Knowledge (XXG)

Covalent organic framework

Source 📝

241:
frameworks that synergistically enhance the properties of the precursors, which, in turn, offers many advantages in terms of improved performance in different applications. As a result, the COF material is highly modular and tuned efficiently by varying the SBUs’ identity, length, and functionality depending on the desired property change on the framework scale. Ergo, there exists the ability to introduce diverse functionality directly into the framework scaffold to allow for a variety of functions which would be cumbersome, if not impossible, to achieve through a top-down method, such as lithographic approaches or chemical-based nanofabrication. Through reticular synthesis, it is possible to molecularly engineer modular, framework materials with highly porous scaffolds that exhibit unique electronic, optical, and magnetic properties while simultaneously integrating desired functionality into the COF skeleton.
224:, a material is built from atomic or molecular components synthetically as opposed to a top-down approach, which forms a material from the bulk through approaches such as exfoliation, lithography, or other varieties of post-synthetic modification. The bottom-up approach is especially advantageous with respect to materials such as COFs because the synthetic methods are designed to directly result in an extended, highly crosslinked framework that can be tuned with exceptional control at the nanoscale level. Geometrical and dimensional principles govern the framework's resulting topology as the SBUs combine to form predetermined structures. This level of synthetic control has also been termed " 367: 405: 401:(TFP) is used as one of the SBUs, two complementary tautomerizations occur (an enol to keto and an imine to enamine) which result in a ÎČ-ketoenamine moiety as depicted in the DAAQ-TFP framework. Both DAAQ-TFP and TpOMe-DAQ COFs are stable in acidic aqueous conditions and contain the redox active linker 2,6-diaminoanthroquinone which enables these materials to reversibly store and release electrons within a characteristic potential window. Consequently, both of these COFs have been investigated as electrode materials for potential use in supercapacitors. 232: 36:
structures with highly preferential structural orientation and properties which could be synergistically enhanced and amplified. With judicious selection of COF secondary building units (SBUs), or precursors, the final structure could be predetermined, and modified with exceptional control enabling fine-tuning of emergent properties. This level of control facilitates the COF material to be designed, synthesized, and utilized in various applications, many times with metrics on scale or surpassing that of the current state-of-the-art approaches.
462:
control, hereby enabling crystalline growth. This was employed by Yaghi and coworkers for 3D imine-based COFs (COF-300, COF 303, LZU-79, and LZU-111). However, the vast majority of COFs are not able to crystallize into single crystals but instead are insoluble powders. The improvement of crystallinity of these polycrystalline materials can be improved through tuning the reversibility of the linkage formation to allow for corrective particle growth and self-healing of defects that arise during COF formation.
339: 146:. The research team synthesized and designed the first 3D-COF ever; COF-103 and COF-108, helping unleash this new field. Unlike 0D and 1D systems, which are soluble, the insolubility of 2D and 3D structures precludes the use of stepwise synthesis, making their isolation in crystalline form very difficult. This first challenge, however, was overcome by judiciously choosing building blocks and using reversible condensation reactions to crystallize COFs. 326: 258: 630:
better delivery amount have been designed in the lab of William A. Goddard III, and they have been shown to be stable and overcome the DOE target in delivery basis. COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. They reported that using thin vinyl bridging groups aids performance by minimizing the interaction methane-COF at low pressure.
471: 279: 197: 3576: 375: 629:
storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage. More recently, new COFs with
605:
is important to their stability. If the metalation with alkali meals is performed in the COFs, Goddard et al. calculated that some COFs can reach 2010 DOE gravimetric target in delivery units at 298 K of 4.5 wt %: COF102-Li (5.16 wt %), COF103-Li (4.75 wt %), COF102-Na (4.75 wt %)
187:
COFs are another class of porous polymeric materials, consisting of porous, crystalline, covalent bonds that usually have rigid structures, exceptional thermal stabilities (to temperatures up to 600 Â°C), are stable in water and low densities. They exhibit permanent porosity with specific surface
160:
solids consist of secondary building units (SBUs) which assemble to form a periodic and porous framework. An almost infinite number of frameworks can be formed through various SBU combinations leading to unique material properties for applications in separations, storage, and heterogeneous catalysis.
30:
that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control
528:
enables probing of linkage formation as well and is well suited for large, insoluble materials like COFs. Gas adsorption-desorption studies quantify the porosity of the material via calculation of the Brunauer–Emmett–Teller (BET) surface area and pore diameter from gas adsorption isotherms. Electron
479:
Integration of SBUs into a covalent framework results in the synergistic emergence of conductivities much greater than the monomeric values. The nature of the SBUs can improve conductivity. Through the use of highly conjugated linkers throughout the COF scaffold, the material can be engineered to be
274:
Since Yaghi and coworkers’ seminal work in 2005, COF synthesis has expanded to include a wide range of organic connectivity such as boron-, nitrogen-, other atom-containing linkages. The linkages in the figures shown are not comprehensive as other COF linkages exist in the literature, especially for
35:
to advance into the construction of porous, crystalline materials with rigid structures that granted exceptional material stability in a wide range of solvents and conditions. Through the development of reticular chemistry, precise synthetic control was achieved and resulted in ordered, nano-porous
461:
There are several COF single crystals synthesized to date. There are a variety of techniques employed to improve crystallinity of COFs. The use of modulators, monofunctional version of precursors, serve to slow the COF formation to allow for more favorable balance between kinetic and thermodynamic
448:
A defining advantage of COFs is the exceptional porosity that results from the substitution of analogous SBUs of varying sizes. Pore sizes range from 7-23 Å and feature a diverse range of shapes and dimensionalities that remain stable during the evacuation of solvent. The rigid scaffold of the COF
430:
during synthesis. To date, researchers have attempted to establish better control through different synthetic methods such as solvothermal synthesis, interface-assisted synthesis, solid templation as well as seeded growth. First one of the precursors is deposited onto the solid support followed by
244:
Reticular synthesis is different from retrosynthesis of organic compounds, because the structural integrity and rigidity of the building blocks in reticular synthesis remain unaltered throughout the construction process—an important aspect that could help to fully realize the benefits of design in
484:
and coworkers synthesized a COF material (NiPc-Pyr COF) from nickel phthalocyanine (NiPc) and pyrene organic linkers that had a conductivity of 2.51 x 10 S/m, which was several orders of magnitude larger than the undoped molecular NiPc, 10 S/m. A similar COF structure made by Jiang and coworkers,
757:
Due to the ability to introduce diverse functionality into COFs’ structure, catalytic sites can be fine-tuned in conjunction with other advantageous properties like conductivity and stability to afford efficient and selective catalysts. COFs have been used as heterogeneous catalysts in organic,
240:
It has been established in the literature that, when integrated into an isoreticular framework, such as a COF, properties from monomeric compounds can be synergistically enhanced and amplified. COF materials possess the unique ability for bottom-up reticular synthesis to afford robust, tunable
265:
Reticular synthesis was used by Yaghi and coworkers in 2005 to construct the first two COFs reported in the literature: COF-1, using a dehydration reaction of benzenediboronic acid (BDBA), and COF-5, via a condensation reaction between hexahydroxytriphenylene (HHTP) and BDBA. These framework
744:
Due to defining molecule-framework interactions, COFs can be used as chemical sensors in a wide range of environments and applications. Properties of the COF change when their functionalities interact with various analytes enabling the materials to serve as devices in various conditions: as
3189:
Yang, Hui; Zhang, Shengliang; Han, Liheng; Zhang, Zhou; Xue, Zheng; Gao, Juan; Li, Yongjun; Huang, Changshui; Yi, Yuanping; Liu, Huibiao; Li, Yuliang (16 February 2016). "High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity".
601:. Such strategy consists of metalating the COF with alkali metals such as Li. These complexes composed of Li, Na and K with benzene ligands (such as 1,3,5-benzenetribenzoate, the ligand used in MOF-177) have been synthesized by Krieck et al. and Goddard showed that the 485:
CoPc-Pyr COF, exhibited a conductivity of 3.69 x 10 S/m. In both previously mentioned COFs, the 2D lattice allows for full π-conjugation in the x and y directions as well as π-conduction along the z axis due to the fully conjugated, aromatic scaffold and
638:
In addition to storage, COF materials are exceptional at gas separation. For instance, COFs like imine-linked COF LZU1 and azine-linked COF ACOF-1 were used as a bilayer membrane for the selective separation of the following mixtures:
524:(NMR) spectroscopy. Precursor and COF IR spectra enables comparison between vibrational peaks to ascertain that certain key bonds present in the COF linkages appear and that peaks of precursor functional groups disappear. In addition, 417:
The solvothermal approach is the most common used in the literature but typically requires long reaction times due to the insolubility of the organic SBUs in nonorganic media and the time necessary to reach thermodynamic COF products.
606:
and COF103-Na (4.72 wt %). COFs also perform better in delivery units than MOFs because the best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H
474:
In a fully conjugated 2D COF material such as those synthesized from metallophthalocyanines and highly conjugated organic linkers, charge transport is increased both in-plane, as well as through the stacks, resulting in increased
235:
COF topological control through judicious selection of precursors that result in bonding directionality in the final resulting network. Adapted from Jiang and coworkers' Two- and Three-dimensional Covalent Organic Frameworks
3143:
Zheng, Weiran; Tsang, Chui-Shan; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin (June 2019). "Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications".
2196:
Evans, Austin M.; Parent, Lucas R.; Flanders, Nathan C.; Bisbey, Ryan P.; Vitaku, Edon; Kirschner, Matthew S.; Schaller, Richard D.; Chen, Lin X.; Gianneschi, Nathan C.; Dichtel, William R. (2018-07-06).
667:
due to the inherent thermal and operational stability of the structures. It has also been shown that COFs inherently act as adsorbents, adhering to the gaseous molecules to enable storage and separation.
245:
crystalline solid-state frameworks. Similarly, reticular synthesis should be distinguished from supramolecular assembly, because in the former, building blocks are linked by strong bonds throughout the
2866:
Marco, B.; Cortizo-Lacalle, D.; Perez-Miqueo, C.; Valenti, G.; Boni, A.; Plas, J.; Strutynski, K.; De Feyter, S.; Paolucci, F.; Montes, M.; Khlobystov, K.; Melle-Franco, M.; Mateo-Alonso, A. (2017).
774:
reaction. However, such researches are still in the very early stage. Most of the efforts have been focusing on solving the key issues, such as conductivity, stability in electrochemical processes.
597:
storage materials. In 2012, the lab of William A. Goddard III reported the uptake for COF102, COF103, and COF202 at 298 K and they also proposed new strategies to obtain higher interaction with H
397:
using an acid catalyst) can be used as a synthetic route to reach a new class of COFs. The 3D COF called COF-300 and the 2D COF named TpOMe-DAQ are good examples of this chemistry. When
378:
Reversible reactions for COF formation featuring a variety of atoms to form different linkages (a double stage connecting boronate ester and imine linkages, alkene, silicate, nitroso).
135:. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 to 600 °C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively). 52:) and Adrien P Cote published the first paper of COFs in 2005, reporting a series of 2D COFs. They reported the design and successful synthesis of COFs by condensation reactions of 2697:
Krieck, S.; Gorls, H.; Westerhausen, M., Alkali Metal-Stabilized 1,3,5-Triphenylbenzene Monoanions: Synthesis and Characterization of the Lithium, Sodium, and Potassium Complexes.
2094:
Sharma, Rakesh Kumar; Yadav, Priya; Yadav, Manavi; Gupta, Radhika; Rana, Pooja; Srivastava, Anju; Zboƙil, Radek; Varma, Rajender S.; Antonietti, Markus; Gawande, Manoj B. (2020).
692:
range of photons, and allows energy transfer and migration. Furthermore, TP-COF is electrically conductive and capable of repetitive on–off current switching at room temperature.
3225:
Diercks, Christian S.; Lin, Song; Kornienko, Nikolay; Kapustin, Eugene A.; Nichols, Eva M.; Zhu, Chenhui; Zhao, Yingbo; Chang, Christopher J.; Yaghi, Omar M. (16 January 2018).
493:
in COF structures is especially important for applications such as catalysis and energy storage where quick and efficient charge transport is required for optimal performance.
1117:
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. (2007). "Designed Synthesis of 3D Covalent Organic Frameworks".
501:
There exists a wide range of characterization methods for COF materials. There are several COF single crystals synthesized to date. For these highly crystalline materials,
1937:
Halder, Arjun; Ghosh, Meena; Khayum M, Abdul; Bera, Saibal; Addicoat, Matthew; Sasmal, Himadri Sekhar; Karak, Suvendu; Kurungot, Sreekumar; Banerjee, Rahul (2018-09-05).
220:
of the framework materials to introduce precise perturbations in chemical composition, resulting in the highly controlled tunability of framework properties. Through a
131:(COF-5). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 2338:
Ma, Tianqiong; Kapustin, Eugene A.; Yin, Shawn X.; Liang, Lin; Zhou, Zhengyang; Niu, Jing; Li, Li-Hua; Wang, Yingying; Su, Jie; Li, Jian; Wang, Xiaoge (2018-07-06).
589:
and free volume, by grand canonical Monte Carlo (GCMC) simulations as a function of temperature and pressure. This is the highest value reported for associative H
798:
A prototype 2 nanometer thick COF layer on a graphene substrate was used to filter dye from industrial wastewater. Once full, the COF can be cleaned and reused.
310:
reaction which is a molecular dehydration reaction between boronic acids. In case of COF-1, three boronic acid molecules converge to form a planar six-membered B
2296:
Ben, Teng; Ren, Hao; Ma, Shengqian; Cao, Dapeng; Lan, Jianhui; Jing, Xiaofei; Wang, Wenchuan; Xu, Jun; Deng, Feng; Simmons, Jason M.; Qiu, Shilun (2009-12-07).
453:. This high surface area to volume ratio and incredible stability enables the COF structure to serve as exceptional materials for gas storage and separation. 550: 176:
minerals commonly used as commercial adsorbents. MOFs are a class of porous polymeric material, consisting of metal ions linked together by organic bridging
1994:"Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route" 810:
scaffold that showed effective drug loading and release in a simulated body fluid environment, making it useful as a nanocarrier for pharmaceutical drugs.
329:
Reversible reactions for COF formation featuring nitrogen to form a variety of linkages (imine, hydrazone, azine, squaraine, phenazine, imide, triazine).
204:
The term ‘secondary building unit’ has been used for some time to describe conceptual fragments which can be compared as bricks used to build a house of
1903:
Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klck, C.; O'Keeffe, M.; Yaghi, O. M.; A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework.
3530:
Zhao, Yu; Das, Saikat; Sekine, Taishu; Mabuchi, Haruna; Irie, Tsukase; Sakai, Jin; Wen, Dan; Zhu, Weidong; Ben, Teng; Negishi, Yuichi (2023-01-23).
610:/L units for 1–100 bar. These are the highest gravimetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. 570:
Due to the exceptional porosity of COFs, they have been used extensively in the storage and separation of gases such as hydrogen, methane, etc.
525: 366: 404: 2275: 1543: 2838:
Shun, W.; Jia, G.; Jangbae, K.; Hyotcherl, I.; Donglin, J.; A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework.
505:(XRD) is a powerful tool capable of determining COF crystal structure. The majority of COF materials suffer from decreased crystallinity so 266:
scaffolds were interconnected through the formation of boroxine and boronate linkages, respectively, using solvothermal synthetic methods.
3275:
Li, Xing; Wang, Hui; Chen, Zhongxin; Xu, Hai‐Sen; Yu, Wei; Liu, Cuibo; Wang, Xiaowei; Zhang, Kun; Xie, Keyu; Loh, Kian Ping (2019-10-14).
625:
per unit volume COF adsorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH
31:
and precursor selection. These improvements to coordination chemistry enabled non-porous and amorphous organic materials such as organic
1088:
CÎté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M.; Porous, Crystalline, Covalent Organic Frameworks.
138:
The synthesis of 3D COFs has been hindered by longstanding practical and conceptual challenges until it was first achieved in 2007 by
3227:"Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction" 1224:
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.; Reticular synthesis and the design of new materials.
849: 621:
and William A. Goddard III also reported COFs as exceptional methane storage materials. The best COF in terms of total volume of CH
449:
structure enables the material to be evacuated of solvent and retain its structure, resulting in high surface areas as seen by the
546: 534: 426:
Morphological control on the nanoscale is still limited as COFs lack synthetic control in higher dimensions due to the lack of
358:
in ionothermal conditions (molten zinc chloride at high temperature (400 Â°C)). CTF-1 is a good example of this chemistry.
2916: 829: 480:
fully conjugated, enabling high charge carrier density as well as through- and in-plane charge transport. For instance,
2615:
Han, S.; Hurukawa, H.; Yaghi, O. M.; Goddard, W. A.; Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials.
2729:
Fan, Hongwei; Mundstock, Alexander; Feldhoff, Armin; Knebel, Alexander; Gu, Jiahui; Meng, Hong; Caro, JĂŒrgen (2018-08-15).
2868:"Twisted Aromatic Frameworks: Readily Exfoliable and Solution-Processable Two-Dimensional Conjugated Microporous Polymers" 2044:
DeBlase, Catherine R.; Silberstein, Katharine E.; Truong, Thanh-Tam; Abruña, Héctor D.; Dichtel, William R. (2013-11-13).
538: 221: 217: 700:
Most studies to date have focused on the development of synthetic methodologies with the aim of maximizing pore size and
2096:"Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications" 530: 261:
Reversible reactions for COF formation featuring boron to form a variety of linkages (boronate, boroxine, and borazine).
585:
uptakes at 77 K are 10.0 wt % at 80 bar for COF-105, and 10.0 wt % at 100 bar for COF-108, which have higher
581:
and William A. Goddard III reported COFs as exceptional hydrogen storage materials. They predicted the highest excess H
3450:
Vitaku, Edon; Gannett, Cara N.; Carpenter, Keith L.; Shen, Luxi; Abruña, Héctor D.; Dichtel, William R. (2020-01-08).
3000:
Ratiometric Electrochemical Sensors Based on Nanospheres Derived from Ferrocence-Modified Covalent Organic Frameworks"
521: 427: 398: 231: 2141:
Allendorf, Mark D.; Dong, Renhao; Feng, Xinliang; Kaskel, Stefan; Matoga, Dariusz; Stavila, Vitalie (2020-08-26).
1992:
Kandambeth, Sharath; Mallick, Arijit; Lukose, Binit; Mane, Manoj V.; Heine, Thomas; Banerjee, Rahul (2012-12-05).
732:
was reported. MOF under solvent-free conditions can also be used for catalytic activity in the cycloaddition of CO
1302:
Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.; Chae, Hee K.; Eddaoudi, Mohamed; Kim, Jaheon (2003-06-12).
3532:"Record Ultralarge-Pores, Low Density Three-Dimensional Covalent Organic Framework for Controlled Drug Delivery" 2511:"A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water" 782:
A few COFs possess the stability and conductivity necessary to perform well in energy storage applications like
3614: 2784:
Fenton, Julie L.; Burke, David W.; Qian, Dingwen; Olvera de la Cruz, Monica; Dichtel, William R. (2021-01-27).
819: 545:(AFM) have also been used to characterize COF microstructural information as well. Additionally, methods like 3340:"A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries" 2731:"Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation" 346:
Another class of high performance polymer frameworks with regular porosity and high surface area is based on
2645:"High H 2 Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic Frameworks at 298 K" 2509:
Huang, Ning; Lee, Ka Hung; Yue, Yan; Xu, Xiaoyi; Irle, Stefan; Jiang, Qiuhong; Jiang, Donglin (2020-09-14).
839: 542: 490: 169: 143: 68: 2298:"Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area" 53: 181: 124: 3599: 208:; in the context of this page it refers to the geometry of the units defined by the points of extension. 2963: 517: 294: 225: 128: 431:
the introduction of the second precursor in vapor form. This results in the deposition of the COF as a
3338:
Luo, Zhiqiang; Liu, Luojia; Ning, Jiaxin; Lei, Kaixiang; Lu, Yong; Li, Fujun; Chen, Jun (2018-07-20).
3226: 3398: 3288: 2990:
Liang, Huihui; Xu, Mengli; Zhu, Yongmei; Wang, Linyu; Xie, Yi; Song, Yonghai; Wang, Li (2020-01-24).
2656: 2351: 2210: 1684: 1626: 1577: 1464:
Feng, Liang; Wang, Kun-Yu; Lv, Xiu-Liang; Yan, Tian-Hao; Li, Jian-Rong; Zhou, Hong-Cai (2020-02-12).
1126: 934: 486: 3506: 3088:"Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges" 2255: 1523: 593:
storage of any material. Thus 3D COFs are most promising new candidates in the quest for practical H
3452:"Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities" 2936:
Hussain, MD. Waseem; Bhardwaj, Vipin; GIRI, ARKAPRABHA; Chande, Ajit; Patra, Abhijit (2019-11-27).
824: 807: 783: 554: 537:(TEM) can resolve surface structure and morphology, and microstructural information, respectively. 3391:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2397:"Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks" 3487: 3367: 3320: 3276: 3257: 3171: 3068: 3048: 3029: 2821: 2766: 2546: 2486: 2178: 2123: 1974: 1755: 1735: 1716: 1501: 1443: 1349: 1150: 1012: 958: 516:
In order to verify and analyze COF linkage formation, various techniques can be employed such as
506: 282: 84: 3585: 338: 985:"Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials" 3553: 3479: 3471: 3432: 3414: 3359: 3312: 3304: 3249: 3207: 3125: 3107: 3021: 2897: 2813: 2805: 2758: 2750: 2680: 2672: 2598: 2538: 2530: 2478: 2470: 2426: 2418: 2377: 2369: 2317: 2271: 2236: 2228: 2170: 2162: 2115: 2073: 2065: 2021: 2013: 1966: 1958: 1888: 1855: 1847: 1806: 1708: 1700: 1650: 1642: 1595: 1539: 1493: 1485: 1435: 1396: 1388: 1341: 1333: 1284: 1276: 1142: 1062: 1054: 1004: 950: 900: 892: 510: 502: 325: 2510: 2046:"ÎČ-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage" 3543: 3463: 3422: 3406: 3387:"Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries" 3351: 3296: 3241: 3199: 3161: 3153: 3115: 3099: 3060: 3011: 2945: 2887: 2879: 2850: 2797: 2742: 2710: 2664: 2627: 2588: 2522: 2462: 2451:"Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity" 2408: 2359: 2309: 2263: 2218: 2154: 2107: 2057: 2005: 1950: 1939:"Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors" 1916: 1837: 1798: 1747: 1692: 1634: 1585: 1531: 1477: 1427: 1380: 1323: 1315: 1266: 1237: 1206: 1179: 1134: 1101: 1046: 996: 942: 884: 708:. That means the functions of COFs have not yet been well explored, but COFs can be used as 509:(PXRD) is used. In conjunction with simulated powder packing models, PXRD can determine COF 481: 1614: 2976: 771: 767: 729: 664: 257: 173: 984: 923:"Covalent organic frameworks: a materials platform for structural and functional designs" 3581: 3402: 3292: 2660: 2577:"Eyes of covalent organic frameworks: cooperation between analytical chemistry and COFs" 2355: 2214: 1688: 1630: 1581: 1130: 938: 3427: 3386: 3120: 3087: 2892: 2867: 2267: 2142: 1535: 725: 713: 27: 3064: 1672: 983:
Aykanat, Aylin; Meng, Zheng; Benedetto, Georganna; Mirica, Katherine A. (2020-07-14).
3608: 3491: 3371: 3324: 3261: 3175: 3072: 3033: 2825: 2550: 2490: 2182: 2127: 1978: 1773:
Jackson, Karl T.; Rabbani, Mohammad G.; Reich, Thomas E.; El-Kaderi, Hani M. (2011).
1759: 1505: 1415: 1255:"Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks" 1016: 962: 834: 746: 618: 578: 351: 139: 45: 2770: 1720: 1465: 1447: 1154: 2786:"Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes" 1353: 736:
and epoxides into cyclic organic carbonates with enhanced catalyst recyclability.
701: 681: 586: 470: 394: 386: 307: 1000: 922: 278: 3157: 1751: 1638: 684:
functionalities alternately linked in a mesoporous hexagonal skeleton, is highly
123:(COF-5) revealed 2-dimensional expanded porous graphitic layers that have either 3451: 2937: 2785: 2158: 1938: 1876:; Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. 1873: 705: 685: 157: 3103: 2949: 1775:"Synthesis of highly porous borazine-linked polymers and their application to H 1734:
Yusran, Yusran; Li, Hui; Guan, Xinyu; Fang, Qianrong; Qiu, Shilun (June 2020).
946: 196: 3339: 2297: 1590: 1565: 1431: 1167:
Kitagawa, S.; Kitaura, R.; Noro, S.; Functional Porous Coordination Polymers.
689: 450: 83:). Powder X-ray diffraction studies of the highly crystalline products having 49: 3475: 3418: 3308: 3111: 3025: 2809: 2754: 2676: 2644: 2602: 2534: 2474: 2422: 2373: 2232: 2199:"Seeded growth of single-crystal two-dimensional covalent organic frameworks" 2166: 2119: 2069: 2045: 2017: 1962: 1851: 1810: 1704: 1646: 1599: 1489: 1439: 1392: 1337: 1303: 1280: 1058: 1008: 954: 896: 770:
for energy-related catalysis, including carbon dioxide electro-reduction and
2593: 2576: 2364: 2340:"Single-crystal x-ray diffraction structures of covalent organic frameworks" 2339: 2223: 2198: 1696: 1416:"From Top-Down to Bottom-Up to Hybrid Nanotechnologies: Road to Nanodevices" 1138: 1105: 432: 3557: 3548: 3531: 3483: 3436: 3410: 3363: 3355: 3316: 3300: 3253: 3211: 3203: 3129: 3016: 2991: 2917:"New Technology to Capture, Convert Carbon Dioxide | MIT Technology Review" 2901: 2883: 2854: 2817: 2762: 2684: 2542: 2526: 2482: 2430: 2381: 2321: 2313: 2240: 2174: 2077: 2025: 1970: 1892: 1859: 1712: 1654: 1497: 1400: 1345: 1288: 1183: 1146: 1066: 904: 3507:"Nano-sponges on graphene make efficient filters of industrial wastewater" 2643:
Mendoza-Cortés, José L.; Han, Sang Soo; Goddard, William A. (2012-02-16).
2256:"Synthesis of 2D Covalent Organic Frameworks at the Solid–Vapor Interface" 374: 172:(MOFs), and covalent organic frameworks (COFs). Zeolites are microporous, 3467: 3245: 2801: 2746: 2466: 1954: 1481: 1328: 1271: 1254: 724:
In 2015 the use of highly porous, catalyst-decorated COFs for converting
709: 355: 347: 319: 290: 132: 32: 3166: 2575:
Guo, Hao; Zhang, Longwen; Xue, Rui; Ma, Baolong; Yang, Wu (2019-03-26).
1319: 1241: 2938:"Functional Ionic Porous Frameworks Based on Triaminoguanidinium for CO 2730: 2450: 2413: 2396: 2111: 2095: 1842: 1825: 1802: 1774: 1384: 1368: 1367:
Yu, Hai-Dong; Regulacio, Michelle D.; Ye, Enyi; Han, Ming-Yong (2013).
1050: 1034: 888: 872: 844: 787: 390: 246: 205: 177: 165: 2714: 2668: 2631: 2061: 2009: 1920: 1210: 677: 286: 154: 1993: 1566:"Reticular chemistry at the atomic, molecular, and framework scales" 188:
areas surpassing those of well-known zeolites and porous silicates.
2449:
Meng, Zheng; Stolz, Robert M.; Mirica, Katherine A. (2019-07-31).
469: 383: 373: 230: 228:", abiding by the concept termed by Arthur R. von Hippel in 1956. 195: 873:"Covalent organic frameworks (COFs): from design to applications" 749:
sensors, as well as electrochemical sensors for small molecules.
1826:"On the road towards electroactive covalent organic frameworks" 1524:"Two- and Three-dimensional Covalent Organic Frameworks (COFs)" 602: 180:
and are a new development on the interface between molecular
3047:
Hu, Hui; Yan, Qianqian; Ge, Rile; Gao, Yanan (July 2018).
1564:
Zhang, Yue-Biao; Li, Qiaowei; Deng, Hexiang (2021-11-28).
557:
can be used to identify elemental composition and ratios.
806:
A 3D COF was created, characterised by an interconnected
389:
reaction which eliminates water (exemplified by reacting
3049:"Covalent organic frameworks as heterogeneous catalysts" 921:
Huang, Ning; Wang, Ping; Jiang, Donglin (2016-09-20).
322:) ring with the elimination of three water molecules. 1304:"Reticular synthesis and the design of new materials" 758:
electrochemical, as well as photochemical reactions.
676:
A highly ordered π-conjugation TP-COF, consisting of
3277:"Covalent‐Organic‐Framework‐Based Li–CO 2 Batteries" 2143:"Electronic Devices Using Open Framework Materials" 1084: 1082: 1080: 1078: 1076: 342:
Formation of CTF-1 COF featuring triazine linkages.
1673:"Porous, Crystalline, Covalent Organic Frameworks" 1033:Feng, Xiao; Ding, Xuesong; Jiang, Donglin (2012). 354:reaction of simple, cheap, and abundant aromatic 1466:"Modular Total Synthesis in Reticular Chemistry" 786:, and various different metal-ion batteries and 370:A structural representation of the TpOMe-DAQ COF 306:The most popular COF synthesis route is a boron 408:A structural representation of the DAAQ-TFP COF 3385:Miner, Elise M.; Dincă, Mircea (2019-07-15). 1369:"Chemical routes to top-down nanofabrication" 8: 2395:Haase, Frederik; Lotsch, Bettina V. (2020). 551:inductively coupled plasma mass spectrometry 1736:"Covalent Organic Frameworks for Catalysis" 350:materials which can be achieved by dynamic 164:Types of porous crystalline solids include 1522:Chen, Q.; Dalapati, S.; Jiang, D. (2017), 3547: 3426: 3165: 3119: 3015: 2891: 2592: 2412: 2363: 2222: 1841: 1589: 1528:Comprehensive Supramolecular Chemistry II 1327: 1270: 3456:Journal of the American Chemical Society 3234:Journal of the American Chemical Society 2790:Journal of the American Chemical Society 2735:Journal of the American Chemical Society 2455:Journal of the American Chemical Society 2050:Journal of the American Chemical Society 1998:Journal of the American Chemical Society 1943:Journal of the American Chemical Society 1470:Journal of the American Chemical Society 1259:Journal of the American Chemical Society 1220: 1218: 1194:James, S. L.; Metal-organic frameworks. 403: 365: 337: 324: 277: 256: 200:Schematic Figure of Reticular Chemistry. 3600:Welcome to the Yaghi Laboratory Website 3344:Angewandte Chemie International Edition 3086:Guo, Jia; Jiang, Donglin (2020-06-24). 2724: 2722: 2570: 2568: 2566: 2564: 2562: 2560: 2515:Angewandte Chemie International Edition 2504: 2502: 2500: 2444: 2442: 2440: 2333: 2331: 2302:Angewandte Chemie International Edition 2089: 2087: 1414:Teo, Boon K.; Sun, X. H. (2006-12-05). 860: 766:COFs have been studied as non-metallic 3192:ACS Applied Materials & Interfaces 2972: 2961: 2915:Martin, Richard (September 24, 2015). 1459: 1457: 2260:Encyclopedia of Interfacial Chemistry 2039: 2037: 2035: 1932: 1930: 1928: 1666: 1664: 1517: 1515: 1028: 1026: 978: 976: 974: 972: 916: 914: 866: 864: 7: 1824:Dogru, Mirjam; Bein, Thomas (2014). 2649:The Journal of Physical Chemistry A 216:Reticular synthesis enables facile 142:and colleagues, which received the 2942:Conversion and Combating Microbes" 2268:10.1016/b978-0-12-409547-2.13071-9 1536:10.1016/b978-0-12-409547-2.12608-3 871:Ding, San-Yuan; Wang, Wei (2013). 16:Class of solid chemical substances 14: 850:Hydrogen-bonded organic framework 44:While at University of Michigan, 3574: 547:X-ray photoelectron spectroscopy 535:transmission electron microscopy 2581:Reviews in Analytical Chemistry 451:Brunauer–Emmett–Teller analysis 3505:Irving, Michael (2022-08-05). 2262:, Elsevier, pp. 446–452, 1530:, Elsevier, pp. 271–290, 830:Conjugated microporous polymer 1: 3065:10.1016/S1872-2067(18)63057-8 1613:von Hippel, A. (1956-02-24). 1253:Yaghi, Omar M. (2016-12-07). 1035:"Covalent organic frameworks" 1001:10.1021/acs.chemmater.9b05289 696:Porosity/surface-area effects 539:Scanning tunneling microscope 399:1,3,5-triformylphloroglucinol 3158:10.1016/j.mtchem.2018.12.002 3053:Chinese Journal of Catalysis 1752:10.1016/j.enchem.2020.100035 1639:10.1126/science.123.3191.315 802:Pharmaceutical drug delivery 531:scanning electron microscope 334:Triazine based trimerization 3587:covalent organic framework 2254:Chen, T.; Wang, D. (2018), 2159:10.1021/acs.chemrev.0c00033 529:imagine techniques such as 20:Covalent organic frameworks 3631: 3104:10.1021/acscentsci.0c00463 3004:ACS Applied Nano Materials 2950:10.26434/chemrxiv.10332431 1872:Kuhn, P.; Antonietti, M.; 1671:Cote, A. P. (2005-11-18). 1420:Journal of Cluster Science 947:10.1038/natrevmats.2016.68 566:Gas storage and separation 522:nuclear magnetic resonance 275:the formation of 3D COFs. 3146:Materials Today Chemistry 1591:10.1007/s12274-020-3226-6 1432:10.1007/s10876-006-0086-5 489:, respectively. Emergent 2401:Chemical Society Reviews 1373:Chemical Society Reviews 1039:Chemical Society Reviews 927:Nature Reviews Materials 663:. The COFs outperformed 507:powder X-ray diffraction 297:of phenyldiboronic acid. 293:rings, synthesized by a 192:Secondary building units 170:metal-organic frameworks 2594:10.1515/revac-2017-0023 2365:10.1126/science.aat7679 2224:10.1126/science.aar7883 1697:10.1126/science.1120411 1615:"Molecular Engineering" 1139:10.1126/science.1139915 1106:10.1126/science.1120411 840:Metal-organic framework 543:atomic force microscopy 520:(IR) spectroscopy, and 491:electrical conductivity 285:of COF-1 consisting of 184:and materials science. 144:Newcomb Cleveland Prize 69:hexahydroxytriphenylene 3549:10.1002/anie.202300172 3411:10.1098/rsta.2018.0225 3356:10.1002/anie.201805540 3301:10.1002/adma.201905879 3204:10.1021/acsami.5b12370 3017:10.1021/acsanm.9b02117 2971:Cite journal requires 2884:10.1002/anie.201700271 2855:10.1002/anie.200890235 2527:10.1002/anie.202005274 2314:10.1002/anie.200904637 1184:10.1002/anie.200300610 989:Chemistry of Materials 820:Jose L. Mendoza-Cortes 476: 435:on the solid support. 413:Solvothermal synthesis 409: 379: 371: 343: 330: 298: 262: 237: 201: 182:coordination chemistry 125:staggered conformation 2840:Angew. Chem. Int. Ed. 1878:Angew. Chem. Int. Ed. 1169:Angew. Chem. Int. Ed. 784:lithium-ion batteries 473: 407: 377: 369: 341: 328: 295:condensation reaction 281: 260: 234: 226:molecular engineering 199: 129:eclipsed conformation 54:phenyl diboronic acid 3468:10.1021/jacs.9b08147 3246:10.1021/jacs.7b11940 2872:Angew. Chem. Int. Ed 2802:10.1021/jacs.0c11159 2747:10.1021/jacs.8b05136 2467:10.1021/jacs.9b03441 1955:10.1021/jacs.8b06460 1482:10.1021/jacs.9b12408 1272:10.1021/jacs.6b11821 3403:2019RSPTA.37780225M 3293:2019AdM....3105879L 3092:ACS Central Science 2741:(32): 10094–10098. 2661:2012JPCA..116.1621M 2521:(38): 16587–16593. 2461:(30): 11929–11937. 2356:2018Sci...361...48M 2215:2018Sci...361...52E 2056:(45): 16821–16824. 2004:(48): 19524–19527. 1949:(35): 10941–10945. 1689:2005Sci...310.1166C 1683:(5751): 1166–1170. 1631:1956Sci...123..315V 1582:2021NaRes..14..335Z 1320:10.1038/nature01650 1265:(48): 15507–15509. 1242:10.1038/nature01650 1131:2007Sci...316..268E 939:2016NatRM...116068H 825:Reticular chemistry 555:combustion analysis 422:Templated synthesis 253:Synthetic chemistry 218:bottom-up synthesis 212:Reticular synthesis 3584:has a profile for 3542:(13): e202300172. 3397:(2149): 20180225. 3281:Advanced Materials 2626:, pp 11580–11581. 2414:10.1039/D0CS01027H 2112:10.1039/C9MH00856J 2100:Materials Horizons 1843:10.1039/C3CC46767H 1803:10.1039/c1py00374g 1385:10.1039/c3cs60113g 1051:10.1039/c2cs35157a 889:10.1039/C2CS35072F 688:, harvests a wide 672:Optical properties 477: 410: 380: 372: 362:Imine condensation 344: 331: 302:Boron condensation 299: 283:Skeletal structure 263: 238: 222:bottom-up approach 202: 85:empirical formulas 3590: 3536:Angewandte Chemie 3350:(30): 9443–9446. 2878:(24): 6946–6951. 2715:10.1021/om1009632 2669:10.1021/jp206981d 2632:10.1021/ja803247y 2617:J. Am. Chem. Soc. 2407:(23): 8469–8500. 2308:(50): 9457–9460. 2277:978-0-12-809894-3 2153:(16): 8581–8640. 2062:10.1021/ja409421d 2010:10.1021/ja308278w 1921:10.1021/ja8096256 1836:(42): 5531–5546. 1791:Polymer Chemistry 1625:(3191): 315–317. 1545:978-0-12-803199-5 1314:(6941): 705–714. 1125:(5822): 268–272. 995:(13): 5372–5409. 511:crystal structure 503:X-ray diffraction 428:dynamic chemistry 26:) are a class of 3622: 3588: 3578: 3577: 3562: 3561: 3551: 3527: 3521: 3520: 3518: 3517: 3502: 3496: 3495: 3447: 3441: 3440: 3430: 3382: 3376: 3375: 3335: 3329: 3328: 3272: 3266: 3265: 3240:(3): 1116–1122. 3231: 3222: 3216: 3215: 3198:(8): 5366–5375. 3186: 3180: 3179: 3169: 3140: 3134: 3133: 3123: 3083: 3077: 3076: 3059:(7): 1167–1179. 3044: 3038: 3037: 3019: 2987: 2981: 2980: 2974: 2969: 2967: 2959: 2957: 2956: 2933: 2927: 2926: 2924: 2923: 2912: 2906: 2905: 2895: 2863: 2857: 2849:, pp 8826-8830. 2836: 2830: 2829: 2796:(3): 1466–1473. 2781: 2775: 2774: 2726: 2717: 2709:, pp 6790–6800. 2695: 2689: 2688: 2655:(6): 1621–1631. 2640: 2634: 2613: 2607: 2606: 2596: 2572: 2555: 2554: 2506: 2495: 2494: 2446: 2435: 2434: 2416: 2392: 2386: 2385: 2367: 2335: 2326: 2325: 2293: 2287: 2286: 2285: 2284: 2251: 2245: 2244: 2226: 2193: 2187: 2186: 2147:Chemical Reviews 2138: 2132: 2131: 2091: 2082: 2081: 2041: 2030: 2029: 1989: 1983: 1982: 1934: 1923: 1915:, pp 4570-4571. 1905:J. Am. Chem. Soc 1901: 1895: 1887:, pp 3450-3453. 1870: 1864: 1863: 1845: 1821: 1815: 1814: 1770: 1764: 1763: 1731: 1725: 1724: 1668: 1659: 1658: 1610: 1604: 1603: 1593: 1561: 1555: 1554: 1553: 1552: 1519: 1510: 1509: 1476:(6): 3069–3076. 1461: 1452: 1451: 1411: 1405: 1404: 1364: 1358: 1357: 1331: 1299: 1293: 1292: 1274: 1250: 1244: 1222: 1213: 1211:10.1039/B200393G 1192: 1186: 1178:, pp 2334-2375. 1165: 1159: 1158: 1114: 1108: 1100:, pp 1166-1170. 1086: 1071: 1070: 1030: 1021: 1020: 980: 967: 966: 918: 909: 908: 868: 794:Water filtration 768:electrocatalysts 762:Electrocatalysis 665:molecular sieves 574:Hydrogen storage 497:Characterization 289:rings joined by 3630: 3629: 3625: 3624: 3623: 3621: 3620: 3619: 3615:Porous polymers 3605: 3604: 3596: 3595: 3594: 3579: 3575: 3570: 3565: 3529: 3528: 3524: 3515: 3513: 3504: 3503: 3499: 3449: 3448: 3444: 3384: 3383: 3379: 3337: 3336: 3332: 3287:(48): 1905879. 3274: 3273: 3269: 3229: 3224: 3223: 3219: 3188: 3187: 3183: 3142: 3141: 3137: 3085: 3084: 3080: 3046: 3045: 3041: 2999: 2995: 2989: 2988: 2984: 2970: 2960: 2954: 2952: 2941: 2935: 2934: 2930: 2921: 2919: 2914: 2913: 2909: 2865: 2864: 2860: 2837: 2833: 2783: 2782: 2778: 2728: 2727: 2720: 2699:Organometallics 2696: 2692: 2642: 2641: 2637: 2614: 2610: 2574: 2573: 2558: 2508: 2507: 2498: 2448: 2447: 2438: 2394: 2393: 2389: 2350:(6397): 48–52. 2337: 2336: 2329: 2295: 2294: 2290: 2282: 2280: 2278: 2253: 2252: 2248: 2209:(6397): 52–57. 2195: 2194: 2190: 2140: 2139: 2135: 2093: 2092: 2085: 2043: 2042: 2033: 1991: 1990: 1986: 1936: 1935: 1926: 1902: 1898: 1871: 1867: 1823: 1822: 1818: 1786: 1782: 1778: 1772: 1771: 1767: 1733: 1732: 1728: 1670: 1669: 1662: 1612: 1611: 1607: 1563: 1562: 1558: 1550: 1548: 1546: 1521: 1520: 1513: 1463: 1462: 1455: 1413: 1412: 1408: 1379:(14): 6006–18. 1366: 1365: 1361: 1301: 1300: 1296: 1252: 1251: 1247: 1223: 1216: 1196:Chem. Soc. Rev. 1193: 1189: 1166: 1162: 1116: 1115: 1111: 1087: 1074: 1045:(18): 6010–22. 1032: 1031: 1024: 982: 981: 970: 920: 919: 912: 870: 869: 862: 858: 816: 804: 796: 780: 772:water splitting 764: 755: 742: 735: 730:carbon monoxide 722: 698: 674: 662: 658: 654: 650: 646: 642: 636: 628: 624: 616: 614:Methane storage 609: 600: 596: 592: 584: 576: 568: 563: 526:solid-state NMR 499: 468: 459: 446: 441: 424: 415: 364: 336: 317: 313: 304: 272: 255: 214: 194: 174:aluminosilicate 152: 122: 118: 114: 110: 106: 102: 98: 94: 90: 82: 78: 74: 66: 63: 59: 42: 28:porous polymers 17: 12: 11: 5: 3628: 3626: 3618: 3617: 3607: 3606: 3603: 3602: 3580: 3573: 3572: 3571: 3569: 3568:External links 3566: 3564: 3563: 3522: 3497: 3442: 3377: 3330: 3267: 3217: 3181: 3135: 3098:(6): 869–879. 3078: 3039: 3010:(1): 555–562. 2997: 2993: 2982: 2973:|journal= 2939: 2928: 2907: 2858: 2831: 2776: 2718: 2690: 2635: 2608: 2556: 2496: 2436: 2387: 2327: 2288: 2276: 2246: 2188: 2133: 2106:(2): 411–454. 2083: 2031: 1984: 1924: 1896: 1865: 1816: 1784: 1780: 1776: 1765: 1726: 1660: 1605: 1576:(2): 335–337. 1556: 1544: 1511: 1453: 1426:(4): 529–540. 1406: 1359: 1294: 1245: 1236:, pp 705-714. 1214: 1205:, pp 276-288. 1187: 1160: 1109: 1072: 1022: 968: 910: 883:(2): 548–568. 877:Chem. Soc. Rev 859: 857: 854: 853: 852: 847: 842: 837: 832: 827: 822: 815: 812: 803: 800: 795: 792: 779: 778:Energy storage 776: 763: 760: 754: 751: 747:chemiresistive 741: 738: 733: 726:carbon dioxide 721: 720:Carbon capture 718: 714:gas separation 697: 694: 673: 670: 660: 656: 652: 648: 644: 640: 635: 634:Gas separation 632: 626: 622: 615: 612: 607: 598: 594: 590: 582: 575: 572: 567: 564: 562: 559: 553:(ICP-MS), and 498: 495: 467: 464: 458: 455: 445: 442: 440: 437: 423: 420: 414: 411: 363: 360: 335: 332: 315: 311: 303: 300: 271: 268: 254: 251: 213: 210: 193: 190: 151: 148: 120: 116: 112: 108: 104: 100: 96: 92: 88: 80: 76: 72: 64: 61: 57: 48:(currently at 41: 38: 15: 13: 10: 9: 6: 4: 3: 2: 3627: 3616: 3613: 3612: 3610: 3601: 3598: 3597: 3592: 3591: 3583: 3567: 3559: 3555: 3550: 3545: 3541: 3537: 3533: 3526: 3523: 3512: 3508: 3501: 3498: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3465: 3461: 3457: 3453: 3446: 3443: 3438: 3434: 3429: 3424: 3420: 3416: 3412: 3408: 3404: 3400: 3396: 3392: 3388: 3381: 3378: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3271: 3268: 3263: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3228: 3221: 3218: 3213: 3209: 3205: 3201: 3197: 3193: 3185: 3182: 3177: 3173: 3168: 3163: 3159: 3155: 3151: 3147: 3139: 3136: 3131: 3127: 3122: 3117: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3082: 3079: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3043: 3040: 3035: 3031: 3027: 3023: 3018: 3013: 3009: 3005: 3001: 2986: 2983: 2978: 2965: 2951: 2947: 2943: 2932: 2929: 2918: 2911: 2908: 2903: 2899: 2894: 2889: 2885: 2881: 2877: 2873: 2869: 2862: 2859: 2856: 2852: 2848: 2844: 2841: 2835: 2832: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2780: 2777: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2725: 2723: 2719: 2716: 2712: 2708: 2704: 2700: 2694: 2691: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2639: 2636: 2633: 2629: 2625: 2621: 2618: 2612: 2609: 2604: 2600: 2595: 2590: 2586: 2582: 2578: 2571: 2569: 2567: 2565: 2563: 2561: 2557: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2505: 2503: 2501: 2497: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2445: 2443: 2441: 2437: 2432: 2428: 2424: 2420: 2415: 2410: 2406: 2402: 2398: 2391: 2388: 2383: 2379: 2375: 2371: 2366: 2361: 2357: 2353: 2349: 2345: 2341: 2334: 2332: 2328: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2289: 2279: 2273: 2269: 2265: 2261: 2257: 2250: 2247: 2242: 2238: 2234: 2230: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2192: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2134: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2088: 2084: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2038: 2036: 2032: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1988: 1985: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1933: 1931: 1929: 1925: 1922: 1918: 1914: 1910: 1906: 1900: 1897: 1894: 1890: 1886: 1882: 1879: 1875: 1869: 1866: 1861: 1857: 1853: 1849: 1844: 1839: 1835: 1831: 1827: 1820: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1769: 1766: 1761: 1757: 1753: 1749: 1746:(3): 100035. 1745: 1741: 1737: 1730: 1727: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1665: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1609: 1606: 1601: 1597: 1592: 1587: 1583: 1579: 1575: 1571: 1570:Nano Research 1567: 1560: 1557: 1547: 1541: 1537: 1533: 1529: 1525: 1518: 1516: 1512: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1460: 1458: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1410: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1363: 1360: 1355: 1351: 1347: 1343: 1339: 1335: 1330: 1329:2027.42/62718 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1295: 1290: 1286: 1282: 1278: 1273: 1268: 1264: 1260: 1256: 1249: 1246: 1243: 1239: 1235: 1231: 1227: 1221: 1219: 1215: 1212: 1208: 1204: 1200: 1197: 1191: 1188: 1185: 1181: 1177: 1173: 1170: 1164: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1107: 1103: 1099: 1095: 1091: 1085: 1083: 1081: 1079: 1077: 1073: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1027: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 979: 977: 975: 973: 969: 964: 960: 956: 952: 948: 944: 940: 936: 933:(10): 16068. 932: 928: 924: 917: 915: 911: 906: 902: 898: 894: 890: 886: 882: 878: 874: 867: 865: 861: 855: 851: 848: 846: 843: 841: 838: 836: 835:Omar M. Yaghi 833: 831: 828: 826: 823: 821: 818: 817: 813: 811: 809: 801: 799: 793: 791: 789: 785: 777: 775: 773: 769: 761: 759: 752: 750: 748: 739: 737: 731: 727: 719: 717: 715: 711: 707: 703: 695: 693: 691: 687: 683: 679: 671: 669: 666: 633: 631: 620: 619:Omar M. Yaghi 613: 611: 604: 588: 580: 579:Omar M. Yaghi 573: 571: 565: 560: 558: 556: 552: 548: 544: 540: 536: 532: 527: 523: 519: 514: 512: 508: 504: 496: 494: 492: 488: 483: 475:conductivity. 472: 465: 463: 457:Crystallinity 456: 454: 452: 443: 438: 436: 434: 429: 421: 419: 412: 406: 402: 400: 396: 392: 388: 385: 376: 368: 361: 359: 357: 353: 352:trimerization 349: 340: 333: 327: 323: 321: 309: 301: 296: 292: 288: 284: 280: 276: 269: 267: 259: 252: 250: 248: 242: 233: 229: 227: 223: 219: 211: 209: 207: 198: 191: 189: 185: 183: 179: 175: 171: 167: 162: 159: 156: 149: 147: 145: 141: 140:Omar M. Yaghi 136: 134: 130: 126: 111:(COF-1) and C 86: 70: 55: 51: 47: 46:Omar M. Yaghi 39: 37: 34: 29: 25: 21: 3586: 3539: 3535: 3525: 3514:. Retrieved 3510: 3500: 3462:(1): 16–20. 3459: 3455: 3445: 3394: 3390: 3380: 3347: 3343: 3333: 3284: 3280: 3270: 3237: 3233: 3220: 3195: 3191: 3184: 3167:10397/101525 3149: 3145: 3138: 3095: 3091: 3081: 3056: 3052: 3042: 3007: 3003: 2985: 2964:cite journal 2953:. Retrieved 2931: 2920:. Retrieved 2910: 2875: 2871: 2861: 2846: 2842: 2839: 2834: 2793: 2789: 2779: 2738: 2734: 2706: 2702: 2698: 2693: 2652: 2648: 2638: 2623: 2619: 2616: 2611: 2584: 2580: 2518: 2514: 2458: 2454: 2404: 2400: 2390: 2347: 2343: 2305: 2301: 2291: 2281:, retrieved 2259: 2249: 2206: 2202: 2191: 2150: 2146: 2136: 2103: 2099: 2053: 2049: 2001: 1997: 1987: 1946: 1942: 1912: 1908: 1904: 1899: 1884: 1880: 1877: 1868: 1833: 1830:Chem. Commun 1829: 1819: 1797:(12): 2775. 1794: 1790: 1768: 1743: 1739: 1729: 1680: 1676: 1622: 1618: 1608: 1573: 1569: 1559: 1549:, retrieved 1527: 1473: 1469: 1423: 1419: 1409: 1376: 1372: 1362: 1311: 1307: 1297: 1262: 1258: 1248: 1233: 1229: 1225: 1202: 1198: 1195: 1190: 1175: 1171: 1168: 1163: 1122: 1118: 1112: 1097: 1093: 1089: 1042: 1038: 992: 988: 930: 926: 880: 876: 805: 797: 781: 765: 756: 743: 723: 702:surface area 699: 682:triphenylene 675: 637: 617: 587:surface area 577: 569: 561:Applications 515: 500: 487:π-π stacking 478: 466:Conductivity 460: 447: 425: 416: 395:benzaldehyde 387:condensation 381: 345: 308:condensation 305: 273: 270:COF linkages 264: 243: 239: 215: 203: 186: 163: 153: 137: 43: 23: 19: 18: 706:gas storage 686:luminescent 533:(SEM), and 158:crystalline 127:(COF-1) or 3589:(Q5178887) 3516:2022-08-06 2955:2022-06-22 2922:2015-09-27 2283:2021-03-01 1874:Thomas, A. 1740:EnergyChem 1551:2021-03-01 856:References 808:mesoporous 690:wavelength 541:(STM) and 439:Properties 50:UCBerkeley 3511:New Atlas 3492:209317683 3476:0002-7863 3419:1364-503X 3372:205407552 3325:204545588 3309:0935-9648 3262:207188096 3176:139305086 3152:: 34–60. 3112:2374-7943 3073:102933312 3034:214062588 3026:2574-0970 2826:231596406 2810:0002-7863 2755:0002-7863 2677:1089-5639 2603:2191-0189 2551:218765357 2535:1433-7851 2491:195694903 2475:0002-7863 2423:0306-0012 2374:0036-8075 2233:0036-8075 2183:220670221 2167:0009-2665 2128:204292382 2120:2051-6347 2070:0002-7863 2018:0002-7863 1979:207193051 1963:0002-7863 1852:1359-7345 1811:1759-9954 1760:219459194 1705:0036-8075 1647:0036-8075 1600:1998-0124 1506:210882977 1490:0002-7863 1440:1040-7278 1393:0306-0012 1338:0028-0836 1281:0002-7863 1059:0306-0012 1017:225664378 1009:0897-4756 963:138892338 955:2058-8437 897:0306-0012 753:Catalysis 712:, or for 710:catalysts 433:thin film 150:Structure 133:Angstroms 3609:Category 3558:36688253 3484:31820958 3437:31130094 3364:29863784 3317:31609043 3254:29284263 3212:26840757 3130:32607434 2902:28318084 2818:33438399 2771:51696424 2763:30021065 2685:22188543 2543:32436331 2483:31241936 2431:33155009 2382:29976818 2322:19921728 2241:29930093 2175:32692163 2078:24147596 2026:23153356 1971:30132332 1893:18330878 1860:24667827 1787:storage" 1783:, and CH 1721:35798005 1713:16293756 1655:17774519 1498:31971790 1448:98710293 1401:23653019 1346:12802325 1289:27934016 1155:19555677 1147:17431178 1067:22821129 905:23060270 814:See also 788:cathodes 518:infrared 444:Porosity 356:nitriles 348:triazine 320:boroxine 291:boroxine 206:zeolites 166:zeolites 33:polymers 3582:Scholia 3428:6562342 3399:Bibcode 3289:Bibcode 3121:7318070 2893:5485174 2657:Bibcode 2352:Bibcode 2344:Science 2211:Bibcode 2203:Science 1685:Bibcode 1677:Science 1627:Bibcode 1619:Science 1578:Bibcode 1354:4300639 1127:Bibcode 1119:Science 1090:Science 935:Bibcode 845:Zeolite 740:Sensing 716:, etc. 655:, and H 549:(XPS), 391:aniline 247:crystal 236:(COFs). 178:ligands 40:History 3556:  3490:  3482:  3474:  3435:  3425:  3417:  3370:  3362:  3323:  3315:  3307:  3260:  3252:  3210:  3174:  3128:  3118:  3110:  3071:  3032:  3024:  2900:  2890:  2824:  2816:  2808:  2769:  2761:  2753:  2683:  2675:  2601:  2549:  2541:  2533:  2489:  2481:  2473:  2429:  2421:  2380:  2372:  2320:  2274:  2239:  2231:  2181:  2173:  2165:  2126:  2118:  2076:  2068:  2024:  2016:  1977:  1969:  1961:  1891:  1858:  1850:  1809:  1758:  1719:  1711:  1703:  1653:  1645:  1598:  1542:  1504:  1496:  1488:  1446:  1438:  1399:  1391:  1352:  1344:  1336:  1308:Nature 1287:  1279:  1226:Nature 1153:  1145:  1065:  1057:  1015:  1007:  961:  953:  903:  895:  678:pyrene 482:Mirica 287:phenyl 155:Porous 67:) and 3488:S2CID 3368:S2CID 3321:S2CID 3258:S2CID 3230:(PDF) 3172:S2CID 3069:S2CID 3030:S2CID 2822:S2CID 2767:S2CID 2587:(1). 2547:S2CID 2487:S2CID 2179:S2CID 2124:S2CID 1975:S2CID 1756:S2CID 1717:S2CID 1502:S2CID 1444:S2CID 1350:S2CID 1151:S2CID 1013:S2CID 959:S2CID 728:into 393:with 384:imine 3554:PMID 3480:PMID 3472:ISSN 3433:PMID 3415:ISSN 3360:PMID 3313:PMID 3305:ISSN 3250:PMID 3208:PMID 3126:PMID 3108:ISSN 3022:ISSN 2977:help 2898:PMID 2843:2008 2814:PMID 2806:ISSN 2759:PMID 2751:ISSN 2703:2010 2681:PMID 2673:ISSN 2620:2008 2599:ISSN 2539:PMID 2531:ISSN 2479:PMID 2471:ISSN 2427:PMID 2419:ISSN 2378:PMID 2370:ISSN 2318:PMID 2272:ISBN 2237:PMID 2229:ISSN 2171:PMID 2163:ISSN 2116:ISSN 2074:PMID 2066:ISSN 2022:PMID 2014:ISSN 1967:PMID 1959:ISSN 1909:2009 1889:PMID 1881:2008 1856:PMID 1848:ISSN 1807:ISSN 1779:, CO 1709:PMID 1701:ISSN 1651:PMID 1643:ISSN 1596:ISSN 1540:ISBN 1494:PMID 1486:ISSN 1436:ISSN 1397:PMID 1389:ISSN 1342:PMID 1334:ISSN 1285:PMID 1277:ISSN 1230:2003 1199:2003 1172:2004 1143:PMID 1094:2005 1063:PMID 1055:ISSN 1005:ISSN 951:ISSN 901:PMID 893:ISSN 704:for 680:and 382:The 79:(OH) 24:COFs 3544:doi 3464:doi 3460:142 3423:PMC 3407:doi 3395:377 3352:doi 3297:doi 3242:doi 3238:140 3200:doi 3162:hdl 3154:doi 3116:PMC 3100:doi 3061:doi 3012:doi 2946:doi 2888:PMC 2880:doi 2851:doi 2798:doi 2794:143 2743:doi 2739:140 2711:doi 2665:doi 2653:116 2628:doi 2624:130 2589:doi 2523:doi 2463:doi 2459:141 2409:doi 2360:doi 2348:361 2310:doi 2264:doi 2219:doi 2207:361 2155:doi 2151:120 2108:doi 2058:doi 2054:135 2006:doi 2002:134 1951:doi 1947:140 1917:doi 1913:131 1838:doi 1799:doi 1748:doi 1693:doi 1681:310 1635:doi 1623:123 1586:doi 1532:doi 1478:doi 1474:142 1428:doi 1381:doi 1324:hdl 1316:doi 1312:423 1267:doi 1263:138 1238:doi 1234:423 1207:doi 1180:doi 1135:doi 1123:316 1102:doi 1098:310 1047:doi 997:doi 943:doi 885:doi 659:/CH 647:, H 643:/CO 603:THF 99:·(C 95:BO) 3611:: 3552:. 3540:62 3538:. 3534:. 3509:. 3486:. 3478:. 3470:. 3458:. 3454:. 3431:. 3421:. 3413:. 3405:. 3393:. 3389:. 3366:. 3358:. 3348:57 3346:. 3342:. 3319:. 3311:. 3303:. 3295:. 3285:31 3283:. 3279:. 3256:. 3248:. 3236:. 3232:. 3206:. 3194:. 3170:. 3160:. 3150:12 3148:. 3124:. 3114:. 3106:. 3094:. 3090:. 3067:. 3057:39 3055:. 3051:. 3028:. 3020:. 3006:. 3002:. 2992:"H 2968:: 2966:}} 2962:{{ 2944:. 2896:. 2886:. 2876:56 2874:. 2870:. 2847:47 2845:, 2820:. 2812:. 2804:. 2792:. 2788:. 2765:. 2757:. 2749:. 2737:. 2733:. 2721:^ 2707:29 2705:, 2701:. 2679:. 2671:. 2663:. 2651:. 2647:. 2622:, 2597:. 2585:38 2583:. 2579:. 2559:^ 2545:. 2537:. 2529:. 2519:59 2517:. 2513:. 2499:^ 2485:. 2477:. 2469:. 2457:. 2453:. 2439:^ 2425:. 2417:. 2405:49 2403:. 2399:. 2376:. 2368:. 2358:. 2346:. 2342:. 2330:^ 2316:. 2306:48 2304:. 2300:. 2270:, 2258:, 2235:. 2227:. 2217:. 2205:. 2201:. 2177:. 2169:. 2161:. 2149:. 2145:. 2122:. 2114:. 2102:. 2098:. 2086:^ 2072:. 2064:. 2052:. 2048:. 2034:^ 2020:. 2012:. 2000:. 1996:. 1973:. 1965:. 1957:. 1945:. 1941:. 1927:^ 1911:, 1907:. 1885:47 1883:. 1854:. 1846:. 1834:50 1832:. 1828:. 1805:. 1793:. 1789:. 1754:. 1742:. 1738:. 1715:. 1707:. 1699:. 1691:. 1679:. 1675:. 1663:^ 1649:. 1641:. 1633:. 1621:. 1617:. 1594:. 1584:. 1574:14 1572:. 1568:. 1538:, 1526:, 1514:^ 1500:. 1492:. 1484:. 1472:. 1468:. 1456:^ 1442:. 1434:. 1424:17 1422:. 1418:. 1395:. 1387:. 1377:42 1375:. 1371:. 1348:. 1340:. 1332:. 1322:. 1310:. 1306:. 1283:. 1275:. 1261:. 1257:. 1232:, 1228:. 1217:^ 1203:32 1201:, 1176:43 1174:, 1149:. 1141:. 1133:. 1121:. 1096:, 1092:. 1075:^ 1061:. 1053:. 1043:41 1041:. 1037:. 1025:^ 1011:. 1003:. 993:32 991:. 987:. 971:^ 957:. 949:. 941:. 929:. 925:. 913:^ 899:. 891:. 881:42 879:. 875:. 863:^ 790:. 651:/N 513:. 249:. 168:, 119:BO 105:12 87:(C 73:18 71:(C 56:(C 3593:. 3560:. 3546:: 3519:. 3494:. 3466:: 3439:. 3409:: 3401:: 3374:. 3354:: 3327:. 3299:: 3291:: 3264:. 3244:: 3214:. 3202:: 3196:8 3178:. 3164:: 3156:: 3132:. 3102:: 3096:6 3075:. 3063:: 3036:. 3014:: 3008:3 2998:2 2996:O 2994:2 2979:) 2975:( 2958:. 2948:: 2940:2 2925:. 2904:. 2882:: 2853:: 2828:. 2800:: 2773:. 2745:: 2713:: 2687:. 2667:: 2659:: 2630:: 2605:. 2591:: 2553:. 2525:: 2493:. 2465:: 2433:. 2411:: 2384:. 2362:: 2354:: 2324:. 2312:: 2266:: 2243:. 2221:: 2213:: 2185:. 2157:: 2130:. 2110:: 2104:7 2080:. 2060:: 2028:. 2008:: 1981:. 1953:: 1919:: 1862:. 1840:: 1813:. 1801:: 1795:2 1785:4 1781:2 1777:2 1762:. 1750:: 1744:2 1723:. 1695:: 1687:: 1657:. 1637:: 1629:: 1602:. 1588:: 1580:: 1534:: 1508:. 1480:: 1450:. 1430:: 1403:. 1383:: 1356:. 1326:: 1318:: 1291:. 1269:: 1240:: 1209:: 1182:: 1157:. 1137:: 1129:: 1104:: 1069:. 1049:: 1019:. 999:: 965:. 945:: 937:: 931:1 907:. 887:: 734:2 661:4 657:2 653:2 649:2 645:2 641:2 639:H 627:4 623:4 608:2 599:2 595:2 591:2 583:2 318:( 316:3 314:O 312:3 121:2 117:4 115:H 113:9 109:1 107:) 103:H 101:9 97:6 93:2 91:H 89:3 81:6 77:6 75:H 65:2 62:4 60:H 58:6 22:(

Index

porous polymers
polymers
Omar M. Yaghi
UCBerkeley
phenyl diboronic acid
hexahydroxytriphenylene
empirical formulas
staggered conformation
eclipsed conformation
Angstroms
Omar M. Yaghi
Newcomb Cleveland Prize
Porous
crystalline
zeolites
metal-organic frameworks
aluminosilicate
ligands
coordination chemistry

zeolites
bottom-up synthesis
bottom-up approach
molecular engineering

crystal


Skeletal structure
phenyl

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑