Knowledge (XXG)

Cotangent bundle

Source 📝

2570:
of a pendulum. The state of the pendulum is determined by its position (an angle) and its momentum (or equivalently, its velocity, since its mass is constant). The entire state space looks like a cylinder, which is the cotangent bundle of the circle. The above symplectic construction, along with an
1848: 1358: 340: 715: 1073: 1480: 2171: 633: 1661: 2362:. Proving that this form is, indeed, symplectic can be done by noting that being symplectic is a local property: since the cotangent bundle is locally trivial, this definition need only be checked on 2404: 2287: 811: 78:. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories. 907: 240: 1194: 533: 849: 1202: 757: 1127: 1528: 2491: 1615: 420: 570: 939: 463: 178: 2445: 2556: 1654: 1564: 3504: 2695: 2519: 260: 3499: 2786: 638: 2810: 3005: 947: 1366: 2082: 575: 2875: 3101: 3154: 2682: 3438: 2640: 2621: 1843:{\displaystyle T^{*}M={\bigl \{}(x,v^{*})\in T^{*}\mathbb {R} ^{n}\ :\ f(x)=0,\ v\in T_{x}\mathbb {R} ^{n},\ df_{x}(v)=0{\bigr \}}.} 3203: 2181: 470: 423: 2795: 3186: 3552: 2365: 2234: 766: 3398: 2605: 2044: 2334:
and applying ω to this projection. Note that the tautological one-form is not a pullback of a one-form on the base
858: 3383: 3106: 2880: 202: 3428: 1135: 3433: 3403: 3111: 3067: 3048: 2815: 2759: 2005:
This section can be constructed in several ways. The most elementary method uses local coordinates. Suppose that
2970: 2835: 476: 3355: 3220: 2912: 2754: 2196: 1353:{\displaystyle T^{*}M={\bigl \{}(x,v^{*})\in T^{*}\mathbb {R} ^{n}\ :\ f(x)=0,\ v^{*}\in T_{x}^{*}M{\bigr \}},} 819: 3547: 3052: 3022: 2946: 2936: 2892: 2722: 2675: 2592: 1927: 720: 109: 2820: 3393: 3012: 2907: 2727: 1979: 1130: 1081: 375: 242:
consists of equivalence classes of functions which vanish on the diagonal modulo higher order terms. The
63: 1485: 3042: 3037: 2651: 2576: 2450: 2355: 1947: 1935: 1919: 1883: 1569: 393: 247: 35: 2296:
in the tangent bundle of the cotangent bundle, the application of the tautological one-form θ to
1874:, it can be regarded as a manifold in its own right. Because at each point the tangent directions of 546: 3373: 3311: 3159: 2863: 2853: 2825: 2800: 2710: 2359: 1953: 912: 428: 75: 159: 3511: 3484: 3193: 3071: 3056: 2985: 2744: 2409: 2351: 1923: 1887: 346: 197: 181: 2528: 1620: 3453: 3408: 3305: 3176: 2980: 2805: 2668: 2609: 1533: 350: 185: 98: 2990: 3388: 3368: 3363: 3270: 3181: 2995: 2975: 2830: 2769: 2636: 2617: 121: 83: 71: 3557: 3526: 3320: 3198: 3027: 2960: 2955: 2950: 2940: 2732: 2715: 2522: 129: 94: 67: 3469: 3378: 3208: 3164: 2930: 2347: 1891: 372: 243: 90: 51: 43: 335:{\displaystyle \Gamma T^{*}M=\Delta ^{*}\left({\mathcal {I}}/{\mathcal {I}}^{2}\right).} 3335: 3260: 3230: 3128: 3121: 3061: 3032: 2902: 2897: 2858: 2504: 2076:
are coordinates in the fibre. The canonical one-form is given in these coordinates by
59: 3541: 3521: 3345: 3340: 3325: 3315: 3265: 3242: 3116: 3076: 3017: 2965: 2764: 2580: 1871: 358: 47: 3448: 3443: 3285: 3252: 3225: 3133: 2774: 852: 710:{\displaystyle T^{*}\mathbb {R} ^{n}=\mathbb {R} ^{n}\times (\mathbb {R} ^{n})^{*}} 17: 3291: 3280: 3237: 3138: 2739: 2567: 1931: 1915: 1895: 55: 31: 1068:{\displaystyle TM=\{(x,v)\in T\,\mathbb {R} ^{n}\ :\ f(x)=0,\ \,df_{x}(v)=0\},} 3516: 3474: 3300: 3213: 2845: 2749: 1907: 1475:{\displaystyle T_{x}^{*}M=\{v\in T_{x}\mathbb {R} ^{n}\ :\ df_{x}(v)=0\}^{*}.} 760: 3330: 3295: 3000: 2887: 2166:{\displaystyle \theta _{(x,p)}=\sum _{{\mathfrak {i}}=1}^{n}p_{i}\,dx^{i}.} 1952:
The cotangent bundle carries a canonical one-form θ also known as the
628:{\displaystyle T\,\mathbb {R} ^{n}=\mathbb {R} ^{n}\times \mathbb {R} ^{n}} 2176:
Intrinsically, the value of the canonical one-form in each fixed point of
3494: 3489: 3479: 2870: 2691: 379: 2660: 2575:
function, gives a complete determination of the physics of system. See
1926:, any real function on the cotangent bundle can be interpreted to be a 3086: 2583:
for an explicit construction of the Hamiltonian equations of motion.
2572: 353:
of modules with respect to the sheaf of germs of smooth functions of
2447:, and the differential is the canonical symplectic form, the sum of 2013:. In terms of these base coordinates, there are fibre coordinates 89:
There are several equivalent ways to define the cotangent bundle.
54:
at every point in the manifold. It may be described also as the
2664: 27:
Vector bundle of cotangent spaces at every point in a manifold
2224:, and the tautological one-form θ assigns to the point ( 1918:
can be defined on the cotangent bundle; these are called the
313: 300: 221: 208: 165: 2399:{\displaystyle \mathbb {R} ^{n}\times \mathbb {R} ^{n}} 2282:{\displaystyle \theta _{(x,\omega )}=\pi ^{*}\omega .} 1930:; thus the cotangent bundle can be understood to be a 1878:
can be paired with their dual covectors in the fiber,
1196:. By definition, the cotangent bundle in this case is 806:{\displaystyle v^{*}:\mathbb {R} ^{n}\to \mathbb {R} } 2531: 2507: 2453: 2412: 2368: 2237: 2085: 1978:
as a manifold in its own right, there is a canonical
1664: 1623: 1572: 1536: 1488: 1369: 1205: 1138: 1084: 950: 915: 861: 822: 769: 723: 641: 578: 549: 479: 431: 396: 263: 205: 162: 156:. The image of Δ is called the diagonal. Let 3462: 3421: 3354: 3251: 3147: 3094: 3085: 2921: 2844: 2783: 2703: 2653:
Symmetry in Mechanics: A Gentle Modern Introduction
902:{\displaystyle f\in C^{\infty }(\mathbb {R} ^{n}),} 66:with more structure than smooth manifolds, such as 2550: 2513: 2485: 2439: 2398: 2281: 2165: 1914:is an orientable vector bundle). A special set of 1842: 1648: 1609: 1558: 1522: 1474: 1352: 1188: 1121: 1067: 933: 901: 843: 805: 751: 709: 627: 564: 527: 457: 414: 378:of the cotangent bundle are called (differential) 334: 234: 172: 2544: 2532: 1922:. Because cotangent bundles can be thought of as 1882:possesses a canonical one-form θ called the 1167: 855:represented by the vanishing locus of a function 235:{\displaystyle {\mathcal {I}}/{\mathcal {I}}^{2}} 2406:. But there the one form defined is the sum of 2521:represents the set of possible positions in a 1189:{\displaystyle df_{x}(v)=\nabla \!f(x)\cdot v} 2676: 2566:. For example, this is a way to describe the 2022: : a one-form at a particular point of 1832: 1683: 1342: 1224: 8: 1460: 1391: 1059: 960: 2009:are local coordinates on the base manifold 528:{\displaystyle \phi ^{*}(T^{*}N)\to T^{*}M} 3091: 2683: 2669: 2661: 2633:Riemannian Geometry and Geometric Analysis 2558:can be thought of as the set of possible 2538: 2533: 2530: 2506: 2477: 2461: 2452: 2431: 2423: 2417: 2411: 2390: 2386: 2385: 2375: 2371: 2370: 2367: 2267: 2242: 2236: 2154: 2146: 2140: 2130: 2117: 2116: 2115: 2090: 2084: 1831: 1830: 1809: 1790: 1786: 1785: 1778: 1729: 1725: 1724: 1717: 1701: 1682: 1681: 1669: 1663: 1634: 1622: 1577: 1571: 1547: 1535: 1511: 1506: 1493: 1487: 1463: 1438: 1416: 1412: 1411: 1404: 1379: 1374: 1368: 1341: 1340: 1331: 1326: 1313: 1270: 1266: 1265: 1258: 1242: 1223: 1222: 1210: 1204: 1146: 1137: 1110: 1105: 1092: 1083: 1038: 1030: 991: 987: 986: 984: 949: 914: 887: 883: 882: 872: 860: 844:{\displaystyle M\subset \mathbb {R} ^{n}} 835: 831: 830: 821: 799: 798: 789: 785: 784: 774: 768: 743: 733: 729: 728: 722: 701: 691: 687: 686: 673: 669: 668: 658: 654: 653: 646: 640: 619: 615: 614: 604: 600: 599: 589: 585: 584: 582: 577: 556: 552: 551: 548: 516: 497: 484: 478: 446: 436: 430: 395: 318: 312: 311: 305: 299: 298: 287: 271: 262: 226: 220: 219: 213: 207: 206: 204: 164: 163: 161: 196:which vanish on the diagonal. Then the 2072:'s are coordinates on the base and the 543:The tangent bundle of the vector space 752:{\displaystyle (\mathbb {R} ^{n})^{*}} 70:, or (in the form of cotangent sheaf) 2346:The cotangent bundle has a canonical 7: 2304:, ω) is computed by projecting 1970:-form. This means that if we regard 1122:{\displaystyle df_{x}\in T_{x}^{*}M} 2212:is the same as choosing of a point 2118: 1854:The cotangent bundle as phase space 1523:{\displaystyle v^{*}\in T_{x}^{*}M} 2486:{\displaystyle dy_{i}\land dx_{i}} 2055:itself carries local coordinates ( 1610:{\displaystyle v^{*}(u)=v\cdot u,} 1164: 916: 873: 415:{\displaystyle \phi \colon M\to N} 284: 264: 25: 2199:of the bundle. Taking a point in 2650:Singer, Stephanie Frank (2001). 1894:, out of which a non-degenerate 565:{\displaystyle \mathbb {R} ^{n}} 1530:corresponds to a unique vector 934:{\displaystyle \nabla f\neq 0,} 763:of covectors, linear functions 458:{\displaystyle \phi ^{*}T^{*}N} 2723:Differentiable/Smooth manifold 2255: 2243: 2184:. Specifically, suppose that 2103: 2091: 1821: 1815: 1753: 1747: 1707: 1688: 1589: 1583: 1450: 1444: 1294: 1288: 1248: 1229: 1177: 1171: 1158: 1152: 1050: 1044: 1015: 1009: 975: 963: 893: 878: 795: 740: 724: 698: 682: 635:, and the cotangent bundle is 509: 506: 490: 406: 173:{\displaystyle {\mathcal {I}}} 1: 2616:. London: Benjamin-Cummings. 2525:, then the cotangent bundle 2440:{\displaystyle y_{i}\,dx_{i}} 2045:Einstein summation convention 1910:manifold (the tangent bundle 62:. This may be generalized to 2551:{\displaystyle \!\,T^{*}\!M} 1902:. For example, as a result 1649:{\displaystyle u\in T_{x}M,} 3429:Classification of manifolds 2635:. Berlin: Springer-Verlag. 2308:into the tangent bundle at 2047:implied). So the manifold 1858:Since the cotangent bundle 1559:{\displaystyle v\in T_{x}M} 3574: 1945: 3505:over commutative algebras 2220:and a one-form ω at 1942:The tautological one-form 386:Contravariance properties 3221:Riemann curvature tensor 2614:Foundations of Mechanics 909:with the condition that 816:Given a smooth manifold 422:of manifolds, induces a 2593:Legendre transformation 1886:, discussed below. The 188:of smooth functions on 3013:Manifold with boundary 2728:Differential structure 2552: 2515: 2487: 2441: 2400: 2292:That is, for a vector 2283: 2167: 2135: 1844: 1650: 1611: 1560: 1524: 1476: 1354: 1190: 1131:directional derivative 1123: 1069: 941:the tangent bundle is 935: 903: 845: 807: 753: 711: 629: 566: 529: 459: 416: 336: 236: 174: 82:Formal definition via 3553:Differential topology 2656:. Boston: BirkhĂ€user. 2631:Jost, JĂŒrgen (2002). 2577:Hamiltonian mechanics 2553: 2516: 2488: 2442: 2401: 2356:tautological one-form 2284: 2168: 2111: 1982:of the vector bundle 1948:Tautological one-form 1936:Hamiltonian mechanics 1920:canonical coordinates 1884:tautological one-form 1845: 1651: 1612: 1561: 1525: 1482:Since every covector 1477: 1355: 1191: 1124: 1070: 936: 904: 846: 808: 754: 712: 630: 567: 530: 460: 417: 357:. Thus it defines a 337: 237: 175: 132:Δ sends a point 36:differential geometry 3160:Covariant derivative 2711:Topological manifold 2529: 2505: 2451: 2410: 2366: 2360:symplectic potential 2235: 2228:, ω) the value 2083: 1954:symplectic potential 1924:symplectic manifolds 1662: 1621: 1570: 1534: 1486: 1367: 1203: 1136: 1082: 948: 913: 859: 820: 767: 721: 639: 576: 547: 477: 429: 394: 261: 203: 160: 3194:Exterior derivative 2796:Atiyah–Singer index 2745:Riemannian manifold 2610:Marsden, Jerrold E. 2579:and the article on 2352:exterior derivative 1888:exterior derivative 1516: 1384: 1336: 1115: 72:algebraic varieties 3500:Secondary calculus 3454:Singularity theory 3409:Parallel transport 3177:De Rham cohomology 2816:Generalized Stokes 2548: 2511: 2483: 2437: 2396: 2279: 2163: 1840: 1646: 1607: 1556: 1520: 1502: 1472: 1370: 1350: 1322: 1186: 1119: 1101: 1065: 931: 899: 841: 803: 749: 707: 625: 562: 525: 473:of vector bundles 455: 412: 390:A smooth morphism 351:locally free sheaf 332: 246:is defined as the 232: 170: 128:with itself. The 18:Cotangent manifold 3535: 3534: 3417: 3416: 3182:Differential form 2836:Whitney embedding 2770:Differential form 2514:{\displaystyle M} 2348:symplectic 2-form 1898:can be built for 1892:symplectic 2-form 1801: 1767: 1743: 1737: 1617:for an arbitrary 1430: 1424: 1308: 1284: 1278: 1029: 1005: 999: 250:of this sheaf to 122:Cartesian product 84:diagonal morphism 68:complex manifolds 16:(Redirected from 3565: 3527:Stratified space 3485:FrĂ©chet manifold 3199:Interior product 3092: 2789: 2685: 2678: 2671: 2662: 2657: 2646: 2627: 2557: 2555: 2554: 2549: 2543: 2542: 2523:dynamical system 2520: 2518: 2517: 2512: 2501:If the manifold 2492: 2490: 2489: 2484: 2482: 2481: 2466: 2465: 2446: 2444: 2443: 2438: 2436: 2435: 2422: 2421: 2405: 2403: 2402: 2397: 2395: 2394: 2389: 2380: 2379: 2374: 2333: 2288: 2286: 2285: 2280: 2272: 2271: 2259: 2258: 2194: 2172: 2170: 2169: 2164: 2159: 2158: 2145: 2144: 2134: 2129: 2122: 2121: 2107: 2106: 1849: 1847: 1846: 1841: 1836: 1835: 1814: 1813: 1799: 1795: 1794: 1789: 1783: 1782: 1765: 1741: 1735: 1734: 1733: 1728: 1722: 1721: 1706: 1705: 1687: 1686: 1674: 1673: 1655: 1653: 1652: 1647: 1639: 1638: 1616: 1614: 1613: 1608: 1582: 1581: 1565: 1563: 1562: 1557: 1552: 1551: 1529: 1527: 1526: 1521: 1515: 1510: 1498: 1497: 1481: 1479: 1478: 1473: 1468: 1467: 1443: 1442: 1428: 1422: 1421: 1420: 1415: 1409: 1408: 1383: 1378: 1359: 1357: 1356: 1351: 1346: 1345: 1335: 1330: 1318: 1317: 1306: 1282: 1276: 1275: 1274: 1269: 1263: 1262: 1247: 1246: 1228: 1227: 1215: 1214: 1195: 1193: 1192: 1187: 1151: 1150: 1128: 1126: 1125: 1120: 1114: 1109: 1097: 1096: 1074: 1072: 1071: 1066: 1043: 1042: 1027: 1003: 997: 996: 995: 990: 940: 938: 937: 932: 908: 906: 905: 900: 892: 891: 886: 877: 876: 850: 848: 847: 842: 840: 839: 834: 812: 810: 809: 804: 802: 794: 793: 788: 779: 778: 758: 756: 755: 750: 748: 747: 738: 737: 732: 716: 714: 713: 708: 706: 705: 696: 695: 690: 678: 677: 672: 663: 662: 657: 651: 650: 634: 632: 631: 626: 624: 623: 618: 609: 608: 603: 594: 593: 588: 571: 569: 568: 563: 561: 560: 555: 534: 532: 531: 526: 521: 520: 502: 501: 489: 488: 464: 462: 461: 456: 451: 450: 441: 440: 421: 419: 418: 413: 367:cotangent bundle 347:Taylor's theorem 341: 339: 338: 333: 328: 324: 323: 322: 317: 316: 309: 304: 303: 292: 291: 276: 275: 241: 239: 238: 233: 231: 230: 225: 224: 217: 212: 211: 179: 177: 176: 171: 169: 168: 130:diagonal mapping 95:diagonal mapping 52:cotangent spaces 40:cotangent bundle 21: 3573: 3572: 3568: 3567: 3566: 3564: 3563: 3562: 3538: 3537: 3536: 3531: 3470:Banach manifold 3463:Generalizations 3458: 3413: 3350: 3247: 3209:Ricci curvature 3165:Cotangent space 3143: 3081: 2923: 2917: 2876:Exponential map 2840: 2785: 2779: 2699: 2689: 2649: 2643: 2630: 2624: 2604: 2601: 2589: 2534: 2527: 2526: 2503: 2502: 2499: 2473: 2457: 2449: 2448: 2427: 2413: 2408: 2407: 2384: 2369: 2364: 2363: 2344: 2342:Symplectic form 2313: 2263: 2238: 2233: 2232: 2207: 2185: 2150: 2136: 2086: 2081: 2080: 2067: 2038: 2021: 1950: 1944: 1890:of θ is a 1856: 1805: 1784: 1774: 1723: 1713: 1697: 1665: 1660: 1659: 1630: 1619: 1618: 1573: 1568: 1567: 1543: 1532: 1531: 1489: 1484: 1483: 1459: 1434: 1410: 1400: 1365: 1364: 1309: 1264: 1254: 1238: 1206: 1201: 1200: 1142: 1134: 1133: 1088: 1080: 1079: 1034: 985: 946: 945: 911: 910: 881: 868: 857: 856: 829: 818: 817: 783: 770: 765: 764: 739: 727: 719: 718: 697: 685: 667: 652: 642: 637: 636: 613: 598: 583: 574: 573: 550: 545: 544: 541: 512: 493: 480: 475: 474: 442: 432: 427: 426: 392: 391: 388: 310: 297: 293: 283: 267: 259: 258: 244:cotangent sheaf 218: 201: 200: 158: 157: 110:smooth manifold 87: 44:smooth manifold 28: 23: 22: 15: 12: 11: 5: 3571: 3569: 3561: 3560: 3555: 3550: 3548:Vector bundles 3540: 3539: 3533: 3532: 3530: 3529: 3524: 3519: 3514: 3509: 3508: 3507: 3497: 3492: 3487: 3482: 3477: 3472: 3466: 3464: 3460: 3459: 3457: 3456: 3451: 3446: 3441: 3436: 3431: 3425: 3423: 3419: 3418: 3415: 3414: 3412: 3411: 3406: 3401: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3360: 3358: 3352: 3351: 3349: 3348: 3343: 3338: 3333: 3328: 3323: 3318: 3308: 3303: 3298: 3288: 3283: 3278: 3273: 3268: 3263: 3257: 3255: 3249: 3248: 3246: 3245: 3240: 3235: 3234: 3233: 3223: 3218: 3217: 3216: 3206: 3201: 3196: 3191: 3190: 3189: 3179: 3174: 3173: 3172: 3162: 3157: 3151: 3149: 3145: 3144: 3142: 3141: 3136: 3131: 3126: 3125: 3124: 3114: 3109: 3104: 3098: 3096: 3089: 3083: 3082: 3080: 3079: 3074: 3064: 3059: 3045: 3040: 3035: 3030: 3025: 3023:Parallelizable 3020: 3015: 3010: 3009: 3008: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2958: 2953: 2943: 2933: 2927: 2925: 2919: 2918: 2916: 2915: 2910: 2905: 2903:Lie derivative 2900: 2898:Integral curve 2895: 2890: 2885: 2884: 2883: 2873: 2868: 2867: 2866: 2859:Diffeomorphism 2856: 2850: 2848: 2842: 2841: 2839: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2798: 2792: 2790: 2781: 2780: 2778: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2736: 2735: 2730: 2720: 2719: 2718: 2707: 2705: 2704:Basic concepts 2701: 2700: 2690: 2688: 2687: 2680: 2673: 2665: 2659: 2658: 2647: 2641: 2628: 2622: 2606:Abraham, Ralph 2600: 2597: 2596: 2595: 2588: 2585: 2547: 2541: 2537: 2510: 2498: 2495: 2480: 2476: 2472: 2469: 2464: 2460: 2456: 2434: 2430: 2426: 2420: 2416: 2393: 2388: 2383: 2378: 2373: 2343: 2340: 2317:π : 2290: 2289: 2278: 2275: 2270: 2266: 2262: 2257: 2254: 2251: 2248: 2245: 2241: 2203: 2186:π : 2180:is given as a 2174: 2173: 2162: 2157: 2153: 2149: 2143: 2139: 2133: 2128: 2125: 2120: 2114: 2110: 2105: 2102: 2099: 2096: 2093: 2089: 2063: 2034: 2017: 1946:Main article: 1943: 1940: 1855: 1852: 1851: 1850: 1839: 1834: 1829: 1826: 1823: 1820: 1817: 1812: 1808: 1804: 1798: 1793: 1788: 1781: 1777: 1773: 1770: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1740: 1732: 1727: 1720: 1716: 1712: 1709: 1704: 1700: 1696: 1693: 1690: 1685: 1680: 1677: 1672: 1668: 1645: 1642: 1637: 1633: 1629: 1626: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1585: 1580: 1576: 1555: 1550: 1546: 1542: 1539: 1519: 1514: 1509: 1505: 1501: 1496: 1492: 1471: 1466: 1462: 1458: 1455: 1452: 1449: 1446: 1441: 1437: 1433: 1427: 1419: 1414: 1407: 1403: 1399: 1396: 1393: 1390: 1387: 1382: 1377: 1373: 1361: 1360: 1349: 1344: 1339: 1334: 1329: 1325: 1321: 1316: 1312: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1281: 1273: 1268: 1261: 1257: 1253: 1250: 1245: 1241: 1237: 1234: 1231: 1226: 1221: 1218: 1213: 1209: 1185: 1182: 1179: 1176: 1173: 1170: 1166: 1163: 1160: 1157: 1154: 1149: 1145: 1141: 1118: 1113: 1108: 1104: 1100: 1095: 1091: 1087: 1076: 1075: 1064: 1061: 1058: 1055: 1052: 1049: 1046: 1041: 1037: 1033: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1002: 994: 989: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 930: 927: 924: 921: 918: 898: 895: 890: 885: 880: 875: 871: 867: 864: 851:embedded as a 838: 833: 828: 825: 801: 797: 792: 787: 782: 777: 773: 746: 742: 736: 731: 726: 704: 700: 694: 689: 684: 681: 676: 671: 666: 661: 656: 649: 645: 622: 617: 612: 607: 602: 597: 592: 587: 581: 559: 554: 540: 537: 524: 519: 515: 511: 508: 505: 500: 496: 492: 487: 483: 469:. There is an 454: 449: 445: 439: 435: 424:pullback sheaf 411: 408: 405: 402: 399: 387: 384: 343: 342: 331: 327: 321: 315: 308: 302: 296: 290: 286: 282: 279: 274: 270: 266: 229: 223: 216: 210: 198:quotient sheaf 167: 140:to the point ( 86: 80: 60:tangent bundle 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3570: 3559: 3556: 3554: 3551: 3549: 3546: 3545: 3543: 3528: 3525: 3523: 3522:Supermanifold 3520: 3518: 3515: 3513: 3510: 3506: 3503: 3502: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3467: 3465: 3461: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3426: 3424: 3420: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3361: 3359: 3357: 3353: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3313: 3309: 3307: 3304: 3302: 3299: 3297: 3293: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3258: 3256: 3254: 3250: 3244: 3243:Wedge product 3241: 3239: 3236: 3232: 3229: 3228: 3227: 3224: 3222: 3219: 3215: 3212: 3211: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3188: 3187:Vector-valued 3185: 3184: 3183: 3180: 3178: 3175: 3171: 3168: 3167: 3166: 3163: 3161: 3158: 3156: 3153: 3152: 3150: 3146: 3140: 3137: 3135: 3132: 3130: 3127: 3123: 3120: 3119: 3118: 3117:Tangent space 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3099: 3097: 3093: 3090: 3088: 3084: 3078: 3075: 3073: 3069: 3065: 3063: 3060: 3058: 3054: 3050: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3007: 3004: 3003: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2948: 2944: 2942: 2938: 2934: 2932: 2929: 2928: 2926: 2920: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2882: 2881:in Lie theory 2879: 2878: 2877: 2874: 2872: 2869: 2865: 2862: 2861: 2860: 2857: 2855: 2852: 2851: 2849: 2847: 2843: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2793: 2791: 2788: 2784:Main results 2782: 2776: 2773: 2771: 2768: 2766: 2765:Tangent space 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2734: 2731: 2729: 2726: 2725: 2724: 2721: 2717: 2714: 2713: 2712: 2709: 2708: 2706: 2702: 2697: 2693: 2686: 2681: 2679: 2674: 2672: 2667: 2666: 2663: 2655: 2654: 2648: 2644: 2642:3-540-63654-4 2638: 2634: 2629: 2625: 2623:0-8053-0102-X 2619: 2615: 2611: 2607: 2603: 2602: 2598: 2594: 2591: 2590: 2586: 2584: 2582: 2581:geodesic flow 2578: 2574: 2569: 2565: 2561: 2545: 2539: 2535: 2524: 2508: 2496: 2494: 2478: 2474: 2470: 2467: 2462: 2458: 2454: 2432: 2428: 2424: 2418: 2414: 2391: 2381: 2376: 2361: 2357: 2353: 2350:on it, as an 2349: 2341: 2339: 2337: 2332: 2328: 2324: 2320: 2316: 2311: 2307: 2303: 2299: 2295: 2276: 2273: 2268: 2264: 2260: 2252: 2249: 2246: 2239: 2231: 2230: 2229: 2227: 2223: 2219: 2215: 2211: 2206: 2202: 2198: 2193: 2189: 2183: 2179: 2160: 2155: 2151: 2147: 2141: 2137: 2131: 2126: 2123: 2112: 2108: 2100: 2097: 2094: 2087: 2079: 2078: 2077: 2075: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2037: 2033: 2030:has the form 2029: 2025: 2020: 2016: 2012: 2008: 2003: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1966: 1962: 1959: 1955: 1949: 1941: 1939: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1906:is always an 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1872:vector bundle 1869: 1865: 1861: 1853: 1837: 1827: 1824: 1818: 1810: 1806: 1802: 1796: 1791: 1779: 1775: 1771: 1768: 1762: 1759: 1756: 1750: 1744: 1738: 1730: 1718: 1714: 1710: 1702: 1698: 1694: 1691: 1678: 1675: 1670: 1666: 1658: 1657: 1656: 1643: 1640: 1635: 1631: 1627: 1624: 1604: 1601: 1598: 1595: 1592: 1586: 1578: 1574: 1553: 1548: 1544: 1540: 1537: 1517: 1512: 1507: 1503: 1499: 1494: 1490: 1469: 1464: 1456: 1453: 1447: 1439: 1435: 1431: 1425: 1417: 1405: 1401: 1397: 1394: 1388: 1385: 1380: 1375: 1371: 1347: 1337: 1332: 1327: 1323: 1319: 1314: 1310: 1303: 1300: 1297: 1291: 1285: 1279: 1271: 1259: 1255: 1251: 1243: 1239: 1235: 1232: 1219: 1216: 1211: 1207: 1199: 1198: 1197: 1183: 1180: 1174: 1168: 1161: 1155: 1147: 1143: 1139: 1132: 1116: 1111: 1106: 1102: 1098: 1093: 1089: 1085: 1062: 1056: 1053: 1047: 1039: 1035: 1031: 1024: 1021: 1018: 1012: 1006: 1000: 992: 981: 978: 972: 969: 966: 957: 954: 951: 944: 943: 942: 928: 925: 922: 919: 896: 888: 869: 865: 862: 854: 836: 826: 823: 814: 790: 780: 775: 771: 762: 744: 734: 702: 692: 679: 674: 664: 659: 647: 643: 620: 610: 605: 595: 590: 579: 557: 538: 536: 522: 517: 513: 503: 498: 494: 485: 481: 472: 468: 452: 447: 443: 437: 433: 425: 409: 403: 400: 397: 385: 383: 381: 377: 374: 370: 368: 364: 360: 359:vector bundle 356: 352: 348: 329: 325: 319: 306: 294: 288: 280: 277: 272: 268: 257: 256: 255: 253: 249: 245: 227: 214: 199: 195: 191: 187: 183: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 102: 100: 96: 93:is through a 92: 85: 81: 79: 77: 73: 69: 65: 61: 57: 53: 49: 48:vector bundle 45: 41: 37: 34:, especially 33: 19: 3449:Moving frame 3444:Morse theory 3434:Gauge theory 3275: 3226:Tensor field 3169: 3155:Closed/Exact 3134:Vector field 3102:Distribution 3043:Hypercomplex 3038:Quaternionic 2775:Vector field 2733:Smooth atlas 2652: 2632: 2613: 2571:appropriate 2563: 2559: 2500: 2345: 2335: 2330: 2326: 2322: 2318: 2314: 2309: 2305: 2301: 2297: 2293: 2291: 2225: 2221: 2217: 2213: 2209: 2204: 2200: 2191: 2187: 2177: 2175: 2073: 2069: 2068:) where the 2064: 2060: 2056: 2052: 2048: 2040: 2035: 2031: 2027: 2023: 2018: 2014: 2010: 2006: 2004: 1999: 1995: 1991: 1987: 1983: 1975: 1971: 1967: 1964: 1960: 1957: 1951: 1911: 1903: 1899: 1879: 1875: 1867: 1863: 1859: 1857: 1362: 1077: 853:hypersurface 815: 759:denotes the 542: 466: 389: 371: 366: 362: 354: 349:, this is a 344: 251: 193: 189: 153: 149: 145: 141: 137: 133: 125: 117: 113: 105: 103: 97:Δ and 88: 39: 29: 3394:Levi-Civita 3384:Generalized 3356:Connections 3306:Lie algebra 3238:Volume form 3139:Vector flow 3112:Pushforward 3107:Lie bracket 3006:Lie algebra 2971:G-structure 2760:Pushforward 2740:Submanifold 2568:phase space 2497:Phase space 1938:plays out. 1932:phase space 1928:Hamiltonian 1916:coordinates 1896:volume form 471:induced map 56:dual bundle 50:of all the 32:mathematics 3542:Categories 3517:Stratifold 3475:Diffeology 3271:Associated 3072:Symplectic 3057:Riemannian 2986:Hyperbolic 2913:Submersion 2821:Hopf–Rinow 2755:Submersion 2750:Smooth map 2599:References 2329:) → 2197:projection 1963:-form, or 1908:orientable 1566:for which 761:dual space 64:categories 3399:Principal 3374:Ehresmann 3331:Subbundle 3321:Principal 3296:Fibration 3276:Cotangent 3148:Covectors 3001:Lie group 2981:Hermitian 2924:manifolds 2893:Immersion 2888:Foliation 2826:Noether's 2811:Frobenius 2806:De Rham's 2801:Darboux's 2692:Manifolds 2560:positions 2540:∗ 2468:∧ 2382:× 2274:ω 2269:∗ 2265:π 2253:ω 2240:θ 2113:∑ 2088:θ 1965:Liouville 1934:on which 1772:∈ 1719:∗ 1711:∈ 1703:∗ 1671:∗ 1628:∈ 1599:⋅ 1579:∗ 1541:∈ 1513:∗ 1500:∈ 1495:∗ 1465:∗ 1398:∈ 1381:∗ 1333:∗ 1320:∈ 1315:∗ 1260:∗ 1252:∈ 1244:∗ 1212:∗ 1181:⋅ 1165:∇ 1112:∗ 1099:∈ 979:∈ 923:≠ 917:∇ 874:∞ 866:∈ 827:⊂ 796:→ 776:∗ 745:∗ 703:∗ 680:× 648:∗ 611:× 518:∗ 510:→ 499:∗ 486:∗ 482:ϕ 448:∗ 438:∗ 434:ϕ 407:→ 401:: 398:ϕ 380:one-forms 289:∗ 285:Δ 273:∗ 265:Γ 3495:Orbifold 3490:K-theory 3480:Diffiety 3204:Pullback 3018:Oriented 2996:Kenmotsu 2976:Hadamard 2922:Types of 2871:Geodesic 2696:Glossary 2612:(1978). 2587:See also 2190:→ 2182:pullback 1958:PoincarĂ© 717:, where 539:Examples 376:sections 248:pullback 112:and let 3558:Tensors 3439:History 3422:Related 3336:Tangent 3314:)  3294:)  3261:Adjoint 3253:Bundles 3231:density 3129:Torsion 3095:Vectors 3087:Tensors 3070:)  3055:)  3051:,  3049:Pseudo− 3028:Poisson 2961:Finsler 2956:Fibered 2951:Contact 2949:)  2941:Complex 2939:)  2908:Section 2564:momenta 2354:of the 2195:is the 1994:) over 1980:section 1129:is the 365:: the 180:be the 120:be the 91:One way 76:schemes 58:to the 46:is the 3404:Vector 3389:Koszul 3369:Cartan 3364:Affine 3346:Vector 3341:Tensor 3326:Spinor 3316:Normal 3312:Stable 3266:Affine 3170:bundle 3122:bundle 3068:Almost 2991:KĂ€hler 2947:Almost 2937:Almost 2931:Closed 2831:Sard's 2787:(list) 2639:  2620:  2573:energy 2358:, the 2312:using 2039:  1800:  1766:  1742:  1736:  1429:  1423:  1363:where 1307:  1283:  1277:  1078:where 1028:  1004:  998:  373:Smooth 192:× 152:× 116:× 38:, the 3512:Sheaf 3286:Fiber 3062:Rizza 3033:Prime 2864:Local 2854:Curve 2716:Atlas 1870:is a 186:germs 182:sheaf 148:) of 108:be a 99:germs 42:of a 3379:Form 3281:Dual 3214:flow 3077:Tame 3053:Sub− 2966:Flat 2846:Maps 2637:ISBN 2618:ISBN 2562:and 2300:at ( 104:Let 3301:Jet 2216:in 2188:T*M 2178:T*M 2074:p's 572:is 465:on 361:on 345:By 184:of 136:in 124:of 74:or 30:In 3544:: 3292:Co 2608:; 2493:. 2338:. 2331:TM 2059:, 2041:dx 2002:. 1986:*( 1956:, 1912:TX 1862:= 813:. 535:. 382:. 369:. 254:: 101:. 3310:( 3290:( 3066:( 3047:( 2945:( 2935:( 2698:) 2694:( 2684:e 2677:t 2670:v 2645:. 2626:. 2546:M 2536:T 2509:M 2479:i 2475:x 2471:d 2463:i 2459:y 2455:d 2433:i 2429:x 2425:d 2419:i 2415:y 2392:n 2387:R 2377:n 2372:R 2336:M 2327:M 2325:* 2323:T 2321:( 2319:T 2315:d 2310:x 2306:v 2302:x 2298:v 2294:v 2277:. 2261:= 2256:) 2250:, 2247:x 2244:( 2226:x 2222:x 2218:M 2214:x 2210:M 2208:* 2205:x 2201:T 2192:M 2161:. 2156:i 2152:x 2148:d 2142:i 2138:p 2132:n 2127:1 2124:= 2119:i 2109:= 2104:) 2101:p 2098:, 2095:x 2092:( 2070:x 2065:i 2061:p 2057:x 2053:M 2051:* 2049:T 2043:( 2036:i 2032:p 2028:M 2026:* 2024:T 2019:i 2015:p 2011:M 2007:x 2000:M 1998:* 1996:T 1992:M 1990:* 1988:T 1984:T 1976:M 1974:* 1972:T 1968:1 1961:1 1904:X 1900:X 1880:X 1876:M 1868:M 1866:* 1864:T 1860:X 1838:. 1833:} 1828:0 1825:= 1822:) 1819:v 1816:( 1811:x 1807:f 1803:d 1797:, 1792:n 1787:R 1780:x 1776:T 1769:v 1763:, 1760:0 1757:= 1754:) 1751:x 1748:( 1745:f 1739:: 1731:n 1726:R 1715:T 1708:) 1699:v 1695:, 1692:x 1689:( 1684:{ 1679:= 1676:M 1667:T 1644:, 1641:M 1636:x 1632:T 1625:u 1605:, 1602:u 1596:v 1593:= 1590:) 1587:u 1584:( 1575:v 1554:M 1549:x 1545:T 1538:v 1518:M 1508:x 1504:T 1491:v 1470:. 1461:} 1457:0 1454:= 1451:) 1448:v 1445:( 1440:x 1436:f 1432:d 1426:: 1418:n 1413:R 1406:x 1402:T 1395:v 1392:{ 1389:= 1386:M 1376:x 1372:T 1348:, 1343:} 1338:M 1328:x 1324:T 1311:v 1304:, 1301:0 1298:= 1295:) 1292:x 1289:( 1286:f 1280:: 1272:n 1267:R 1256:T 1249:) 1240:v 1236:, 1233:x 1230:( 1225:{ 1220:= 1217:M 1208:T 1184:v 1178:) 1175:x 1172:( 1169:f 1162:= 1159:) 1156:v 1153:( 1148:x 1144:f 1140:d 1117:M 1107:x 1103:T 1094:x 1090:f 1086:d 1063:, 1060:} 1057:0 1054:= 1051:) 1048:v 1045:( 1040:x 1036:f 1032:d 1025:, 1022:0 1019:= 1016:) 1013:x 1010:( 1007:f 1001:: 993:n 988:R 982:T 976:) 973:v 970:, 967:x 964:( 961:{ 958:= 955:M 952:T 929:, 926:0 920:f 897:, 894:) 889:n 884:R 879:( 870:C 863:f 837:n 832:R 824:M 800:R 791:n 786:R 781:: 772:v 741:) 735:n 730:R 725:( 699:) 693:n 688:R 683:( 675:n 670:R 665:= 660:n 655:R 644:T 621:n 616:R 606:n 601:R 596:= 591:n 586:R 580:T 558:n 553:R 523:M 514:T 507:) 504:N 495:T 491:( 467:M 453:N 444:T 410:N 404:M 363:M 355:M 330:. 326:) 320:2 314:I 307:/ 301:I 295:( 281:= 278:M 269:T 252:M 228:2 222:I 215:/ 209:I 194:M 190:M 166:I 154:M 150:M 146:p 144:, 142:p 138:M 134:p 126:M 118:M 114:M 106:M 20:)

Index

Cotangent manifold
mathematics
differential geometry
smooth manifold
vector bundle
cotangent spaces
dual bundle
tangent bundle
categories
complex manifolds
algebraic varieties
schemes
diagonal morphism
One way
diagonal mapping
germs
smooth manifold
Cartesian product
diagonal mapping
sheaf
germs
quotient sheaf
cotangent sheaf
pullback
Taylor's theorem
locally free sheaf
vector bundle
Smooth
sections
one-forms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑