile robot.".
7432: 7300: 2440: 1532: 1263: 1246: 1214: 988: 835: 723:
have diffuse projections throughout the brain influencing concentration levels of neurotransmitters such as
332:. When studied in a more physiologically realistic setting, oscillatory activity is generally studied using 214: 99: 924: 757:
Oscillations can often be described and analyzed using mathematics. Mathematicians have identified several
7562: 7341: 7310: 7281: 7024:
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
6235:"Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales" 5162: 4759: 3975: 3037:
Vansteensel MJ, Pels EG, Bleichner MG, Branco MP, Denison T, Freudenburg ZV, et al. (November 2016).
1673: 1653: 1625: 1583: 1393: 1326: 1318: 1234: 1230: 1117: 1113: 872:
at the cost of biophysical detail, but are more computationally efficient, enabling simulations of larger
716: 456: 452: 390: 368: 324: 305: 198: 190: 111: 75: 425:, and often display oscillatory activity. Oscillatory activity in single neurons can also be observed in 7572: 7115: 1238: 1121: 620: 448: 352: 329: 273: 58: 50: 5804:
Ahissar E, Zacksenhouse M (2001). "Chapter 6 Temporal and spatial coding in the rat vibrissal system".
2389:"Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention" 4945: 2694:
Engel AK, Singer W (January 2001). "Temporal binding and the neural correlates of sensory awareness".
2287:
Schnitzler A, Gross J (April 2005). "Normal and pathological oscillatory communication in the brain".
2133:
Coenen A, Fine E, Zayachkivska O (2014). "Adolf Beck: a forgotten pioneer in electroencephalography".
397: 7305: 6896: 6841: 6697: 6642: 6516: 6373: 6246: 6189: 5997: 5719: 5668: 5617: 5566: 5471: 5371: 5264: 5211: 4918: 4673: 4357: 3811: 3715: 3571: 3500: 3453: 3216: 2995: 2615: 2343: 1980: 1935: 1124:
or the occurrence of specific other events, such as moving a body part, i.e. events that do not form
802: 5167: 3853:
Catterall, W. A., Raman, I. M., Robinson, H. P. C., Sejnowski, T. J., Paulsen, O. (2 October 2012).
1317:
oscillate in synchrony to form a single representation of the tree. This phenomenon is best seen in
245:
during relaxed wakefulness and which increases when the eyes are closed. Other frequency bands are:
7485: 7426: 7411: 7386: 7376: 7366: 4344:
Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (September 2003).
3980: 2176:
Pravdich-Neminsky VV (1913). "Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen".
943: 830:
behavior: a fast rhythm generated by individual spikes and a slower rhythm generated by the bursts.
762: 333: 7235: 185:
Neural oscillations are observed throughout the central nervous system at all levels, and include
7506: 7401: 7076: 7045: 6865: 6746:"Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections" 6666: 6627: 6362:"A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex" 6315: 6133:"Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation" 6113: 5839: 5786: 5743: 5692: 5641: 5590: 5539: 5495: 5288: 5237: 4981: 4787: 4762:, Ilmoniemi RJ, Curio G (May 2007). "A novel mechanism for evoked responses in the human brain". 4740: 4697: 4621: 4575: 4326: 4234: 4097: 4024: 3948: 3835: 2964: 2909: 2767: 2719: 2641: 2579: 2534: 2369: 2312: 2266: 2223: 2158: 2060:"Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective" 1587: 1540: 1509: 1397: 1305: 1208:
well-studied type of induced activity is amplitude change in oscillatory activity. For instance,
1155:(BOLD) signal reveal correlation patterns that are linked to resting state networks, such as the 1016: 842: 636: 567: 401: 91: 6419:
Allum JH, Dietz V, Freund HJ (May 1978). "Neuronal mechanisms underlying physiological tremor".
5153:
Singer W, Gray CM (1995). "Visual feature integration and the temporal correlation hypothesis".
4156:"Generative models of cortical oscillations: neurobiological implications of the kuramoto model" 1493:
are more effective in activating Kenyon cells only at specific phases of the oscillatory cycle.
479:
through local interactions between excitatory and inhibitory neurons. In particular, inhibitory
280:
or spikes. Some types of neurons have the tendency to fire at particular frequencies, either as
6503:
Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (February 2002).
5867:"Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise?" 3923:
Abbott, Larry (1999). "Lapicque's introduction of the integrate-and-fire model neuron (1907)".
1140:
alertness) and is often used in sleep research. Certain types of oscillatory activity, such as
37: 7200: 7179: 7152: 7035: 7004: 6963: 6922: 6857: 6814: 6777: 6723: 6658: 6608: 6544: 6485: 6436: 6401: 6307: 6272: 6215: 6158: 6105: 6070: 6025: 5986:"Oscillations in local field potentials of the primate motor cortex during voluntary movement" 5966: 5931: 5896: 5827: 5817: 5778: 5735: 5684: 5633: 5582: 5531: 5487: 5441: 5397: 5337: 5280: 5229: 5180: 5135: 5097: 5079: 5038: 5020: 4973: 4965: 4887: 4836: 4779: 4732: 4689: 4644: 4613: 4567: 4532: 4483: 4434: 4385: 4318: 4283: 4226: 4187: 4089: 4054: 4013:"Broadband macroscopic cortical oscillations emerge from intrinsic neuronal response failures" 3993: 3940: 3886: 3827: 3784: 3743: 3684: 3621: 3595: 3528: 3469: 3426: 3375: 3340: 3291: 3242: 3183: 3158: 3102: 3076: 3019: 3011: 2956: 2948: 2874: 2839: 2759: 2711: 2676: 2633: 2526: 2470: 2418: 2361: 2304: 2258: 2215: 2150: 2091: 2014: 1996: 1853: 1775: 1723: 1443: 1436: 1339: 1321:
which reflect the synchronous activity of local groups of neurons, but has also been shown in
1176: 939: 916: 854: 758: 743:, and have a pronounced effect on amplitude of different brain waves, such as alpha activity. 672: 504: 496: 468: 414: 384: 312: 107: 95: 6176:
Boonstra TW, Danna-Dos-Santos A, Xie HB, Roerdink M, Stins JF, Breakspear M (December 2015).
6043:
Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (December 1995).
2241:
Fell J, Axmacher N (February 2011). "The role of phase synchronization in memory processes".
7516: 7330: 7144: 7103: 7068: 7027: 6994: 6953: 6912: 6904: 6849: 6804: 6767: 6757: 6713: 6705: 6650: 6598: 6590: 6534: 6524: 6475: 6467: 6428: 6391: 6381: 6342: 6299: 6262: 6254: 6205: 6197: 6148: 6140: 6097: 6060: 6052: 6015: 6005: 5958: 5923: 5886: 5878: 5809: 5770: 5727: 5676: 5625: 5574: 5523: 5479: 5433: 5387: 5379: 5327: 5319: 5306:
Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K (March 2015).
5272: 5219: 5172: 5127: 5087: 5069: 5028: 5012: 4957: 4926: 4877: 4867: 4826: 4818: 4771: 4724: 4681: 4605: 4559: 4522: 4514: 4473: 4465: 4424: 4416: 4375: 4365: 4310: 4273: 4265: 4218: 4177: 4167: 4081: 4044: 4034: 3985: 3932: 3876: 3866: 3819: 3774: 3733: 3723: 3674: 3666: 3587: 3579: 3518: 3508: 3461: 3416: 3406: 3367: 3330: 3322: 3281: 3273: 3232: 3224: 3203:
Cardin JA, CarlĂ©n M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. (June 2009).
3148: 3140: 3066: 3058: 3050: 3003: 2940: 2901: 2866: 2829: 2821: 2751: 2703: 2668: 2623: 2569: 2561: 2516: 2506: 2460: 2452: 2408: 2400: 2351: 2296: 2250: 2207: 2142: 2081: 2071: 2004: 1988: 1925: 1770:
Neural oscillations are sensitive to several drugs influencing brain activity; accordingly,
1700: 1242: 1125: 850: 818: 668: 656: 545: 320: 277: 186: 174: 46: 45:. Upper panel shows spiking of individual neurons (with each dot representing an individual 7225: 6942:"Breaking the silence: brain-computer interfaces (BCI) for communication and motor control" 4503:"Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability" 3393:
Cabral J, Luckhoo H, Woolrich M, Joensson M, Mohseni H, Baker A, et al. (April 2014).
2441:"Decoding object-based auditory attention from source-reconstructed MEG alpha oscillations" 1824:
A non-inclusive list of types of oscillatory activity found in the central nervous system:
5851: 2574: 2030: 2025: 1672:
Specific types of neural oscillations may also appear in pathological situations, such as
1595: 1547: 1486: 1455: 1424: 1345: 1156: 935: 931: 892: 708: 698: 648: 624: 558:
that play an important role in generating membrane potential oscillations. In particular,
512: 463: 301: 218: 103: 308:. Quantitative models can estimate the strength of neural oscillations in recorded data. 6999: 6982: 6900: 6845: 6701: 6646: 6520: 6377: 6250: 6193: 6001: 5723: 5672: 5621: 5570: 5475: 5375: 5268: 5215: 5176: 5131: 4922: 4677: 4361: 3815: 3719: 3679: 3654: 3575: 3504: 3457: 3266:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
3220: 2999: 2619: 2347: 2029: This article incorporates text from this source, which is available under the 1984: 849:
won the 1963 Nobel Prize in physiology or medicine. The model is based on data from the
6917: 6884: 6772: 6745: 6718: 6685: 6628:"Human memory strength is predicted by theta-frequency phase-locking of single neurons" 6603: 6578: 6480: 6455: 6396: 6361: 6267: 6234: 6210: 6177: 6153: 6132: 6065: 6044: 5891: 5866: 5392: 5359: 5332: 5307: 5276: 5092: 5057: 5033: 5000: 4882: 4855: 4831: 4807:"Asymmetric amplitude modulations of brain oscillations generate slow evoked responses" 4806: 4527: 4502: 4478: 4453: 4429: 4404: 4278: 4253: 4182: 4155: 4049: 4012: 3904:
Lapicque, LM (1907). "Recherches quantitatives sur l'excitation electrique des nerfs".
3881: 3854: 3738: 3703: 3335: 3310: 3286: 3261: 3237: 3204: 3153: 3128: 3071: 3038: 2834: 2809: 2465: 2413: 2388: 2086: 2059: 2009: 1969:"Activation Complexity: A Cognitive Impairment Tool for Characterizing Neuro-isolation" 1968: 1681: 1555: 1536: 1353: 1313: 1297: 1145: 979: 973: 965: 885: 807: 724: 348: 242: 126: 7240: 6539: 6504: 5813: 5224: 5199: 4946:"Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions" 4609: 4563: 4380: 4345: 3989: 3936: 3371: 2983: 2707: 1369:, which up or down regulates the spontaneous firing frequency of the pacemaker cells. 995:
of interacting neurons can become synchronized and generate large-scale oscillations.
7541: 7480: 6958: 6941: 6144: 6020: 5985: 5927: 5696: 5543: 4944:
Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris (2015-11-01).
4775: 4728: 4222: 4139:
Ermentrout B (1994). "An introduction to neural oscillators". In F Ventriglia (ed.).
3779: 3762: 3556: 3523: 3488: 3411: 3394: 2913: 2672: 2538: 2162: 1888: 1843: 1637: 1613: 1497: 1490: 1413: 1400:, Most evidence for central pattern generators comes from lower animals, such as the 1251: 1196: 1072: 984: 846: 796: 791:
Limit-cycle oscillations arise from physical systems that show large deviations from
728: 418: 344: 315:
that places a strong focus on the dynamic character of neural activity in describing
293: 292:
is another form of rhythmic spiking. Spiking patterns are considered fundamental for
266: 210: 157: 138: 79: 17: 7230: 7080: 7049: 6869: 6594: 6319: 5790: 5645: 4791: 4744: 4701: 4625: 4330: 4238: 3952: 2771: 2723: 2645: 2583: 2373: 911: 7470: 7094:
Lebedev M (2016). "Augmentation of sensorimotor functions with neural prostheses".
6741: 6670: 6471: 6117: 6056: 5882: 5747: 5594: 5499: 5241: 4985: 4906: 4822: 4579: 4518: 4469: 4420: 4269: 4101: 3871: 3839: 3326: 2968: 2825: 2456: 2316: 2270: 2227: 1940: 1920: 1750: 1704: 1578: 1358: 1349: 1309: 1136: 1129: 896: 785: 480: 142: 7210: 5292: 3641: 3311:"Neuronal mechanisms and attentional modulation of corticothalamic α oscillations" 3129:"Neurophysiological and computational principles of cortical rhythms in cognition" 137:. Over the last decades more insight has been gained, especially with advances in 6386: 6346: 5629: 5016: 3177: 2511: 2494: 2146: 519:. This thalamocortical network is able to generate oscillatory activity known as 6178:"Muscle networks: Connectivity analysis of EMG activity during postural control" 5308:"Human spinal locomotor control is based on flexibly organized burst generators" 3802:
Buzsáki G, Draguhn A (June 2004). "Neuronal oscillations in cortical networks".
3205:"Driving fast-spiking cells induces gamma rhythm and controls sensory responses" 1910: 1754: 1554:
Oscillatory rhythms at 10 Hz have been recorded in a brain area called the
1482: 1420: 1180: 915:
Simulation of a neural mass model showing network spiking during the onset of a
766: 736: 234: 194: 166: 130: 122: 121:
Neural oscillations in humans were observed by researchers as early as 1924 (by
83: 27:
Brainwaves, repetitive patterns of neural activity in the central nervous system
7250: 7245: 7148: 6908: 6853: 6809: 6796: 6709: 6509:
Proceedings of the National Academy of Sciences of the United States of America
5990:
Proceedings of the National Academy of Sciences of the United States of America
4961: 4641:
Phase resetting in medicine and biology: stochastic modelling and data analysis
4350:
Proceedings of the National Academy of Sciences of the United States of America
3708:
Proceedings of the National Academy of Sciences of the United States of America
3670: 3583: 3493:
Proceedings of the National Academy of Sciences of the United States of America
3144: 2211: 1992: 1726:. These seizures are transient signs and/or symptoms of abnormal, excessive or 7465: 7460: 7450: 6233:
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW (June 2018).
6101: 5962: 4930: 2892:
Burrow T (1943). "The neurodynamics of behavior. A phylobiological foreword".
1898: 1858: 1848: 1828: 1591: 1515: 1478: 1466: 1404:, but there is also evidence for spinal central pattern generators in humans. 1362: 1209: 1141: 900: 597: 524: 492: 476: 451:. These large-scale oscillations can also be measured outside the scalp using 371:. Oscillatory activity can also be used to control external devices such as a 258: 250: 246: 230: 115: 7031: 6432: 5083: 5074: 5024: 4969: 4872: 4207:"Role of local network oscillations in resting-state functional connectivity" 4172: 4039: 3702:
Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD (May 2009).
3015: 2952: 2404: 2076: 2000: 1120:
for those signal components that are not associated with the processing of a
1087:
Activity is linearly added to ongoing oscillatory activity between t1 and t2.
1015:
oscillatory activity while subjects do not engage in any activity, so-called
991:
function) and collectively generate a dynamical pattern at the global scale.
7475: 7455: 7356: 7072: 7065:
Proceedings of the IEEE International Workshop on Intelligent Motion Control
6010: 4685: 4370: 4254:"Bistability and non-Gaussian fluctuations in spontaneous cortical activity" 3823: 3728: 3465: 3007: 2628: 2603: 2356: 2331: 1873: 1833: 1813: 1771: 1519: 1293: 1056: 1040: 732: 720: 678: 578: 528: 262: 254: 206: 202: 7156: 6967: 6926: 6861: 6818: 6797:"Physiological and pathological tremors and rhythmic central motor control" 6781: 6762: 6727: 6686:"Cortical source localization of sleep-stage specific oscillatory activity" 6662: 6612: 6548: 6529: 6405: 6311: 6276: 6258: 6219: 5900: 5831: 5782: 5401: 5341: 5323: 5233: 5101: 5042: 4977: 4891: 4840: 4783: 4736: 4693: 4617: 4571: 4536: 4487: 4438: 4389: 4322: 4287: 4230: 4191: 4093: 4058: 3997: 3944: 3890: 3831: 3788: 3747: 3688: 3599: 3430: 3379: 3344: 3277: 3246: 3162: 3080: 2878: 2763: 2715: 2680: 2637: 2530: 2474: 2422: 2365: 2308: 2262: 2219: 2154: 2095: 2018: 523:. The thalamocortical network plays an important role in the generation of 7107: 7008: 6489: 6162: 6109: 6074: 6029: 5970: 5739: 5688: 5637: 5586: 5535: 5491: 5445: 5284: 5184: 5139: 4085: 3532: 3513: 3473: 3295: 3054: 3039:"Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS" 3023: 2870: 2843: 1229:
Phase resetting also permits the study of evoked activity, a term used in
6440: 4405:"To see or not to see: prestimulus alpha phase predicts visual awareness" 2960: 2552:
Berger H, Gray CM (1929). "Uber das Elektroenkephalogramm des Menschen".
1838: 1717: 1677: 869: 827: 774: 770: 660: 644: 623:. Neurons are locally connected, forming small clusters that are called 606:
properties are also an important source of oscillatory activity. Neurons
549: 508: 500: 422: 360: 300:(i.e. in the absence of action potentials). If numerous neurons spike in 289: 6654: 5935: 5383: 4856:"Rhythmic pulsing: linking ongoing brain activity with evoked responses" 3228: 2929:"Dynamics of pattern formation in lateral-inhibition type neural fields" 2521: 1660: 1636:
Neural oscillations may play a role in neural development. For example,
1612:
Sleep is a naturally recurring state characterized by reduced or absent
1527:
in the motor cortex during constant muscle activation, as determined by
707:
between neurons forming a network, oscillatory activity is regulated by
667:, whose dynamics and functional connectivity can be studied by means of 213:. These signal properties can be extracted from neural recordings using 7490: 5527: 3421: 3062: 2944: 2565: 1868: 1809: 1665: 1401: 1389: 1188: 740: 735:. These neurotransmitter systems affect the physiological state, e.g., 704: 686: 682: 356: 296:
in the brain. Oscillatory activity can also be observed in the form of
87: 6201: 3591: 7521: 5578: 5483: 5437: 4905:
Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993).
4252:
Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (July 2009).
2928: 2755: 1782:. EEG biomarkers can be extracted from the EEG using the open-source 1693: 1572: 1559: 1301: 1292:
Neural synchronization can be modulated by task constraints, such as
607: 555: 364: 106:, synchronized activity of large numbers of neurons can give rise to 6579:"Functional role of gamma and theta oscillations in episodic memory" 5774: 5058:"Hippocampal Sequences During Exploration: Mechanisms and Functions" 4314: 4206: 2495:"Alpha Synchrony and the Neurofeedback Control of Spatial Attention" 2300: 2254: 1722:
Epilepsy is a common chronic neurological disorder characterized by
1624:(NREM) sleep. Sleep stages are characterized by spectral content of 919:. As the gain A is increased the network starts to oscillate at 3Hz. 761:
mechanisms that generate rhythmicity. Among the most important are
6303: 5424:
Milner PM (November 1974). "A model for visual shape recognition".
4501:
van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (February 2008).
4029: 2905: 1800:
Neural oscillation has been applied as a control signal in various
1179:
may change the frequency at which it oscillates, thus changing the
5731: 5680: 5200:"Central pattern generators and the control of rhythmic movements" 4454:"The phase of ongoing EEG oscillations predicts visual perception" 2493:
Bagherzadeh Y, Baldauf D, Pantazis D, Desimone R (February 2020).
2387:
Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E (July 2017).
1864:
Mathematical modeling of electrophysiological activity in epilepsy
1659: 1647: 1607: 1101: 954: 910: 817: 635:
cells can show spontaneous oscillations that are described by the
396: 316: 238: 57: 42: 36: 1563:
represent a neural mechanism for the intermittent motor control.
968:
showing neural synchronization and oscillations in the mean field
404:
firing pattern of single neuron showing rhythmic spiking activity
7406: 7371: 7361: 7351: 4403:
Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (March 2009).
1594:
activity is thought to be vital for memory functions, including
1474: 1003: 712: 616: 74:, are rhythmic or repetitive patterns of neural activity in the 7254: 3260:
Llinás R, Ribary U, Contreras D, Pedroarena C (November 1998).
1059:
of ongoing oscillatory activity is increased between t1 and t2.
1043:
of ongoing oscillatory activity is increased between t1 and t2.
7421: 7416: 6456:"Organization of motor output in slow finger movements in man" 1546:
Recently it was found that cortical oscillations propagate as
1523: 1322: 1163: 201:(EEG). In general, oscillations can be characterized by their 6684:
Brancaccio A, Tabarelli D, Bigica M, Baldauf D (April 2020).
6626:
Rutishauser U, Ross IB, Mamelak AN, Schuman EM (April 2010).
5808:. Progress in Brain Research. Vol. 130. pp. 75–87. 2984:"Dynamic Pattern Generation in Behavioral and Neural Systems" 1237:
for responses in brain activity that are directly related to
806:
of individual neurons, through models of how the dynamics of
659:
of axons. Because most connections are reciprocal, they form
1361:
and are called pacemaker cells as they directly control the
86:
in many ways, driven either by mechanisms within individual
1535:
at multiple distinct frequencies reflecting the underlying
49:
within the population of neurons), and the lower panel the
6885:"Thalamocortical dysrhythmia detected by machine learning" 6505:"The neural basis of intermittent motor control in humans" 3763:"Brain stem reticular formation and activation of the EEG" 3640:
Andrea Brovelli, Steven L. Bressler and their colleagues,
3618:
Synchronization: a universal concept in nonlinear sciences
1586:, a potential cellular mechanism for learning and memory. 1276:
a slow wave is coupled with the amplitude of a fast wave.
1531:. Likewise, muscle activity of different muscles reveals 1191:, such as step frequency in walking. However, changes in 619:, the spike trains of the interacting neurons may become 4011:
Goldental A, Vardi R, Sardi S, Sabo P, Kanter I (2015).
3855:"The Hodgkin-Huxley Heritage: From Channels to Circuits" 3653:
Peter, Berki; Csaba, Cserep; Zsuzsanna, Környei (2024).
1496:
Neural oscillations are also thought be involved in the
3309:
Bollimunta A, Mo J, Schroeder CE, Ding M (March 2011).
1664:
Generalized 3 Hz spike and wave discharges reflecting
6360:
Heitmann S, Boonstra T, Breakspear M (October 2013).
4591: 4589: 3179:
Electric fields of the brain: The neurophysics of EEG
2110:"Caton, Richard - The electric currents of the brain" 7499: 7441: 7329: 7288: 5916:
Electroencephalography and Clinical Neurophysiology
3767:
Electroencephalography and Clinical Neurophysiology
3557:"Asymmetry in pulse-coupled oscillators with delay" 3555:Zeitler M, Daffertshofer A, Gielen CC (June 2009). 2661:
Electroencephalography and Clinical Neurophysiology
475:Neural ensembles can generate oscillatory activity 7296:Amplitude integrated electroencephalography (aEEG) 4758:Nikulin VV, Linkenkaer-Hansen K, Nolte G, Lemm S, 4205:Cabral J, Hugues E, Sporns O, Deco G (July 2011). 4154:Breakspear M, Heitmann S, Daffertshofer A (2010). 2785: 2783: 2781: 2439:de Vries IE, Marinato G, Baldauf D (August 2021). 899:have been shown to generate brain rhythms such as 7120:: CS1 maint: DOI inactive as of September 2024 ( 7067:. Vol. 2. Istanbul: IEEE. pp. 463–467. 2282: 2280: 1151:In case of fMRI, spontaneous fluctuations in the 1135:Spontaneous activity is usually considered to be 30:"Brain wave" redirects here. For other uses, see 3611: 3609: 1808:activity in specific frequency bands, including 389:Oscillatory activity is observed throughout the 6883:Vanneste S, Song JJ, De Ridder D (March 2018). 1656:showing rhythmic tremor activity in the strokes 1075:of ongoing oscillatory activity is reset at t1. 98:, which then produce oscillatory activation of 6987:Annual Review of Biophysics and Bioengineering 5358:Gupta N, Singh SS, Stopfer M (December 2016). 5113: 5111: 3487:Llinás RR, Grace AA, Yarom Y (February 1991). 2803: 2801: 2737: 2735: 2733: 1308:. Neuronal oscillations became a hot topic in 7266: 4452:Busch NA, Dubois J, VanRullen R (June 2009). 3092: 3090: 2604:"Neural mechanisms of object-based attention" 2332:"Neural mechanisms of object-based attention" 1774:based on neural oscillations are emerging as 1744:In thalamocortical dysrhythmia (TCD), normal 1002:functional maps, which can be measured using 8: 6983:"Toward direct brain-computer communication" 5457: 5455: 5360:"Oscillatory integration windows in neurons" 5353: 5351: 4126:Chemical Oscillations, Waves, and Turbulence 3122: 3120: 3118: 2193: 2191: 1894:Subthreshold membrane potential oscillations 602:Apart from intrinsic properties of neurons, 575:subthreshold membrane potential oscillations 298:subthreshold membrane potential oscillations 276:. Neurons can generate rhythmic patterns of 4999:Lisman, John E.; Jensen, Ole (2013-03-20). 2982:Schöner, G.; Kelso, J. A. S. (1988-03-25). 2135:Journal of the History of the Neurosciences 355:, such as excessive synchronization during 7527:Neurophysiological Biomarker Toolbox (NBT) 7273: 7259: 7251: 6131:Baker SN, Olivier E, Lemon RN (May 1997). 5865:Burns SP, Xing D, Shapley RM (June 2011). 5257:Annals of the New York Academy of Sciences 3616:Pikovsky A, Rosenblum M, Kurths J (2001). 2794:. Cambridge, Massachusetts: The MIT Press. 1780:quantitative electroencephalography (qEEG) 781:, and are well understood mathematically. 554:Scientists have identified some intrinsic 110:oscillations, which can be observed in an 7026:. New Orleans: IEEE. pp. 1515–1516. 6998: 6957: 6916: 6808: 6771: 6761: 6717: 6602: 6538: 6528: 6479: 6395: 6385: 6266: 6209: 6152: 6064: 6019: 6009: 5890: 5391: 5331: 5223: 5166: 5091: 5073: 5032: 4881: 4871: 4830: 4526: 4477: 4428: 4379: 4369: 4277: 4181: 4171: 4048: 4038: 4028: 3979: 3968:International Journal of Psychophysiology 3880: 3870: 3778: 3737: 3727: 3678: 3522: 3512: 3420: 3410: 3360:International Journal of Psychophysiology 3334: 3285: 3236: 3152: 3070: 2833: 2627: 2573: 2520: 2510: 2464: 2412: 2355: 2085: 2075: 2044: 2042: 2040: 2008: 655:), involve time-delays due to the finite 6454:Vallbo AB, Wessberg J (September 1993). 1195:oscillation frequency between different 304:, they can give rise to oscillations in 171:Vladimir Vladimirovich Pravdich-Neminsky 41:Simulation of neural oscillations at 10 5056:Drieu, CĂ©line; Zugaro, MichaĂ«l (2019). 1956: 1029: 173:published the first animal EEG and the 7113: 6795:McAuley JH, Marsden CD (August 2000). 6583:Neuroscience and Biobehavioral Reviews 5847: 5837: 4643:. Berlin Heidelberg: Springer-Verlag. 3761:Moruzzi G, Magoun HW (November 1949). 3262:"The neuronal basis for consciousness" 1522:(13–30 Hz) oscillations in 2597: 2595: 2593: 2488: 2486: 2484: 2434: 2432: 1489:, such that incoming spikes from the 7: 5806:Advances in Neural Population Coding 5198:Marder E, Bucher D (November 2001). 4764:The European Journal of Neuroscience 2602:Baldauf D, Desimone R (April 2014). 2330:Baldauf D, Desimone R (April 2014). 1962: 1960: 1784:Neurophysiological Biomarker Toolbox 1652:Handwriting of a person affected by 1187:and directly relate to the speed of 934:, resulting in spatially continuous 521:recurrent thalamo-cortical resonance 7382:Contingent negative variation (CNV) 7321:Brainstem auditory evoked potential 7000:10.1146/annurev.bb.02.060173.001105 5177:10.1146/annurev.ne.18.030195.003011 5132:10.1146/annurev.ph.55.030193.002025 4141:Neural Modeling and Neural Networks 3043:The New England Journal of Medicine 1577:Neural oscillations, in particular 1469:oscillations in visual perception. 1296:, and is thought to play a role in 319:function. It considers the brain a 135:generation of rhythmic motor output 5984:Sanes JN, Donoghue JP (May 1993). 5277:10.1111/j.1749-6632.1998.tb09062.x 5062:Frontiers in Cellular Neuroscience 4805:Mazaheri A, Jensen O (July 2008). 2064:Frontiers in Cellular Neuroscience 1728:hypersynchronous neuronal activity 1175:In response to input, a neuron or 25: 7196:Mass Action in the Nervous System 2792:Dynamical systems in neuroscience 573:In addition to periodic spiking, 6959:10.1111/j.1469-8986.2006.00456.x 6145:10.1111/j.1469-7793.1997.225bo.x 4776:10.1111/j.1460-9568.2007.05553.x 4729:10.1016/j.neuroimage.2004.10.020 4223:10.1016/j.neuroimage.2011.04.010 3412:10.1016/j.neuroimage.2013.11.047 2024: 1080: 1064: 1048: 1032: 241:) that can be detected from the 6595:10.1016/j.neubiorev.2009.12.014 6577:Nyhus E, Curran T (June 2010). 4860:Frontiers in Human Neuroscience 4160:Frontiers in Human Neuroscience 3176:Nunez PL, Srinivasan R (1981). 3099:Principles of brain functioning 2927:Amari, Shun-ichi (1977-06-01). 2808:Llinás R, Yarom Y (July 1986). 1258:Asymmetric amplitude modulation 131:information transfer mechanisms 7316:Somatosensory evoked potential 6472:10.1113/jphysiol.1993.sp019837 6057:10.1113/jphysiol.1995.sp021104 5883:10.1523/jneurosci.0660-11.2011 4823:10.1523/JNEUROSCI.1631-08.2008 4519:10.1523/jneurosci.1853-07.2008 4470:10.1523/jneurosci.0113-09.2009 4421:10.1523/JNEUROSCI.3963-08.2009 4270:10.1523/JNEUROSCI.0754-09.2009 3872:10.1523/JNEUROSCI.3403-12.2012 3620:. Cambridge University Press. 3327:10.1523/JNEUROSCI.5580-10.2011 2826:10.1113/jphysiol.1986.sp016147 2575:11858/00-001M-0000-002A-5DE0-7 2457:10.1523/JNEUROSCI.0583-21.2021 141:. A major area of research in 1: 7512:Difference due to memory (Dm) 6940:Birbaumer N (November 2006). 5814:10.1016/S0079-6123(01)30007-9 5225:10.1016/S0960-9822(01)00581-4 5155:Annual Review of Neuroscience 5001:"The Theta-Gamma Neural Code" 4854:Mazaheri A, Jensen O (2008). 4610:10.1016/S1388-2457(99)00141-8 4564:10.1016/S1364-6613(99)01299-1 3990:10.1016/S0167-8760(00)00173-2 3937:10.1016/S0361-9230(99)00161-6 3372:10.1016/S0167-8760(01)00177-5 2708:10.1016/S1364-6613(00)01568-0 7311:Magnetoencephalography (MEG) 7282:Electroencephalography (EEG) 7096:Opera Medica et Physiologica 6803:. 123 ( Pt 8) (8): 1545–67. 6387:10.1371/journal.pcbi.1003260 6347:10.1016/j.neucom.2015.01.088 5928:10.1016/0013-4694(77)90235-8 5763:Nature Reviews. Neuroscience 5630:10.1126/science.274.5289.976 5017:10.1016/j.neuron.2013.03.007 4552:Trends in Cognitive Sciences 4303:Nature Reviews. Neuroscience 4017:Frontiers in Neural Circuits 3780:10.1016/0013-4694(49)90219-9 2744:Nature Reviews. Neuroscience 2696:Trends in Cognitive Sciences 2673:10.1016/0013-4694(57)90088-3 2512:10.1016/j.neuron.2019.11.001 2289:Nature Reviews. Neuroscience 2243:Nature Reviews. Neuroscience 2200:Trends in Cognitive Sciences 2178:Zentralblatt fĂĽr Physiologie 2147:10.1080/0964704x.2013.867600 1879:Thalamocortical oscillations 1352:of the heart, spontaneously 1153:blood-oxygen-level dependent 7306:Electrocorticography (ECoG) 7236:Spike-and-wave oscillations 7178:. Oxford University Press. 6139:. 501 ( Pt 1) (1): 225–41. 6051:. 489 ( Pt 3) (3): 917–24. 5871:The Journal of Neuroscience 5120:Annual Review of Physiology 4811:The Journal of Neuroscience 4507:The Journal of Neuroscience 4458:The Journal of Neuroscience 4409:The Journal of Neuroscience 4258:The Journal of Neuroscience 3859:The Journal of Neuroscience 3315:The Journal of Neuroscience 3182:. Oxford University Press. 2445:The Journal of Neuroscience 1884:Sharp wave–ripple complexes 1740:Thalamocortical dysrhythmia 1734:Thalamocortical dysrhythmia 703:In addition to fast direct 653:thalamocortical oscillation 257:(13–30 Hz), low 94:or as rhythmic patterns of 32:Brain wave (disambiguation) 7589: 7548:Computational neuroscience 7226:Binding by synchronization 7149:10.1152/physrev.00027.2016 6909:10.1038/s41467-018-02820-0 6854:10.1103/PhysRevE.77.061911 6710:10.1038/s41598-020-63933-5 6566:. Oxford University Press. 6421:Journal of Neurophysiology 6366:PLOS Computational Biology 6090:Journal of Neurophysiology 5951:Journal of Neurophysiology 4962:10.1016/j.tins.2015.09.001 3671:10.1038/s41467-024-49773-1 3584:10.1103/PhysRevE.79.065203 3145:10.1152/physrev.00035.2008 2859:Journal of Neurophysiology 2212:10.1016/j.tics.2005.08.011 1993:10.1038/s41598-020-60354-2 1946:Phase resetting in neurons 1931:Oscillatory neural network 1793: 1737: 1715: 1691: 1616:and proceeds in cycles of 1605: 1570: 1529:cortico-muscular coherence 1507: 1453: 1434: 1411: 1376: 1337: 1185:central pattern generators 971: 922: 883: 874:biological neural networks 833: 753:Computational neuroscience 750: 696: 665:large-scale brain networks 595: 586:central pattern generators 584:Like pacemaker neurons in 560:voltage-gated ion channels 543: 517:thalamocortical radiations 427:sub-threshold fluctuations 382: 102:neurons. At the level of 29: 6460:The Journal of Physiology 6137:The Journal of Physiology 6102:10.1152/jn.1997.77.6.3401 6049:The Journal of Physiology 5963:10.1152/jn.1996.76.6.3949 4931:10.1103/RevModPhys.65.413 2814:The Journal of Physiology 1802:brain–computer interfaces 1746:thalamocortical resonance 1518:(8–12 Hz) and 1386:central pattern generator 1379:Central pattern generator 1373:Central pattern generator 769:oscillators, and delayed- 604:biological neural network 445:constructive interference 197:which can be measured by 7032:10.1109/IEMBS.1988.95357 6810:10.1093/brain/123.8.1545 6433:10.1152/jn.1978.41.3.557 5075:10.3389/fncel.2019.00232 4873:10.3389/fnhum.2010.00177 4598:Clinical Neurophysiology 4173:10.3389/fnhum.2010.00190 4040:10.3389/fncir.2015.00065 2405:10.1177/0956797617699167 2114:echo.mpiwg-berlin.mpg.de 2077:10.3389/fncel.2014.00320 1916:Dynamical systems theory 1796:Brain–computer interface 1790:Brain–computer interface 1533:inter-muscular coherence 1367:autonomic nervous system 1271:Cross-frequency coupling 1264:event-related potentials 1247:event-related potentials 1100:Spontaneous activity is 747:Mathematical description 373:brain–computer interface 7433:Late positive component 7301:Event-related potential 7073:10.1109/IMC.1990.687362 6011:10.1073/pnas.90.10.4470 4950:Trends in Neurosciences 4686:10.1126/science.1066168 4371:10.1073/pnas.1831638100 3925:Brain Research Bulletin 3824:10.1126/science.1099745 3729:10.1073/pnas.0900728106 3466:10.1126/science.3059497 3008:10.1126/science.3281253 2629:10.1126/science.1247003 2357:10.1126/science.1247003 1602:Sleep and consciousness 1215:time-frequency analysis 1132:, or induced activity. 836:Biological neuron model 215:time-frequency analysis 7342:Bereitschaftspotential 7110:(inactive 2024-09-12). 6763:10.1186/1749-8104-4-24 6530:10.1073/pnas.032682099 6259:10.1126/sciadv.aat0497 5516:Biological Cybernetics 4074:Biological Cybernetics 3278:10.1098/rstb.1998.0336 2933:Biological Cybernetics 2790:Izhikevich EM (2007). 2554:Arch Psychiat Nervenkr 1669: 1657: 1622:non-rapid eye movement 1584:long-term potentiation 1408:Information processing 1319:local field potentials 1302:neuronal communication 1235:magnetoencephalography 1231:electroencephalography 1118:magnetoencephalography 1114:electroencephalography 1110:ongoing brain activity 1017:resting-state activity 969: 920: 831: 765:(linear) oscillators, 457:magnetoencephalography 453:electroencephalography 405: 391:central nervous system 353:neurological disorders 325:differential equations 306:local field potentials 274:single-unit recordings 199:electroencephalography 191:local field potentials 147:levels of organization 76:central nervous system 64: 55: 7137:Physiological Reviews 7108:10.20388/OMP.003.0035 6889:Nature Communications 5364:Nature Communications 4128:. Dover Publications. 4086:10.1007/s004220000160 3659:Nature Communications 3514:10.1073/pnas.88.3.897 3133:Physiological Reviews 3127:Wang XJ (July 2010). 3055:10.1056/NEJMoa1608085 2894:Philosophy of Science 2871:10.1152/jn.00772.2007 2393:Psychological Science 1663: 1651: 1442:this is the neuronal 1024:Oscillatory responses 963: 914: 862:FitzHugh–Nagumo model 824:Hindmarsh–Rose neuron 821: 705:synaptic interactions 449:local field potential 400: 286:intrinsic oscillators 253:(4–8 Hz), 249:(1–4 Hz), 61: 51:local field potential 40: 18:Cortical oscillations 7176:Rhythms of the Brain 6564:Rhythms of the brain 5426:Psychological Review 5324:10.1093/brain/awu372 1936:Systems neuroscience 866:Hindmarsh–Rose model 803:Computational models 779:minimum-energy state 568:bifurcation analysis 564:Hodgkin–Huxley model 529:beta frequency range 334:computer simulations 112:electroencephalogram 84:oscillatory activity 7486:Sensorimotor rhythm 7443:Neural oscillations 7387:Mismatch negativity 7231:Neural Field Theory 6901:2018NatCo...9.1103V 6846:2008PhRvE..77f1911S 6702:2020NatSR..10.6976B 6655:10.1038/nature08860 6647:2010Natur.464..903R 6521:2002PNAS...99.2299G 6378:2013PLSCB...9E3260H 6292:Nature Neuroscience 6251:2018SciA....4..497K 6194:2015NatSR...517830B 6002:1993PNAS...90.4470S 5724:1998Natur.395..693M 5673:1997Natur.390...70S 5622:1996Sci...274..976M 5571:1996Natur.384..162W 5476:1989Natur.338..334G 5384:10.1038/ncomms13808 5376:2016NatCo...713808G 5269:1998NYASA.860..360D 5216:2001CBio...11.R986M 4923:1993RvMP...65..413H 4678:2002Sci...295..690M 4362:2003PNAS..10011053L 4124:Kuramoto Y (1984). 3865:(41): 14064–14073. 3816:2004Sci...304.1926B 3720:2009PNAS..106.8356M 3576:2009PhRvE..79f5203Z 3505:1991PNAS...88..897L 3458:1988Sci...242.1654L 3229:10.1038/nature08002 3221:2009Natur.459..663C 3000:1988Sci...239.1513S 2994:(4847): 1513–1520. 2620:2014Sci...344..424B 2348:2014Sci...344..424B 1985:2020NatSR..10.3909N 1776:secondary endpoints 1674:Parkinson's disease 1654:Parkinson's disease 1241:-related activity. 944:statistical physics 940:mean field approach 814:Single neuron model 657:conduction velocity 556:neuronal properties 540:Neuronal properties 369:Parkinson's disease 338:computational model 68:Neural oscillations 7199:. Academic Press. 7193:Freeman W (1975). 7174:Buzsáki G (2006). 6840:(6 Pt 1): 061911. 6750:Neural Development 6690:Scientific Reports 6562:Buszaki G (2006). 6182:Scientific Reports 5528:10.1007/BF00202899 4143:. pp. 79–110. 3570:(6 Pt 2): 065203. 2945:10.1007/BF00337259 2566:10.1007/BF01797193 2058:Llinás RR (2014). 1973:Scientific Reports 1766:Clinical endpoints 1670: 1658: 1618:rapid eye movement 1590:between theta and 1541:motor coordination 1510:Motor coordination 1504:Motor coordination 1306:motor coordination 1203:Amplitude response 1171:Frequency response 970: 925:Wilson–Cowan model 921: 832: 637:Wilson-Cowan model 592:Network properties 406: 313:cognitive sciences 294:information coding 92:membrane potential 65: 56: 7553:Electrophysiology 7535: 7534: 7429:(late positivity) 7331:Evoked potentials 7185:978-0-19-530106-9 6981:Vidal JJ (1973). 6834:Physical Review E 6202:10.1038/srep17830 4650:978-3-540-65697-5 3627:978-0-521-53352-2 3564:Physical Review E 3452:(4886): 1654–64. 3108:978-3-540-58967-9 3049:(21): 2060–2066. 2505:(3): 577–587.e5. 2451:(41): 8603–8617. 1854:Epileptic seizure 1444:phase-locked loop 1437:Phase-locked loop 1431:Temporal decoding 1348:, located in the 1340:Cardiac pacemaker 1243:Evoked potentials 1177:neuronal ensemble 1126:evoked potentials 1010:Activity patterns 961: 907:Neural mass model 855:action potentials 673:Granger causality 669:spectral analysis 505:Positive feedback 415:action potentials 413:Neurons generate 385:Electrophysiology 367:in patients with 278:action potentials 96:action potentials 16:(Redirected from 7580: 7558:Neural circuitry 7517:Oddball paradigm 7275: 7268: 7261: 7252: 7214: 7209:. Archived from 7189: 7161: 7160: 7132: 7126: 7125: 7119: 7111: 7102:(3–4): 211–227. 7091: 7085: 7084: 7060: 7054: 7053: 7019: 7013: 7012: 7002: 6978: 6972: 6971: 6961: 6946:Psychophysiology 6937: 6931: 6930: 6920: 6880: 6874: 6873: 6829: 6823: 6822: 6812: 6792: 6786: 6785: 6775: 6765: 6738: 6732: 6731: 6721: 6681: 6675: 6674: 6632: 6623: 6617: 6616: 6606: 6574: 6568: 6567: 6559: 6553: 6552: 6542: 6532: 6500: 6494: 6493: 6483: 6451: 6445: 6444: 6416: 6410: 6409: 6399: 6389: 6372:(10): e1003260. 6357: 6351: 6350: 6330: 6324: 6323: 6287: 6281: 6280: 6270: 6239:Science Advances 6230: 6224: 6223: 6213: 6173: 6167: 6166: 6156: 6128: 6122: 6121: 6085: 6079: 6078: 6068: 6040: 6034: 6033: 6023: 6013: 5981: 5975: 5974: 5946: 5940: 5939: 5911: 5905: 5904: 5894: 5862: 5856: 5855: 5849: 5845: 5843: 5835: 5801: 5795: 5794: 5758: 5752: 5751: 5707: 5701: 5700: 5656: 5650: 5649: 5605: 5599: 5598: 5579:10.1038/384162a0 5554: 5548: 5547: 5510: 5504: 5503: 5484:10.1038/338334a0 5459: 5450: 5449: 5438:10.1037/h0037149 5421: 5415: 5412: 5406: 5405: 5395: 5355: 5346: 5345: 5335: 5318:(Pt 3): 577–88. 5303: 5297: 5296: 5252: 5246: 5245: 5227: 5195: 5189: 5188: 5170: 5150: 5144: 5143: 5115: 5106: 5105: 5095: 5077: 5053: 5047: 5046: 5036: 5011:(6): 1002–1016. 4996: 4990: 4989: 4941: 4935: 4934: 4902: 4896: 4895: 4885: 4875: 4851: 4845: 4844: 4834: 4802: 4796: 4795: 4755: 4749: 4748: 4712: 4706: 4705: 4661: 4655: 4654: 4639:Tass PA (2007). 4636: 4630: 4629: 4593: 4584: 4583: 4547: 4541: 4540: 4530: 4498: 4492: 4491: 4481: 4449: 4443: 4442: 4432: 4400: 4394: 4393: 4383: 4373: 4341: 4335: 4334: 4298: 4292: 4291: 4281: 4249: 4243: 4242: 4202: 4196: 4195: 4185: 4175: 4151: 4145: 4144: 4136: 4130: 4129: 4121: 4115: 4112: 4106: 4105: 4069: 4063: 4062: 4052: 4042: 4032: 4008: 4002: 4001: 3983: 3963: 3957: 3956: 3920: 3914: 3913: 3901: 3895: 3894: 3884: 3874: 3850: 3844: 3843: 3810:(5679): 1926–9. 3799: 3793: 3792: 3782: 3758: 3752: 3751: 3741: 3731: 3699: 3693: 3692: 3682: 3650: 3644: 3638: 3632: 3631: 3613: 3604: 3603: 3561: 3552: 3546: 3543: 3537: 3536: 3526: 3516: 3484: 3478: 3477: 3441: 3435: 3434: 3424: 3414: 3390: 3384: 3383: 3355: 3349: 3348: 3338: 3306: 3300: 3299: 3289: 3272:(1377): 1841–9. 3257: 3251: 3250: 3240: 3200: 3194: 3193: 3173: 3167: 3166: 3156: 3124: 3113: 3112: 3097:Haken H (1996). 3094: 3085: 3084: 3074: 3034: 3028: 3027: 2979: 2973: 2972: 2924: 2918: 2917: 2889: 2883: 2882: 2854: 2848: 2847: 2837: 2805: 2796: 2795: 2787: 2776: 2775: 2756:10.1038/35067550 2739: 2728: 2727: 2691: 2685: 2684: 2656: 2650: 2649: 2631: 2599: 2588: 2587: 2577: 2549: 2543: 2542: 2524: 2514: 2490: 2479: 2478: 2468: 2436: 2427: 2426: 2416: 2384: 2378: 2377: 2359: 2327: 2321: 2320: 2284: 2275: 2274: 2238: 2232: 2231: 2195: 2186: 2185: 2173: 2167: 2166: 2130: 2124: 2123: 2121: 2120: 2106: 2100: 2099: 2089: 2079: 2055: 2049: 2046: 2035: 2028: 2022: 2012: 1964: 1926:Neurocybernetics 1701:essential tremor 1548:travelling waves 1537:neural circuitry 1281:theta-gamma code 1189:motor activities 1096:Ongoing activity 1084: 1068: 1052: 1036: 962: 851:squid giant axon 826:showing typical 822:Simulation of a 808:neural circuitry 625:neural ensembles 546:Action potential 321:dynamical system 193:and large-scale 175:evoked potential 104:neural ensembles 47:action potential 21: 7588: 7587: 7583: 7582: 7581: 7579: 7578: 7577: 7568:Neurophysiology 7538: 7537: 7536: 7531: 7495: 7437: 7325: 7284: 7279: 7241:Synchronization 7222: 7217: 7207: 7192: 7186: 7173: 7169: 7167:Further reading 7164: 7134: 7133: 7129: 7112: 7093: 7092: 7088: 7062: 7061: 7057: 7042: 7021: 7020: 7016: 6980: 6979: 6975: 6939: 6938: 6934: 6882: 6881: 6877: 6831: 6830: 6826: 6794: 6793: 6789: 6740: 6739: 6735: 6683: 6682: 6678: 6641:(7290): 903–7. 6630: 6625: 6624: 6620: 6576: 6575: 6571: 6561: 6560: 6556: 6515:(4): 2299–302. 6502: 6501: 6497: 6453: 6452: 6448: 6418: 6417: 6413: 6359: 6358: 6354: 6332: 6331: 6327: 6298:(12): 1549–57. 6289: 6288: 6284: 6245:(6): eaat0497. 6232: 6231: 6227: 6175: 6174: 6170: 6130: 6129: 6125: 6087: 6086: 6082: 6042: 6041: 6037: 5983: 5982: 5978: 5948: 5947: 5943: 5913: 5912: 5908: 5877:(26): 9658–64. 5864: 5863: 5859: 5846: 5836: 5824: 5803: 5802: 5798: 5775:10.1038/nrn1764 5760: 5759: 5755: 5718:(6703): 693–8. 5709: 5708: 5704: 5658: 5657: 5653: 5616:(5289): 976–9. 5607: 5606: 5602: 5565:(6605): 162–6. 5556: 5555: 5551: 5512: 5511: 5507: 5470:(6213): 334–7. 5461: 5460: 5453: 5423: 5422: 5418: 5413: 5409: 5357: 5356: 5349: 5305: 5304: 5300: 5254: 5253: 5249: 5210:(23): R986-96. 5204:Current Biology 5197: 5196: 5192: 5168:10.1.1.308.6735 5152: 5151: 5147: 5117: 5116: 5109: 5055: 5054: 5050: 4998: 4997: 4993: 4956:(11): 725–740. 4943: 4942: 4938: 4904: 4903: 4899: 4853: 4852: 4848: 4804: 4803: 4799: 4770:(10): 3146–54. 4757: 4756: 4752: 4714: 4713: 4709: 4672:(5555): 690–4. 4663: 4662: 4658: 4651: 4638: 4637: 4633: 4604:(11): 1842–57. 4595: 4594: 4587: 4549: 4548: 4544: 4500: 4499: 4495: 4464:(24): 7869–76. 4451: 4450: 4446: 4402: 4401: 4397: 4356:(19): 11053–8. 4343: 4342: 4338: 4315:10.1038/nrn2201 4300: 4299: 4295: 4264:(26): 8512–24. 4251: 4250: 4246: 4204: 4203: 4199: 4153: 4152: 4148: 4138: 4137: 4133: 4123: 4122: 4118: 4113: 4109: 4071: 4070: 4066: 4010: 4009: 4005: 3965: 3964: 3960: 3922: 3921: 3917: 3906:J Physiol Paris 3903: 3902: 3898: 3852: 3851: 3847: 3801: 3800: 3796: 3760: 3759: 3755: 3714:(20): 8356–61. 3701: 3700: 3696: 3652: 3651: 3647: 3639: 3635: 3628: 3615: 3614: 3607: 3559: 3554: 3553: 3549: 3544: 3540: 3486: 3485: 3481: 3443: 3442: 3438: 3392: 3391: 3387: 3357: 3356: 3352: 3321:(13): 4935–43. 3308: 3307: 3303: 3259: 3258: 3254: 3215:(7247): 663–7. 3202: 3201: 3197: 3190: 3175: 3174: 3170: 3139:(3): 1195–268. 3126: 3125: 3116: 3109: 3096: 3095: 3088: 3036: 3035: 3031: 2981: 2980: 2976: 2926: 2925: 2921: 2891: 2890: 2886: 2856: 2855: 2851: 2807: 2806: 2799: 2789: 2788: 2779: 2741: 2740: 2731: 2693: 2692: 2688: 2658: 2657: 2653: 2614:(6182): 424–7. 2601: 2600: 2591: 2551: 2550: 2546: 2492: 2491: 2482: 2438: 2437: 2430: 2386: 2385: 2381: 2342:(6182): 424–7. 2329: 2328: 2324: 2301:10.1038/nrn1650 2286: 2285: 2278: 2255:10.1038/nrn2979 2240: 2239: 2235: 2197: 2196: 2189: 2175: 2174: 2170: 2132: 2131: 2127: 2118: 2116: 2108: 2107: 2103: 2057: 2056: 2052: 2047: 2038: 1966: 1965: 1958: 1954: 1907: 1822: 1798: 1792: 1768: 1763: 1742: 1736: 1720: 1714: 1696: 1690: 1646: 1634: 1610: 1604: 1596:episodic memory 1575: 1569: 1512: 1506: 1458: 1456:Binding problem 1452: 1439: 1433: 1425:temporal coding 1416: 1410: 1381: 1375: 1346:sinoatrial node 1342: 1336: 1298:feature binding 1290: 1273: 1260: 1223: 1221:Phase resetting 1205: 1173: 1157:default network 1098: 1093: 1092: 1091: 1088: 1085: 1076: 1069: 1060: 1053: 1044: 1037: 1026: 1025: 1012: 976: 955: 953: 936:neural networks 932:continuum limit 927: 909: 895:and inhibitory 893:pyramidal cells 888: 882: 838: 816: 755: 749: 709:neuromodulators 701: 699:Neuromodulation 695: 693:Neuromodulation 661:feed-back loops 600: 594: 552: 542: 537: 489: 464:neural ensemble 440: 411: 387: 381: 219:neural ensemble 183: 155: 127:feature binding 35: 28: 23: 22: 15: 12: 11: 5: 7586: 7584: 7576: 7575: 7570: 7565: 7560: 7555: 7550: 7540: 7539: 7533: 7532: 7530: 7529: 7524: 7519: 7514: 7509: 7503: 7501: 7497: 7496: 7494: 7493: 7488: 7483: 7478: 7473: 7468: 7463: 7458: 7453: 7447: 7445: 7439: 7438: 7436: 7435: 7430: 7424: 7419: 7414: 7409: 7404: 7399: 7394: 7390: 7389: 7384: 7379: 7374: 7369: 7364: 7359: 7354: 7349: 7344: 7339: 7335: 7333: 7327: 7326: 7324: 7323: 7318: 7313: 7308: 7303: 7298: 7292: 7290: 7286: 7285: 7280: 7278: 7277: 7270: 7263: 7255: 7249: 7248: 7243: 7238: 7233: 7228: 7221: 7220:External links 7218: 7216: 7215: 7213:on 2015-07-05. 7206:978-0124120471 7205: 7190: 7184: 7170: 7168: 7165: 7163: 7162: 7143:(2): 767–837. 7127: 7086: 7055: 7040: 7014: 6973: 6932: 6875: 6824: 6787: 6733: 6676: 6618: 6589:(7): 1023–35. 6569: 6554: 6495: 6446: 6411: 6352: 6335:Neurocomputing 6325: 6304:10.1038/nn1802 6282: 6225: 6168: 6123: 6080: 6035: 5996:(10): 4470–4. 5976: 5957:(6): 3949–67. 5941: 5906: 5857: 5848:|journal= 5822: 5796: 5769:(10): 755–65. 5753: 5702: 5667:(6655): 70–4. 5651: 5600: 5549: 5505: 5451: 5416: 5407: 5347: 5298: 5247: 5190: 5145: 5107: 5048: 4991: 4936: 4917:(2): 413–497. 4897: 4846: 4817:(31): 7781–7. 4797: 4750: 4707: 4656: 4649: 4631: 4585: 4558:(4): 151–162. 4542: 4513:(8): 1816–23. 4493: 4444: 4415:(9): 2725–32. 4395: 4336: 4293: 4244: 4217:(1): 130–139. 4197: 4146: 4131: 4116: 4107: 4064: 4003: 3981:10.1.1.16.6410 3958: 3931:(5): 303–304. 3915: 3896: 3845: 3794: 3753: 3694: 3645: 3633: 3626: 3605: 3547: 3538: 3499:(3): 897–901. 3479: 3436: 3385: 3350: 3301: 3252: 3195: 3188: 3168: 3114: 3107: 3086: 3029: 2974: 2919: 2906:10.1086/286819 2900:(4): 271–288. 2884: 2865:(3): 1333–53. 2849: 2797: 2777: 2729: 2686: 2651: 2589: 2544: 2480: 2428: 2399:(7): 929–941. 2379: 2322: 2276: 2233: 2206:(10): 474–80. 2187: 2168: 2125: 2101: 2050: 2036: 1955: 1953: 1950: 1949: 1948: 1943: 1938: 1933: 1928: 1923: 1918: 1913: 1906: 1903: 1902: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1836: 1831: 1821: 1818: 1794:Main article: 1791: 1788: 1767: 1764: 1762: 1759: 1738:Main article: 1735: 1732: 1730:in the brain. 1716:Main article: 1713: 1710: 1692:Main article: 1689: 1686: 1682:spike and wave 1645: 1642: 1633: 1630: 1606:Main article: 1603: 1600: 1571:Main article: 1568: 1565: 1556:inferior olive 1508:Main article: 1505: 1502: 1485:in the insect 1451: 1448: 1432: 1429: 1412:Main article: 1409: 1406: 1377:Main article: 1374: 1371: 1338:Main article: 1335: 1332: 1314:neural binding 1289: 1286: 1272: 1269: 1259: 1256: 1222: 1219: 1210:gamma activity 1204: 1201: 1172: 1169: 1097: 1094: 1090: 1089: 1086: 1079: 1077: 1070: 1063: 1061: 1054: 1047: 1045: 1038: 1031: 1028: 1027: 1023: 1022: 1021: 1011: 1008: 980:Kuramoto model 974:Kuramoto model 972:Main article: 966:Kuramoto model 964:Simulation of 952: 951:Kuramoto model 949: 908: 905: 901:gamma activity 886:Neural network 881: 878: 815: 812: 748: 745: 725:norepinephrine 697:Main article: 694: 691: 593: 590: 541: 538: 536: 533: 525:alpha activity 488: 485: 439: 436: 410: 407: 383:Main article: 380: 377: 349:neural binding 243:occipital lobe 235:alpha activity 182: 179: 154: 151: 116:alpha activity 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7585: 7574: 7571: 7569: 7566: 7564: 7563:Neural coding 7561: 7559: 7556: 7554: 7551: 7549: 7546: 7545: 7543: 7528: 7525: 7523: 7520: 7518: 7515: 7513: 7510: 7508: 7505: 7504: 7502: 7498: 7492: 7489: 7487: 7484: 7482: 7481:Sleep spindle 7479: 7477: 7474: 7472: 7469: 7467: 7464: 7462: 7459: 7457: 7454: 7452: 7449: 7448: 7446: 7444: 7440: 7434: 7431: 7428: 7425: 7423: 7420: 7418: 7415: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7392: 7391: 7388: 7385: 7383: 7380: 7378: 7375: 7373: 7370: 7368: 7365: 7363: 7360: 7358: 7355: 7353: 7350: 7348: 7345: 7343: 7340: 7337: 7336: 7334: 7332: 7328: 7322: 7319: 7317: 7314: 7312: 7309: 7307: 7304: 7302: 7299: 7297: 7294: 7293: 7291: 7289:Related tests 7287: 7283: 7276: 7271: 7269: 7264: 7262: 7257: 7256: 7253: 7247: 7244: 7242: 7239: 7237: 7234: 7232: 7229: 7227: 7224: 7223: 7219: 7212: 7208: 7202: 7198: 7197: 7191: 7187: 7181: 7177: 7172: 7171: 7166: 7158: 7154: 7150: 7146: 7142: 7138: 7131: 7128: 7123: 7117: 7109: 7105: 7101: 7097: 7090: 7087: 7082: 7078: 7074: 7070: 7066: 7059: 7056: 7051: 7047: 7043: 7041:0-7803-0785-2 7037: 7033: 7029: 7025: 7018: 7015: 7010: 7006: 7001: 6996: 6992: 6988: 6984: 6977: 6974: 6969: 6965: 6960: 6955: 6952:(6): 517–32. 6951: 6947: 6943: 6936: 6933: 6928: 6924: 6919: 6914: 6910: 6906: 6902: 6898: 6894: 6890: 6886: 6879: 6876: 6871: 6867: 6863: 6859: 6855: 6851: 6847: 6843: 6839: 6835: 6828: 6825: 6820: 6816: 6811: 6806: 6802: 6798: 6791: 6788: 6783: 6779: 6774: 6769: 6764: 6759: 6755: 6751: 6747: 6744:(July 2009). 6743: 6737: 6734: 6729: 6725: 6720: 6715: 6711: 6707: 6703: 6699: 6695: 6691: 6687: 6680: 6677: 6672: 6668: 6664: 6660: 6656: 6652: 6648: 6644: 6640: 6636: 6629: 6622: 6619: 6614: 6610: 6605: 6600: 6596: 6592: 6588: 6584: 6580: 6573: 6570: 6565: 6558: 6555: 6550: 6546: 6541: 6536: 6531: 6526: 6522: 6518: 6514: 6510: 6506: 6499: 6496: 6491: 6487: 6482: 6477: 6473: 6469: 6465: 6461: 6457: 6450: 6447: 6442: 6438: 6434: 6430: 6427:(3): 557–71. 6426: 6422: 6415: 6412: 6407: 6403: 6398: 6393: 6388: 6383: 6379: 6375: 6371: 6367: 6363: 6356: 6353: 6348: 6344: 6340: 6336: 6329: 6326: 6321: 6317: 6313: 6309: 6305: 6301: 6297: 6293: 6286: 6283: 6278: 6274: 6269: 6264: 6260: 6256: 6252: 6248: 6244: 6240: 6236: 6229: 6226: 6221: 6217: 6212: 6207: 6203: 6199: 6195: 6191: 6187: 6183: 6179: 6172: 6169: 6164: 6160: 6155: 6150: 6146: 6142: 6138: 6134: 6127: 6124: 6119: 6115: 6111: 6107: 6103: 6099: 6096:(6): 3401–5. 6095: 6091: 6084: 6081: 6076: 6072: 6067: 6062: 6058: 6054: 6050: 6046: 6039: 6036: 6031: 6027: 6022: 6017: 6012: 6007: 6003: 5999: 5995: 5991: 5987: 5980: 5977: 5972: 5968: 5964: 5960: 5956: 5952: 5945: 5942: 5937: 5933: 5929: 5925: 5922:(6): 817–26. 5921: 5917: 5910: 5907: 5902: 5898: 5893: 5888: 5884: 5880: 5876: 5872: 5868: 5861: 5858: 5853: 5841: 5833: 5829: 5825: 5823:9780444501103 5819: 5815: 5811: 5807: 5800: 5797: 5792: 5788: 5784: 5780: 5776: 5772: 5768: 5764: 5757: 5754: 5749: 5745: 5741: 5737: 5733: 5732:10.1038/27201 5729: 5725: 5721: 5717: 5713: 5706: 5703: 5698: 5694: 5690: 5686: 5682: 5681:10.1038/36335 5678: 5674: 5670: 5666: 5662: 5655: 5652: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5615: 5611: 5604: 5601: 5596: 5592: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5553: 5550: 5545: 5541: 5537: 5533: 5529: 5525: 5522:(2): 121–30. 5521: 5517: 5509: 5506: 5501: 5497: 5493: 5489: 5485: 5481: 5477: 5473: 5469: 5465: 5458: 5456: 5452: 5447: 5443: 5439: 5435: 5432:(6): 521–35. 5431: 5427: 5420: 5417: 5411: 5408: 5403: 5399: 5394: 5389: 5385: 5381: 5377: 5373: 5369: 5365: 5361: 5354: 5352: 5348: 5343: 5339: 5334: 5329: 5325: 5321: 5317: 5313: 5309: 5302: 5299: 5294: 5290: 5286: 5282: 5278: 5274: 5270: 5266: 5263:(1): 360–76. 5262: 5258: 5251: 5248: 5243: 5239: 5235: 5231: 5226: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5191: 5186: 5182: 5178: 5174: 5169: 5164: 5160: 5156: 5149: 5146: 5141: 5137: 5133: 5129: 5125: 5121: 5114: 5112: 5108: 5103: 5099: 5094: 5089: 5085: 5081: 5076: 5071: 5067: 5063: 5059: 5052: 5049: 5044: 5040: 5035: 5030: 5026: 5022: 5018: 5014: 5010: 5006: 5002: 4995: 4992: 4987: 4983: 4979: 4975: 4971: 4967: 4963: 4959: 4955: 4951: 4947: 4940: 4937: 4932: 4928: 4924: 4920: 4916: 4912: 4908: 4901: 4898: 4893: 4889: 4884: 4879: 4874: 4869: 4865: 4861: 4857: 4850: 4847: 4842: 4838: 4833: 4828: 4824: 4820: 4816: 4812: 4808: 4801: 4798: 4793: 4789: 4785: 4781: 4777: 4773: 4769: 4765: 4761: 4754: 4751: 4746: 4742: 4738: 4734: 4730: 4726: 4722: 4718: 4711: 4708: 4703: 4699: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4667: 4660: 4657: 4652: 4646: 4642: 4635: 4632: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4599: 4592: 4590: 4586: 4581: 4577: 4573: 4569: 4565: 4561: 4557: 4553: 4546: 4543: 4538: 4534: 4529: 4524: 4520: 4516: 4512: 4508: 4504: 4497: 4494: 4489: 4485: 4480: 4475: 4471: 4467: 4463: 4459: 4455: 4448: 4445: 4440: 4436: 4431: 4426: 4422: 4418: 4414: 4410: 4406: 4399: 4396: 4391: 4387: 4382: 4377: 4372: 4367: 4363: 4359: 4355: 4351: 4347: 4340: 4337: 4332: 4328: 4324: 4320: 4316: 4312: 4309:(9): 700–11. 4308: 4304: 4297: 4294: 4289: 4285: 4280: 4275: 4271: 4267: 4263: 4259: 4255: 4248: 4245: 4240: 4236: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4201: 4198: 4193: 4189: 4184: 4179: 4174: 4169: 4165: 4161: 4157: 4150: 4147: 4142: 4135: 4132: 4127: 4120: 4117: 4111: 4108: 4103: 4099: 4095: 4091: 4087: 4083: 4080:(4): 367–78. 4079: 4075: 4068: 4065: 4060: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4022: 4018: 4014: 4007: 4004: 3999: 3995: 3991: 3987: 3982: 3977: 3974:(3): 315–36. 3973: 3969: 3962: 3959: 3954: 3950: 3946: 3942: 3938: 3934: 3930: 3926: 3919: 3916: 3911: 3907: 3900: 3897: 3892: 3888: 3883: 3878: 3873: 3868: 3864: 3860: 3856: 3849: 3846: 3841: 3837: 3833: 3829: 3825: 3821: 3817: 3813: 3809: 3805: 3798: 3795: 3790: 3786: 3781: 3776: 3773:(4): 455–73. 3772: 3768: 3764: 3757: 3754: 3749: 3745: 3740: 3735: 3730: 3725: 3721: 3717: 3713: 3709: 3705: 3698: 3695: 3690: 3686: 3681: 3676: 3672: 3668: 3664: 3660: 3656: 3649: 3646: 3643: 3637: 3634: 3629: 3623: 3619: 3612: 3610: 3606: 3601: 3597: 3593: 3589: 3585: 3581: 3577: 3573: 3569: 3565: 3558: 3551: 3548: 3542: 3539: 3534: 3530: 3525: 3520: 3515: 3510: 3506: 3502: 3498: 3494: 3490: 3483: 3480: 3475: 3471: 3467: 3463: 3459: 3455: 3451: 3447: 3440: 3437: 3432: 3428: 3423: 3418: 3413: 3408: 3404: 3400: 3396: 3389: 3386: 3381: 3377: 3373: 3369: 3365: 3361: 3354: 3351: 3346: 3342: 3337: 3332: 3328: 3324: 3320: 3316: 3312: 3305: 3302: 3297: 3293: 3288: 3283: 3279: 3275: 3271: 3267: 3263: 3256: 3253: 3248: 3244: 3239: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3199: 3196: 3191: 3189:9780195027969 3185: 3181: 3180: 3172: 3169: 3164: 3160: 3155: 3150: 3146: 3142: 3138: 3134: 3130: 3123: 3121: 3119: 3115: 3110: 3104: 3100: 3093: 3091: 3087: 3082: 3078: 3073: 3068: 3064: 3060: 3056: 3052: 3048: 3044: 3040: 3033: 3030: 3025: 3021: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2978: 2975: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2930: 2923: 2920: 2915: 2911: 2907: 2903: 2899: 2895: 2888: 2885: 2880: 2876: 2872: 2868: 2864: 2860: 2853: 2850: 2845: 2841: 2836: 2831: 2827: 2823: 2819: 2815: 2811: 2804: 2802: 2798: 2793: 2786: 2784: 2782: 2778: 2773: 2769: 2765: 2761: 2757: 2753: 2750:(4): 229–39. 2749: 2745: 2738: 2736: 2734: 2730: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2687: 2682: 2678: 2674: 2670: 2667:(4): 673–90. 2666: 2662: 2655: 2652: 2647: 2643: 2639: 2635: 2630: 2625: 2621: 2617: 2613: 2609: 2605: 2598: 2596: 2594: 2590: 2585: 2581: 2576: 2571: 2567: 2563: 2559: 2555: 2548: 2545: 2540: 2536: 2532: 2528: 2523: 2518: 2513: 2508: 2504: 2500: 2496: 2489: 2487: 2485: 2481: 2476: 2472: 2467: 2462: 2458: 2454: 2450: 2446: 2442: 2435: 2433: 2429: 2424: 2420: 2415: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2380: 2375: 2371: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2295:(4): 285–96. 2294: 2290: 2283: 2281: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2249:(2): 105–18. 2248: 2244: 2237: 2234: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2192: 2188: 2183: 2179: 2172: 2169: 2164: 2160: 2156: 2152: 2148: 2144: 2141:(3): 276–86. 2140: 2136: 2129: 2126: 2115: 2111: 2105: 2102: 2097: 2093: 2088: 2083: 2078: 2073: 2069: 2065: 2061: 2054: 2051: 2045: 2043: 2041: 2037: 2034: 2032: 2027: 2020: 2016: 2011: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1961: 1957: 1951: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1908: 1904: 1900: 1897: 1895: 1892: 1890: 1889:Sleep spindle 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1844:Cardiac cycle 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1826: 1825: 1819: 1817: 1815: 1811: 1805: 1803: 1797: 1789: 1787: 1785: 1781: 1777: 1773: 1765: 1760: 1758: 1756: 1753:methods like 1752: 1751:neurosurgical 1747: 1741: 1733: 1731: 1729: 1725: 1719: 1711: 1709: 1706: 1702: 1695: 1687: 1685: 1683: 1679: 1675: 1667: 1662: 1655: 1650: 1643: 1641: 1639: 1638:retinal waves 1631: 1629: 1627: 1623: 1619: 1615: 1614:consciousness 1609: 1601: 1599: 1597: 1593: 1589: 1585: 1580: 1574: 1566: 1564: 1561: 1557: 1552: 1549: 1544: 1542: 1538: 1534: 1530: 1525: 1521: 1517: 1511: 1503: 1501: 1499: 1498:sense of time 1494: 1492: 1491:antennal lobe 1488: 1487:mushroom body 1484: 1480: 1476: 1470: 1468: 1462: 1457: 1449: 1447: 1445: 1438: 1430: 1428: 1426: 1422: 1415: 1414:Neural coding 1407: 1405: 1403: 1399: 1395: 1391: 1387: 1380: 1372: 1370: 1368: 1364: 1360: 1355: 1351: 1347: 1344:Cells in the 1341: 1333: 1331: 1328: 1324: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1287: 1285: 1282: 1277: 1270: 1268: 1265: 1257: 1255: 1253: 1248: 1244: 1240: 1236: 1232: 1227: 1220: 1218: 1216: 1211: 1202: 1200: 1198: 1194: 1190: 1186: 1182: 1178: 1170: 1168: 1165: 1160: 1158: 1154: 1149: 1147: 1143: 1138: 1133: 1131: 1130:evoked fields 1127: 1123: 1119: 1115: 1111: 1106: 1103: 1095: 1083: 1078: 1074: 1067: 1062: 1058: 1051: 1046: 1042: 1035: 1030: 1020: 1018: 1009: 1007: 1005: 1001: 996: 992: 990: 986: 981: 975: 967: 950: 948: 945: 942:, an area of 941: 937: 933: 926: 918: 913: 906: 904: 902: 898: 894: 887: 880:Spiking model 879: 877: 875: 871: 867: 863: 858: 856: 852: 848: 844: 837: 829: 825: 820: 813: 811: 809: 804: 800: 798: 794: 789: 787: 782: 780: 776: 772: 768: 764: 760: 754: 746: 744: 742: 738: 734: 730: 729:acetylcholine 726: 722: 718: 714: 710: 706: 700: 692: 690: 688: 684: 680: 676: 674: 670: 666: 662: 658: 654: 650: 646: 640: 638: 634: 630: 626: 622: 618: 614: 609: 605: 599: 591: 589: 587: 582: 580: 576: 571: 569: 565: 561: 557: 551: 547: 539: 534: 532: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 486: 484: 482: 478: 473: 470: 465: 462:Neurons in a 460: 458: 454: 450: 446: 437: 435: 431: 428: 424: 420: 419:neural coding 416: 408: 403: 399: 395: 392: 386: 378: 376: 374: 370: 366: 362: 358: 354: 350: 346: 341: 339: 335: 331: 326: 322: 318: 314: 309: 307: 303: 299: 295: 291: 287: 283: 279: 275: 270: 268: 267:consciousness 264: 260: 256: 252: 248: 244: 240: 236: 232: 226: 222: 220: 216: 212: 208: 204: 200: 196: 192: 188: 180: 178: 176: 172: 168: 163: 159: 158:Richard Caton 152: 150: 148: 144: 140: 139:brain imaging 136: 132: 128: 124: 119: 117: 113: 109: 105: 101: 100:post-synaptic 97: 93: 89: 85: 82:can generate 81: 80:Neural tissue 77: 73: 69: 60: 52: 48: 44: 39: 33: 19: 7573:Neuroscience 7507:10-20 system 7471:Theta rhythm 7442: 7211:the original 7195: 7175: 7140: 7136: 7130: 7116:cite journal 7099: 7095: 7089: 7064: 7058: 7023: 7017: 6990: 6986: 6976: 6949: 6945: 6935: 6892: 6888: 6878: 6837: 6833: 6827: 6800: 6790: 6753: 6749: 6736: 6693: 6689: 6679: 6638: 6634: 6621: 6586: 6582: 6572: 6563: 6557: 6512: 6508: 6498: 6463: 6459: 6449: 6424: 6420: 6414: 6369: 6365: 6355: 6338: 6334: 6328: 6295: 6291: 6285: 6242: 6238: 6228: 6185: 6181: 6171: 6136: 6126: 6093: 6089: 6083: 6048: 6038: 5993: 5989: 5979: 5954: 5950: 5944: 5919: 5915: 5909: 5874: 5870: 5860: 5805: 5799: 5766: 5762: 5756: 5715: 5711: 5705: 5664: 5660: 5654: 5613: 5609: 5603: 5562: 5558: 5552: 5519: 5515: 5508: 5467: 5463: 5429: 5425: 5419: 5410: 5367: 5363: 5315: 5311: 5301: 5260: 5256: 5250: 5207: 5203: 5193: 5158: 5154: 5148: 5123: 5119: 5065: 5061: 5051: 5008: 5004: 4994: 4953: 4949: 4939: 4914: 4911:Rev Mod Phys 4910: 4900: 4863: 4859: 4849: 4814: 4810: 4800: 4767: 4763: 4753: 4723:(4): 961–8. 4720: 4716: 4710: 4669: 4665: 4659: 4640: 4634: 4601: 4597: 4555: 4551: 4545: 4510: 4506: 4496: 4461: 4457: 4447: 4412: 4408: 4398: 4353: 4349: 4339: 4306: 4302: 4296: 4261: 4257: 4247: 4214: 4210: 4200: 4163: 4159: 4149: 4140: 4134: 4125: 4119: 4110: 4077: 4073: 4067: 4020: 4016: 4006: 3971: 3967: 3961: 3928: 3924: 3918: 3909: 3905: 3899: 3862: 3858: 3848: 3807: 3803: 3797: 3770: 3766: 3756: 3711: 3707: 3697: 3662: 3658: 3648: 3636: 3617: 3567: 3563: 3550: 3541: 3496: 3492: 3482: 3449: 3445: 3439: 3402: 3398: 3388: 3366:(1): 25–40. 3363: 3359: 3353: 3318: 3314: 3304: 3269: 3265: 3255: 3212: 3208: 3198: 3178: 3171: 3136: 3132: 3101:. Springer. 3098: 3046: 3042: 3032: 2991: 2987: 2977: 2939:(2): 77–87. 2936: 2932: 2922: 2897: 2893: 2887: 2862: 2858: 2852: 2817: 2813: 2791: 2747: 2743: 2702:(1): 16–25. 2699: 2695: 2689: 2664: 2660: 2654: 2611: 2607: 2557: 2553: 2547: 2522:11572/252726 2502: 2498: 2448: 2444: 2396: 2392: 2382: 2339: 2335: 2325: 2292: 2288: 2246: 2242: 2236: 2203: 2199: 2181: 2177: 2171: 2138: 2134: 2128: 2117:. Retrieved 2113: 2104: 2067: 2063: 2053: 2023: 1976: 1972: 1941:ThetaHealing 1921:EEG analysis 1823: 1806: 1799: 1769: 1761:Applications 1743: 1721: 1705:Parkinsonian 1697: 1671: 1635: 1611: 1576: 1553: 1545: 1539:involved in 1513: 1495: 1483:Kenyon cells 1471: 1463: 1459: 1440: 1417: 1382: 1359:sinus rhythm 1350:right atrium 1343: 1310:neuroscience 1291: 1280: 1278: 1274: 1261: 1228: 1224: 1206: 1192: 1174: 1161: 1150: 1134: 1109: 1107: 1099: 1013: 997: 993: 977: 928: 897:interneurons 889: 859: 839: 801: 790: 786:EEG analysis 783: 756: 702: 677: 641: 632: 628: 621:synchronized 601: 583: 572: 553: 490: 481:interneurons 477:endogenously 474: 461: 441: 432: 412: 388: 359:activity in 342: 330:analytically 310: 285: 281: 271: 227: 223: 195:oscillations 187:spike trains 184: 156: 143:neuroscience 120: 71: 67: 66: 63:oscillating. 7397:C1 & P1 6895:(1): 1103. 6696:(1): 6976. 3422:10230/23081 3063:1874/344360 2560:: 527–570. 1979:(1): 3909. 1911:Cybernetics 1755:thalamotomy 1632:Development 1421:rate coding 1197:brain areas 1142:alpha waves 1112:is used in 793:equilibrium 767:limit cycle 737:wakefulness 608:communicate 497:Time delays 487:Macroscopic 469:large-scale 409:Microscopic 167:Hans Berger 123:Hans Berger 108:macroscopic 7542:Categories 7466:Delta wave 7461:Gamma wave 7451:Alpha wave 7393:Positivity 7338:Negativity 6993:: 157–80. 6466:: 673–91. 5161:: 555–86. 5126:: 349–74. 4717:NeuroImage 4211:NeuroImage 4030:1511.00235 3912:: 620–635. 3592:1871/29169 3405:: 423–35. 3399:NeuroImage 2820:: 163–82. 2119:2018-12-21 1952:References 1899:Theta wave 1859:Gamma wave 1849:Delta wave 1829:Alpha wave 1772:biomarkers 1620:(REM) and 1479:picrotoxin 1454:See also: 1450:Perception 1435:See also: 1363:heart rate 1354:depolarize 923:See also: 884:See also: 834:See also: 751:See also: 633:excitatory 629:inhibitory 617:inhibitory 613:excitatory 598:Connectome 596:See also: 544:See also: 535:Mechanisms 493:connectome 455:(EEG) and 438:Mesoscopic 379:Physiology 282:resonators 231:pink noise 177:of a dog. 162:Adolf Beck 72:brainwaves 7476:K-complex 7456:Beta wave 7357:Visual N1 6742:Feller MB 6188:: 17830. 5850:ignored ( 5840:cite book 5697:205024830 5544:206771651 5370:: 13808. 5163:CiteSeerX 5084:1662-5102 5025:0896-6273 4970:0166-2236 4760:MĂĽller KR 3976:CiteSeerX 3016:0036-8075 2953:1432-0770 2914:121438105 2539:208614924 2184:: 951–60. 2163:205664545 2031:CC BY 4.0 2001:2045-2322 1874:PGO waves 1834:Beta wave 1816:rhythms. 1644:Pathology 1394:breathing 1334:Pacemaker 1294:attention 1148:process. 1108:The term 1057:amplitude 1041:frequency 797:heartbeat 759:dynamical 733:serotonin 721:brainstem 679:Microglia 579:resonance 345:heartbeat 323:and uses 302:synchrony 263:awareness 207:amplitude 203:frequency 7246:Bursting 7157:28275048 7081:60642344 7050:62179588 6968:17076808 6927:29549239 6870:13928602 6862:18643304 6819:10908186 6782:19580682 6728:32332806 6663:20336071 6613:20060015 6549:11854526 6406:24204220 6341:: 3–14. 6320:16430438 6312:17115042 6277:29963631 6220:26634293 5901:21715631 5832:11480290 5791:29616055 5783:16163383 5646:10744144 5402:27976720 5342:25582580 5234:11728329 5102:31263399 5043:23522038 4978:26549886 4892:21060804 4841:18667610 4792:12113334 4784:17561828 4745:16210275 4737:15670673 4702:15200185 4694:11809976 4626:24756702 4618:10576479 4572:10322469 4537:18287498 4488:19535598 4439:19261866 4390:12958209 4331:15979590 4323:17704812 4288:19571142 4239:13959959 4231:21511044 4192:21151358 4094:11039701 4059:26578893 3998:11102670 3953:46170924 3945:10643408 3891:23055474 3832:15218136 3789:18421835 3748:19416820 3689:38926390 3680:11208608 3600:19658549 3431:24321555 3380:11742683 3345:21451032 3247:19396156 3163:20664082 3081:27959736 2879:18160427 2772:18651043 2764:11283746 2724:11922975 2716:11164732 2681:13480240 2646:34728448 2638:24763592 2584:10835361 2531:31812515 2475:34429378 2423:28537480 2374:34728448 2366:24763592 2309:15803160 2263:21248789 2220:16150631 2155:24735457 2096:25408634 2033:license. 2019:32127579 1905:See also 1839:Bursting 1820:Examples 1724:seizures 1718:Epilepsy 1712:Epilepsy 1678:epilepsy 1668:activity 1588:Coupling 1477:blocker 1398:swimming 1288:Function 1239:stimulus 1193:relative 1122:stimulus 870:bursting 864:and the 828:bursting 775:pendulum 771:feedback 763:harmonic 647:and the 645:thalamus 550:bursting 509:thalamus 501:feedback 423:bursting 361:epilepsy 347:and the 290:Bursting 181:Overview 133:and the 7491:Mu wave 7009:4583653 6918:5856824 6897:Bibcode 6842:Bibcode 6773:2706239 6719:7181624 6698:Bibcode 6671:4417989 6643:Bibcode 6604:2856712 6517:Bibcode 6490:8271223 6481:1143894 6397:3814333 6374:Bibcode 6268:6021138 6247:Bibcode 6211:4669476 6190:Bibcode 6163:9175005 6154:1159515 6118:2178927 6110:9212286 6075:8788955 6066:1156860 6030:8506287 5998:Bibcode 5971:8985892 5892:3518456 5748:4424801 5740:9790189 5720:Bibcode 5689:9363891 5669:Bibcode 5638:8875938 5618:Bibcode 5610:Science 5595:4286308 5587:8906790 5567:Bibcode 5536:3228555 5500:4281744 5492:2922061 5472:Bibcode 5446:4445414 5393:5171764 5372:Bibcode 5333:4408427 5285:9928325 5265:Bibcode 5242:1294374 5212:Bibcode 5185:7605074 5140:8466179 5093:6584963 5068:: 232. 5034:3648857 4986:3545001 4919:Bibcode 4883:2972683 4866:: 177. 4832:6670375 4674:Bibcode 4666:Science 4580:1308261 4528:6671447 4479:6665641 4430:2724892 4358:Bibcode 4279:6665653 4183:2995481 4166:: 190. 4102:8751526 4050:4626558 3882:3500626 3840:8002293 3812:Bibcode 3804:Science 3739:2688873 3716:Bibcode 3572:Bibcode 3533:1992481 3501:Bibcode 3474:3059497 3454:Bibcode 3446:Science 3336:3505610 3296:9854256 3287:1692417 3238:3655711 3217:Bibcode 3154:2923921 3072:5326682 3024:3281253 2996:Bibcode 2988:Science 2969:2811608 2844:3795074 2835:1182792 2616:Bibcode 2608:Science 2466:8513695 2414:5675530 2344:Bibcode 2336:Science 2317:2749709 2271:7422401 2228:6275292 2087:4219458 2070:: 320. 2010:7054256 1981:Bibcode 1869:Mu wave 1666:seizure 1402:lamprey 1390:walking 1357:normal 917:seizure 843:Hodgkin 741:arousal 719:in the 687:in vivo 683:ex vivo 577:, i.e. 503:loops. 357:seizure 153:History 88:neurons 54:occurs. 7522:EEGLAB 7500:Topics 7203:  7182:  7155:  7079:  7048:  7038:  7007:  6966:  6925:  6915:  6868:  6860:  6817:  6780:  6770:  6756:: 24. 6726:  6716:  6669:  6661:  6635:Nature 6611:  6601:  6547:  6540:122359 6537:  6488:  6478:  6441:660226 6439:  6404:  6394:  6318:  6310:  6275:  6265:  6218:  6208:  6161:  6151:  6116:  6108:  6073:  6063:  6028:  6018:  5969:  5934:  5899:  5889:  5830:  5820:  5789:  5781:  5746:  5738:  5712:Nature 5695:  5687:  5661:Nature 5644:  5636:  5593:  5585:  5559:Nature 5542:  5534:  5498:  5490:  5464:Nature 5444:  5400:  5390:  5340:  5330:  5293:102514 5291:  5283:  5240:  5232:  5183:  5165:  5138:  5100:  5090:  5082:  5041:  5031:  5023:  5005:Neuron 4984:  4976:  4968:  4890:  4880:  4839:  4829:  4790:  4782:  4743:  4735:  4700:  4692:  4647:  4624:  4616:  4578:  4570:  4535:  4525:  4486:  4476:  4437:  4427:  4388:  4381:196925 4378:  4329:  4321:  4286:  4276:  4237:  4229:  4190:  4180:  4100:  4092:  4057:  4047:  4023:: 65. 3996:  3978:  3951:  3943:  3889:  3879:  3838:  3830:  3787:  3746:  3736:  3687:  3677:  3624:  3598:  3531:  3521:  3472:  3429:  3378:  3343:  3333:  3294:  3284:  3245:  3235:  3209:Nature 3186:  3161:  3151:  3105:  3079:  3069:  3022:  3014:  2967:  2961:911931 2959:  2951:  2912:  2877:  2842:  2832:  2770:  2762:  2722:  2714:  2679:  2644:  2636:  2582:  2537:  2529:  2499:Neuron 2473:  2463:  2421:  2411:  2372:  2364:  2315:  2307:  2269:  2261:  2226:  2218:  2161:  2153:  2094:  2084:  2017:  2007:  1999:  1694:Tremor 1688:Tremor 1573:Memory 1567:Memory 1560:tremor 1396:, and 1304:, and 847:Huxley 717:nuclei 649:cortex 515:– the 513:cortex 365:tremor 284:or as 237:(8–12 7077:S2CID 7046:S2CID 6866:S2CID 6801:Brain 6667:S2CID 6631:(PDF) 6316:S2CID 6114:S2CID 6021:46533 5936:67933 5787:S2CID 5744:S2CID 5693:S2CID 5642:S2CID 5591:S2CID 5540:S2CID 5496:S2CID 5312:Brain 5289:S2CID 5238:S2CID 4982:S2CID 4788:S2CID 4741:S2CID 4698:S2CID 4622:S2CID 4576:S2CID 4327:S2CID 4235:S2CID 4098:S2CID 4025:arXiv 3949:S2CID 3836:S2CID 3560:(PDF) 3524:50921 2965:S2CID 2910:S2CID 2768:S2CID 2720:S2CID 2642:S2CID 2580:S2CID 2535:S2CID 2370:S2CID 2313:S2CID 2267:S2CID 2224:S2CID 2159:S2CID 1608:Sleep 1592:gamma 1579:theta 1516:alpha 1467:gamma 1252:phase 1146:noise 1137:noise 1102:brain 1073:phase 985:phase 651:(see 402:Tonic 363:, or 336:of a 317:brain 259:gamma 251:theta 247:delta 211:phase 70:, or 7427:P600 7412:P300 7407:P200 7377:N400 7372:N2pc 7367:N200 7362:N170 7352:N100 7347:ELAN 7201:ISBN 7180:ISBN 7153:PMID 7122:link 7036:ISBN 7005:PMID 6964:PMID 6923:PMID 6858:PMID 6815:PMID 6778:PMID 6724:PMID 6659:PMID 6609:PMID 6545:PMID 6486:PMID 6437:PMID 6402:PMID 6308:PMID 6273:PMID 6216:PMID 6159:PMID 6106:PMID 6071:PMID 6026:PMID 5967:PMID 5932:PMID 5897:PMID 5852:help 5828:PMID 5818:ISBN 5779:PMID 5736:PMID 5685:PMID 5634:PMID 5583:PMID 5532:PMID 5488:PMID 5442:PMID 5398:PMID 5338:PMID 5281:PMID 5230:PMID 5181:PMID 5136:PMID 5098:PMID 5080:ISSN 5039:PMID 5021:ISSN 4974:PMID 4966:ISSN 4888:PMID 4837:PMID 4780:PMID 4733:PMID 4690:PMID 4645:ISBN 4614:PMID 4568:PMID 4533:PMID 4484:PMID 4435:PMID 4386:PMID 4319:PMID 4284:PMID 4227:PMID 4188:PMID 4090:PMID 4055:PMID 3994:PMID 3941:PMID 3887:PMID 3828:PMID 3785:PMID 3744:PMID 3685:PMID 3642:2004 3622:ISBN 3596:PMID 3529:PMID 3470:PMID 3427:PMID 3376:PMID 3341:PMID 3292:PMID 3243:PMID 3184:ISBN 3159:PMID 3103:ISBN 3077:PMID 3020:PMID 3012:ISSN 2957:PMID 2949:ISSN 2875:PMID 2840:PMID 2760:PMID 2712:PMID 2677:PMID 2634:PMID 2527:PMID 2471:PMID 2419:PMID 2362:PMID 2305:PMID 2259:PMID 2216:PMID 2151:PMID 2092:PMID 2015:PMID 1997:ISSN 1814:beta 1812:and 1520:beta 1475:GABA 1423:and 1325:and 1279:The 1245:and 1233:and 1181:rate 1116:and 1071:The 1055:The 1039:The 1004:fMRI 1000:BOLD 989:sine 978:The 845:and 731:and 713:GABA 685:and 671:and 631:and 548:and 511:and 265:and 255:beta 209:and 7422:P3b 7417:P3a 7402:P50 7145:doi 7104:doi 7069:doi 7028:doi 6995:doi 6954:doi 6913:PMC 6905:doi 6850:doi 6805:doi 6768:PMC 6758:doi 6714:PMC 6706:doi 6651:doi 6639:464 6599:PMC 6591:doi 6535:PMC 6525:doi 6476:PMC 6468:doi 6464:469 6429:doi 6392:PMC 6382:doi 6343:doi 6339:170 6300:doi 6263:PMC 6255:doi 6206:PMC 6198:doi 6149:PMC 6141:doi 6098:doi 6061:PMC 6053:doi 6016:PMC 6006:doi 5959:doi 5924:doi 5887:PMC 5879:doi 5810:doi 5771:doi 5728:doi 5716:395 5677:doi 5665:390 5626:doi 5614:274 5575:doi 5563:384 5524:doi 5480:doi 5468:338 5434:doi 5388:PMC 5380:doi 5328:PMC 5320:doi 5316:138 5273:doi 5261:860 5220:doi 5173:doi 5128:doi 5088:PMC 5070:doi 5029:PMC 5013:doi 4958:doi 4927:doi 4878:PMC 4868:doi 4827:PMC 4819:doi 4772:doi 4725:doi 4682:doi 4670:295 4606:doi 4602:110 4560:doi 4523:PMC 4515:doi 4474:PMC 4466:doi 4425:PMC 4417:doi 4376:PMC 4366:doi 4354:100 4311:doi 4274:PMC 4266:doi 4219:doi 4178:PMC 4168:doi 4082:doi 4045:PMC 4035:doi 3986:doi 3933:doi 3877:PMC 3867:doi 3820:doi 3808:304 3775:doi 3734:PMC 3724:doi 3712:106 3675:PMC 3667:doi 3588:hdl 3580:doi 3519:PMC 3509:doi 3462:doi 3450:242 3417:hdl 3407:doi 3368:doi 3331:PMC 3323:doi 3282:PMC 3274:doi 3270:353 3233:PMC 3225:doi 3213:459 3149:PMC 3141:doi 3067:PMC 3059:hdl 3051:doi 3047:375 3004:doi 2992:239 2941:doi 2902:doi 2867:doi 2830:PMC 2822:doi 2818:376 2752:doi 2704:doi 2669:doi 2624:doi 2612:344 2570:hdl 2562:doi 2517:hdl 2507:doi 2503:105 2461:PMC 2453:doi 2409:PMC 2401:doi 2352:doi 2340:344 2297:doi 2251:doi 2208:doi 2143:doi 2082:PMC 2072:doi 2005:PMC 1989:doi 1703:or 1676:or 1626:EEG 1524:EEG 1327:MEG 1323:EEG 1164:EEG 739:or 689:. 615:or 7544:: 7151:. 7141:97 7139:. 7118:}} 7114:{{ 7098:. 7075:. 7044:. 7034:. 7003:. 6989:. 6985:. 6962:. 6950:43 6948:. 6944:. 6921:. 6911:. 6903:. 6891:. 6887:. 6864:. 6856:. 6848:. 6838:77 6836:. 6813:. 6799:. 6776:. 6766:. 6752:. 6748:. 6722:. 6712:. 6704:. 6694:10 6692:. 6688:. 6665:. 6657:. 6649:. 6637:. 6633:. 6607:. 6597:. 6587:34 6585:. 6581:. 6543:. 6533:. 6523:. 6513:99 6511:. 6507:. 6484:. 6474:. 6462:. 6458:. 6435:. 6425:41 6423:. 6400:. 6390:. 6380:. 6368:. 6364:. 6337:. 6314:. 6306:. 6294:. 6271:. 6261:. 6253:. 6241:. 6237:. 6214:. 6204:. 6196:. 6184:. 6180:. 6157:. 6147:. 6135:. 6112:. 6104:. 6094:77 6092:. 6069:. 6059:. 6047:. 6024:. 6014:. 6004:. 5994:90 5992:. 5988:. 5965:. 5955:76 5953:. 5930:. 5920:42 5918:. 5895:. 5885:. 5875:31 5873:. 5869:. 5844:: 5842:}} 5838:{{ 5826:. 5816:. 5785:. 5777:. 5765:. 5742:. 5734:. 5726:. 5714:. 5691:. 5683:. 5675:. 5663:. 5640:. 5632:. 5624:. 5612:. 5589:. 5581:. 5573:. 5561:. 5538:. 5530:. 5520:60 5518:. 5494:. 5486:. 5478:. 5466:. 5454:^ 5440:. 5430:81 5428:. 5396:. 5386:. 5378:. 5366:. 5362:. 5350:^ 5336:. 5326:. 5314:. 5310:. 5287:. 5279:. 5271:. 5259:. 5236:. 5228:. 5218:. 5208:11 5206:. 5202:. 5179:. 5171:. 5159:18 5157:. 5134:. 5124:55 5122:. 5110:^ 5096:. 5086:. 5078:. 5066:13 5064:. 5060:. 5037:. 5027:. 5019:. 5009:77 5007:. 5003:. 4980:. 4972:. 4964:. 4954:38 4952:. 4948:. 4925:. 4915:65 4913:. 4909:. 4886:. 4876:. 4862:. 4858:. 4835:. 4825:. 4815:28 4813:. 4809:. 4786:. 4778:. 4768:25 4766:. 4739:. 4731:. 4721:24 4719:. 4696:. 4688:. 4680:. 4668:. 4620:. 4612:. 4600:. 4588:^ 4574:. 4566:. 4554:. 4531:. 4521:. 4511:28 4509:. 4505:. 4482:. 4472:. 4462:29 4460:. 4456:. 4433:. 4423:. 4413:29 4411:. 4407:. 4384:. 4374:. 4364:. 4352:. 4348:. 4325:. 4317:. 4305:. 4282:. 4272:. 4262:29 4260:. 4256:. 4233:. 4225:. 4215:57 4213:. 4209:. 4186:. 4176:. 4162:. 4158:. 4096:. 4088:. 4078:83 4076:. 4053:. 4043:. 4033:. 4019:. 4015:. 3992:. 3984:. 3972:38 3970:. 3947:. 3939:. 3929:50 3927:. 3908:. 3885:. 3875:. 3863:32 3861:. 3857:. 3834:. 3826:. 3818:. 3806:. 3783:. 3769:. 3765:. 3742:. 3732:. 3722:. 3710:. 3706:. 3683:. 3673:. 3665:. 3663:15 3661:. 3657:. 3608:^ 3594:. 3586:. 3578:. 3568:79 3566:. 3562:. 3527:. 3517:. 3507:. 3497:88 3495:. 3491:. 3468:. 3460:. 3448:. 3425:. 3415:. 3403:90 3401:. 3397:. 3374:. 3364:43 3362:. 3339:. 3329:. 3319:31 3317:. 3313:. 3290:. 3280:. 3268:. 3264:. 3241:. 3231:. 3223:. 3211:. 3207:. 3157:. 3147:. 3137:90 3135:. 3131:. 3117:^ 3089:^ 3075:. 3065:. 3057:. 3045:. 3041:. 3018:. 3010:. 3002:. 2990:. 2986:. 2963:. 2955:. 2947:. 2937:27 2935:. 2931:. 2908:. 2898:10 2896:. 2873:. 2863:99 2861:. 2838:. 2828:. 2816:. 2812:. 2800:^ 2780:^ 2766:. 2758:. 2746:. 2732:^ 2718:. 2710:. 2698:. 2675:. 2663:. 2640:. 2632:. 2622:. 2610:. 2606:. 2592:^ 2578:. 2568:. 2558:87 2556:. 2533:. 2525:. 2515:. 2501:. 2497:. 2483:^ 2469:. 2459:. 2449:41 2447:. 2443:. 2431:^ 2417:. 2407:. 2397:28 2395:. 2391:. 2368:. 2360:. 2350:. 2338:. 2334:. 2311:. 2303:. 2291:. 2279:^ 2265:. 2257:. 2247:12 2245:. 2222:. 2214:. 2202:. 2190:^ 2182:27 2180:. 2157:. 2149:. 2139:23 2137:. 2112:. 2090:. 2080:. 2066:. 2062:. 2039:^ 2013:. 2003:. 1995:. 1987:. 1977:10 1975:. 1971:. 1959:^ 1810:mu 1786:. 1757:. 1543:. 1392:, 1300:, 1006:. 876:. 727:, 639:. 495:. 375:. 340:. 288:. 269:. 239:Hz 205:, 189:, 169:, 129:, 118:. 78:. 43:Hz 7274:e 7267:t 7260:v 7188:. 7159:. 7147:: 7124:) 7106:: 7100:2 7083:. 7071:: 7052:. 7030:: 7011:. 6997:: 6991:2 6970:. 6956:: 6929:. 6907:: 6899:: 6893:9 6872:. 6852:: 6844:: 6821:. 6807:: 6784:. 6760:: 6754:4 6730:. 6708:: 6700:: 6673:. 6653:: 6645:: 6615:. 6593:: 6551:. 6527:: 6519:: 6492:. 6470:: 6443:. 6431:: 6408:. 6384:: 6376:: 6370:9 6349:. 6345:: 6322:. 6302:: 6296:9 6279:. 6257:: 6249:: 6243:4 6222:. 6200:: 6192:: 6186:5 6165:. 6143:: 6120:. 6100:: 6077:. 6055:: 6032:. 6008:: 6000:: 5973:. 5961:: 5938:. 5926:: 5903:. 5881:: 5854:) 5834:. 5812:: 5793:. 5773:: 5767:6 5750:. 5730:: 5722:: 5699:. 5679:: 5671:: 5648:. 5628:: 5620:: 5597:. 5577:: 5569:: 5546:. 5526:: 5502:. 5482:: 5474:: 5448:. 5436:: 5404:. 5382:: 5374:: 5368:7 5344:. 5322:: 5295:. 5275:: 5267:: 5244:. 5222:: 5214:: 5187:. 5175:: 5142:. 5130:: 5104:. 5072:: 5045:. 5015:: 4988:. 4960:: 4933:. 4929:: 4921:: 4894:. 4870:: 4864:4 4843:. 4821:: 4794:. 4774:: 4747:. 4727:: 4704:. 4684:: 4676:: 4653:. 4628:. 4608:: 4582:. 4562:: 4556:3 4539:. 4517:: 4490:. 4468:: 4441:. 4419:: 4392:. 4368:: 4360:: 4333:. 4313:: 4307:8 4290:. 4268:: 4241:. 4221:: 4194:. 4170:: 4164:4 4104:. 4084:: 4061:. 4037:: 4027:: 4021:9 4000:. 3988:: 3955:. 3935:: 3910:9 3893:. 3869:: 3842:. 3822:: 3814:: 3791:. 3777:: 3771:1 3750:. 3726:: 3718:: 3691:. 3669:: 3630:. 3602:. 3590:: 3582:: 3574:: 3535:. 3511:: 3503:: 3476:. 3464:: 3456:: 3433:. 3419:: 3409:: 3382:. 3370:: 3347:. 3325:: 3298:. 3276:: 3249:. 3227:: 3219:: 3192:. 3165:. 3143:: 3111:. 3083:. 3061:: 3053:: 3026:. 3006:: 2998:: 2971:. 2943:: 2916:. 2904:: 2881:. 2869:: 2846:. 2824:: 2774:. 2754:: 2748:2 2726:. 2706:: 2700:5 2683:. 2671:: 2665:9 2648:. 2626:: 2618:: 2586:. 2572:: 2564:: 2541:. 2519:: 2509:: 2477:. 2455:: 2425:. 2403:: 2376:. 2354:: 2346:: 2319:. 2299:: 2293:6 2273:. 2253:: 2230:. 2210:: 2204:9 2165:. 2145:: 2122:. 2098:. 2074:: 2068:8 2021:. 1991:: 1983:: 1128:/ 443:( 34:. 20:)

Index

Cortical oscillations
Brain wave (disambiguation)

Hz
action potential
local field potential

central nervous system
Neural tissue
oscillatory activity
neurons
membrane potential
action potentials
post-synaptic
neural ensembles
macroscopic
electroencephalogram
alpha activity
Hans Berger
feature binding
information transfer mechanisms
generation of rhythmic motor output
brain imaging
neuroscience
levels of organization
Richard Caton
Adolf Beck
Hans Berger
Vladimir Vladimirovich Pravdich-Neminsky
evoked potential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑