Knowledge (XXG)

Covalent organic framework

Source 📝

252:
frameworks that synergistically enhance the properties of the precursors, which, in turn, offers many advantages in terms of improved performance in different applications. As a result, the COF material is highly modular and tuned efficiently by varying the SBUs’ identity, length, and functionality depending on the desired property change on the framework scale. Ergo, there exists the ability to introduce diverse functionality directly into the framework scaffold to allow for a variety of functions which would be cumbersome, if not impossible, to achieve through a top-down method, such as lithographic approaches or chemical-based nanofabrication. Through reticular synthesis, it is possible to molecularly engineer modular, framework materials with highly porous scaffolds that exhibit unique electronic, optical, and magnetic properties while simultaneously integrating desired functionality into the COF skeleton.
235:, a material is built from atomic or molecular components synthetically as opposed to a top-down approach, which forms a material from the bulk through approaches such as exfoliation, lithography, or other varieties of post-synthetic modification. The bottom-up approach is especially advantageous with respect to materials such as COFs because the synthetic methods are designed to directly result in an extended, highly crosslinked framework that can be tuned with exceptional control at the nanoscale level. Geometrical and dimensional principles govern the framework's resulting topology as the SBUs combine to form predetermined structures. This level of synthetic control has also been termed " 378: 416: 412:(TFP) is used as one of the SBUs, two complementary tautomerizations occur (an enol to keto and an imine to enamine) which result in a ÎČ-ketoenamine moiety as depicted in the DAAQ-TFP framework. Both DAAQ-TFP and TpOMe-DAQ COFs are stable in acidic aqueous conditions and contain the redox active linker 2,6-diaminoanthroquinone which enables these materials to reversibly store and release electrons within a characteristic potential window. Consequently, both of these COFs have been investigated as electrode materials for potential use in supercapacitors. 243: 47:
structures with highly preferential structural orientation and properties which could be synergistically enhanced and amplified. With judicious selection of COF secondary building units (SBUs), or precursors, the final structure could be predetermined, and modified with exceptional control enabling fine-tuning of emergent properties. This level of control facilitates the COF material to be designed, synthesized, and utilized in various applications, many times with metrics on scale or surpassing that of the current state-of-the-art approaches.
473:
control, hereby enabling crystalline growth. This was employed by Yaghi and coworkers for 3D imine-based COFs (COF-300, COF 303, LZU-79, and LZU-111). However, the vast majority of COFs are not able to crystallize into single crystals but instead are insoluble powders. The improvement of crystallinity of these polycrystalline materials can be improved through tuning the reversibility of the linkage formation to allow for corrective particle growth and self-healing of defects that arise during COF formation.
350: 157:. The research team synthesized and designed the first 3D-COF ever; COF-103 and COF-108, helping unleash this new field. Unlike 0D and 1D systems, which are soluble, the insolubility of 2D and 3D structures precludes the use of stepwise synthesis, making their isolation in crystalline form very difficult. This first challenge, however, was overcome by judiciously choosing building blocks and using reversible condensation reactions to crystallize COFs. 337: 269: 641:
better delivery amount have been designed in the lab of William A. Goddard III, and they have been shown to be stable and overcome the DOE target in delivery basis. COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. They reported that using thin vinyl bridging groups aids performance by minimizing the interaction methane-COF at low pressure.
482: 290: 208: 3587: 386: 640:
storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage. More recently, new COFs with
616:
is important to their stability. If the metalation with alkali meals is performed in the COFs, Goddard et al. calculated that some COFs can reach 2010 DOE gravimetric target in delivery units at 298 K of 4.5 wt %: COF102-Li (5.16 wt %), COF103-Li (4.75 wt %), COF102-Na (4.75 wt %)
198:
COFs are another class of porous polymeric materials, consisting of porous, crystalline, covalent bonds that usually have rigid structures, exceptional thermal stabilities (to temperatures up to 600 Â°C), are stable in water and low densities. They exhibit permanent porosity with specific surface
171:
solids consist of secondary building units (SBUs) which assemble to form a periodic and porous framework. An almost infinite number of frameworks can be formed through various SBU combinations leading to unique material properties for applications in separations, storage, and heterogeneous catalysis.
41:
that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control
539:
enables probing of linkage formation as well and is well suited for large, insoluble materials like COFs. Gas adsorption-desorption studies quantify the porosity of the material via calculation of the Brunauer–Emmett–Teller (BET) surface area and pore diameter from gas adsorption isotherms. Electron
490:
Integration of SBUs into a covalent framework results in the synergistic emergence of conductivities much greater than the monomeric values. The nature of the SBUs can improve conductivity. Through the use of highly conjugated linkers throughout the COF scaffold, the material can be engineered to be
285:
Since Yaghi and coworkers’ seminal work in 2005, COF synthesis has expanded to include a wide range of organic connectivity such as boron-, nitrogen-, other atom-containing linkages. The linkages in the figures shown are not comprehensive as other COF linkages exist in the literature, especially for
46:
to advance into the construction of porous, crystalline materials with rigid structures that granted exceptional material stability in a wide range of solvents and conditions. Through the development of reticular chemistry, precise synthetic control was achieved and resulted in ordered, nano-porous
472:
There are several COF single crystals synthesized to date. There are a variety of techniques employed to improve crystallinity of COFs. The use of modulators, monofunctional version of precursors, serve to slow the COF formation to allow for more favorable balance between kinetic and thermodynamic
459:
A defining advantage of COFs is the exceptional porosity that results from the substitution of analogous SBUs of varying sizes. Pore sizes range from 7-23 Å and feature a diverse range of shapes and dimensionalities that remain stable during the evacuation of solvent. The rigid scaffold of the COF
441:
during synthesis. To date, researchers have attempted to establish better control through different synthetic methods such as solvothermal synthesis, interface-assisted synthesis, solid templation as well as seeded growth. First one of the precursors is deposited onto the solid support followed by
255:
Reticular synthesis is different from retrosynthesis of organic compounds, because the structural integrity and rigidity of the building blocks in reticular synthesis remain unaltered throughout the construction process—an important aspect that could help to fully realize the benefits of design in
495:
and coworkers synthesized a COF material (NiPc-Pyr COF) from nickel phthalocyanine (NiPc) and pyrene organic linkers that had a conductivity of 2.51 x 10 S/m, which was several orders of magnitude larger than the undoped molecular NiPc, 10 S/m. A similar COF structure made by Jiang and coworkers,
768:
Due to the ability to introduce diverse functionality into COFs’ structure, catalytic sites can be fine-tuned in conjunction with other advantageous properties like conductivity and stability to afford efficient and selective catalysts. COFs have been used as heterogeneous catalysts in organic,
251:
It has been established in the literature that, when integrated into an isoreticular framework, such as a COF, properties from monomeric compounds can be synergistically enhanced and amplified. COF materials possess the unique ability for bottom-up reticular synthesis to afford robust, tunable
276:
Reticular synthesis was used by Yaghi and coworkers in 2005 to construct the first two COFs reported in the literature: COF-1, using a dehydration reaction of benzenediboronic acid (BDBA), and COF-5, via a condensation reaction between hexahydroxytriphenylene (HHTP) and BDBA. These framework
755:
Due to defining molecule-framework interactions, COFs can be used as chemical sensors in a wide range of environments and applications. Properties of the COF change when their functionalities interact with various analytes enabling the materials to serve as devices in various conditions: as
3200:
Yang, Hui; Zhang, Shengliang; Han, Liheng; Zhang, Zhou; Xue, Zheng; Gao, Juan; Li, Yongjun; Huang, Changshui; Yi, Yuanping; Liu, Huibiao; Li, Yuliang (16 February 2016). "High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity".
612:. Such strategy consists of metalating the COF with alkali metals such as Li. These complexes composed of Li, Na and K with benzene ligands (such as 1,3,5-benzenetribenzoate, the ligand used in MOF-177) have been synthesized by Krieck et al. and Goddard showed that the 496:
CoPc-Pyr COF, exhibited a conductivity of 3.69 x 10 S/m. In both previously mentioned COFs, the 2D lattice allows for full π-conjugation in the x and y directions as well as π-conduction along the z axis due to the fully conjugated, aromatic scaffold and
649:
In addition to storage, COF materials are exceptional at gas separation. For instance, COFs like imine-linked COF LZU1 and azine-linked COF ACOF-1 were used as a bilayer membrane for the selective separation of the following mixtures:
535:(NMR) spectroscopy. Precursor and COF IR spectra enables comparison between vibrational peaks to ascertain that certain key bonds present in the COF linkages appear and that peaks of precursor functional groups disappear. In addition, 428:
The solvothermal approach is the most common used in the literature but typically requires long reaction times due to the insolubility of the organic SBUs in nonorganic media and the time necessary to reach thermodynamic COF products.
617:
and COF103-Na (4.72 wt %). COFs also perform better in delivery units than MOFs because the best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H
485:
In a fully conjugated 2D COF material such as those synthesized from metallophthalocyanines and highly conjugated organic linkers, charge transport is increased both in-plane, as well as through the stacks, resulting in increased
246:
COF topological control through judicious selection of precursors that result in bonding directionality in the final resulting network. Adapted from Jiang and coworkers' Two- and Three-dimensional Covalent Organic Frameworks
3154:
Zheng, Weiran; Tsang, Chui-Shan; Lee, Lawrence Yoon Suk; Wong, Kwok-Yin (June 2019). "Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications".
2207:
Evans, Austin M.; Parent, Lucas R.; Flanders, Nathan C.; Bisbey, Ryan P.; Vitaku, Edon; Kirschner, Matthew S.; Schaller, Richard D.; Chen, Lin X.; Gianneschi, Nathan C.; Dichtel, William R. (2018-07-06).
678:
due to the inherent thermal and operational stability of the structures. It has also been shown that COFs inherently act as adsorbents, adhering to the gaseous molecules to enable storage and separation.
256:
crystalline solid-state frameworks. Similarly, reticular synthesis should be distinguished from supramolecular assembly, because in the former, building blocks are linked by strong bonds throughout the
2877:
Marco, B.; Cortizo-Lacalle, D.; Perez-Miqueo, C.; Valenti, G.; Boni, A.; Plas, J.; Strutynski, K.; De Feyter, S.; Paolucci, F.; Montes, M.; Khlobystov, K.; Melle-Franco, M.; Mateo-Alonso, A. (2017).
785:
reaction. However, such researches are still in the very early stage. Most of the efforts have been focusing on solving the key issues, such as conductivity, stability in electrochemical processes.
608:
storage materials. In 2012, the lab of William A. Goddard III reported the uptake for COF102, COF103, and COF202 at 298 K and they also proposed new strategies to obtain higher interaction with H
408:
using an acid catalyst) can be used as a synthetic route to reach a new class of COFs. The 3D COF called COF-300 and the 2D COF named TpOMe-DAQ are good examples of this chemistry. When
389:
Reversible reactions for COF formation featuring a variety of atoms to form different linkages (a double stage connecting boronate ester and imine linkages, alkene, silicate, nitroso).
146:. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 to 600 °C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively). 63:) and Adrien P Cote published the first paper of COFs in 2005, reporting a series of 2D COFs. They reported the design and successful synthesis of COFs by condensation reactions of 2708:
Krieck, S.; Gorls, H.; Westerhausen, M., Alkali Metal-Stabilized 1,3,5-Triphenylbenzene Monoanions: Synthesis and Characterization of the Lithium, Sodium, and Potassium Complexes.
2105:
Sharma, Rakesh Kumar; Yadav, Priya; Yadav, Manavi; Gupta, Radhika; Rana, Pooja; Srivastava, Anju; Zboƙil, Radek; Varma, Rajender S.; Antonietti, Markus; Gawande, Manoj B. (2020).
703:
range of photons, and allows energy transfer and migration. Furthermore, TP-COF is electrically conductive and capable of repetitive on–off current switching at room temperature.
3236:
Diercks, Christian S.; Lin, Song; Kornienko, Nikolay; Kapustin, Eugene A.; Nichols, Eva M.; Zhu, Chenhui; Zhao, Yingbo; Chang, Christopher J.; Yaghi, Omar M. (16 January 2018).
504:
in COF structures is especially important for applications such as catalysis and energy storage where quick and efficient charge transport is required for optimal performance.
1128:
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. (2007). "Designed Synthesis of 3D Covalent Organic Frameworks".
512:
There exists a wide range of characterization methods for COF materials. There are several COF single crystals synthesized to date. For these highly crystalline materials,
1948:
Halder, Arjun; Ghosh, Meena; Khayum M, Abdul; Bera, Saibal; Addicoat, Matthew; Sasmal, Himadri Sekhar; Karak, Suvendu; Kurungot, Sreekumar; Banerjee, Rahul (2018-09-05).
231:
of the framework materials to introduce precise perturbations in chemical composition, resulting in the highly controlled tunability of framework properties. Through a
142:(COF-5). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 2349:
Ma, Tianqiong; Kapustin, Eugene A.; Yin, Shawn X.; Liang, Lin; Zhou, Zhengyang; Niu, Jing; Li, Li-Hua; Wang, Yingying; Su, Jie; Li, Jian; Wang, Xiaoge (2018-07-06).
600:
and free volume, by grand canonical Monte Carlo (GCMC) simulations as a function of temperature and pressure. This is the highest value reported for associative H
809:
A prototype 2 nanometer thick COF layer on a graphene substrate was used to filter dye from industrial wastewater. Once full, the COF can be cleaned and reused.
321:
reaction which is a molecular dehydration reaction between boronic acids. In case of COF-1, three boronic acid molecules converge to form a planar six-membered B
2307:
Ben, Teng; Ren, Hao; Ma, Shengqian; Cao, Dapeng; Lan, Jianhui; Jing, Xiaofei; Wang, Wenchuan; Xu, Jun; Deng, Feng; Simmons, Jason M.; Qiu, Shilun (2009-12-07).
464:. This high surface area to volume ratio and incredible stability enables the COF structure to serve as exceptional materials for gas storage and separation. 561: 187:
minerals commonly used as commercial adsorbents. MOFs are a class of porous polymeric material, consisting of metal ions linked together by organic bridging
2005:"Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route" 821:
scaffold that showed effective drug loading and release in a simulated body fluid environment, making it useful as a nanocarrier for pharmaceutical drugs.
340:
Reversible reactions for COF formation featuring nitrogen to form a variety of linkages (imine, hydrazone, azine, squaraine, phenazine, imide, triazine).
215:
The term ‘secondary building unit’ has been used for some time to describe conceptual fragments which can be compared as bricks used to build a house of
1914:
Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klck, C.; O'Keeffe, M.; Yaghi, O. M.; A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework.
3541:
Zhao, Yu; Das, Saikat; Sekine, Taishu; Mabuchi, Haruna; Irie, Tsukase; Sakai, Jin; Wen, Dan; Zhu, Weidong; Ben, Teng; Negishi, Yuichi (2023-01-23).
621:/L units for 1–100 bar. These are the highest gravimetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. 581:
Due to the exceptional porosity of COFs, they have been used extensively in the storage and separation of gases such as hydrogen, methane, etc.
536: 377: 415: 2286: 1554: 2849:
Shun, W.; Jia, G.; Jangbae, K.; Hyotcherl, I.; Donglin, J.; A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework.
516:(XRD) is a powerful tool capable of determining COF crystal structure. The majority of COF materials suffer from decreased crystallinity so 277:
scaffolds were interconnected through the formation of boroxine and boronate linkages, respectively, using solvothermal synthetic methods.
3286:
Li, Xing; Wang, Hui; Chen, Zhongxin; Xu, Hai‐Sen; Yu, Wei; Liu, Cuibo; Wang, Xiaowei; Zhang, Kun; Xie, Keyu; Loh, Kian Ping (2019-10-14).
636:
per unit volume COF adsorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH
42:
and precursor selection. These improvements to coordination chemistry enabled non-porous and amorphous organic materials such as organic
1099:
CÎté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M.; Porous, Crystalline, Covalent Organic Frameworks.
149:
The synthesis of 3D COFs has been hindered by longstanding practical and conceptual challenges until it was first achieved in 2007 by
3238:"Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction" 1235:
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.; Reticular synthesis and the design of new materials.
860: 632:
and William A. Goddard III also reported COFs as exceptional methane storage materials. The best COF in terms of total volume of CH
460:
structure enables the material to be evacuated of solvent and retain its structure, resulting in high surface areas as seen by the
557: 545: 437:
Morphological control on the nanoscale is still limited as COFs lack synthetic control in higher dimensions due to the lack of
369:
in ionothermal conditions (molten zinc chloride at high temperature (400 Â°C)). CTF-1 is a good example of this chemistry.
2927: 840: 491:
fully conjugated, enabling high charge carrier density as well as through- and in-plane charge transport. For instance,
2626:
Han, S.; Hurukawa, H.; Yaghi, O. M.; Goddard, W. A.; Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials.
2740:
Fan, Hongwei; Mundstock, Alexander; Feldhoff, Armin; Knebel, Alexander; Gu, Jiahui; Meng, Hong; Caro, JĂŒrgen (2018-08-15).
2879:"Twisted Aromatic Frameworks: Readily Exfoliable and Solution-Processable Two-Dimensional Conjugated Microporous Polymers" 2055:
DeBlase, Catherine R.; Silberstein, Katharine E.; Truong, Thanh-Tam; Abruña, Héctor D.; Dichtel, William R. (2013-11-13).
549: 232: 228: 711:
Most studies to date have focused on the development of synthetic methodologies with the aim of maximizing pore size and
2107:"Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications" 541: 272:
Reversible reactions for COF formation featuring boron to form a variety of linkages (boronate, boroxine, and borazine).
596:
uptakes at 77 K are 10.0 wt % at 80 bar for COF-105, and 10.0 wt % at 100 bar for COF-108, which have higher
592:
and William A. Goddard III reported COFs as exceptional hydrogen storage materials. They predicted the highest excess H
3461:
Vitaku, Edon; Gannett, Cara N.; Carpenter, Keith L.; Shen, Luxi; Abruña, Héctor D.; Dichtel, William R. (2020-01-08).
3011:
Ratiometric Electrochemical Sensors Based on Nanospheres Derived from Ferrocence-Modified Covalent Organic Frameworks"
532: 438: 409: 242: 2152:
Allendorf, Mark D.; Dong, Renhao; Feng, Xinliang; Kaskel, Stefan; Matoga, Dariusz; Stavila, Vitalie (2020-08-26).
2003:
Kandambeth, Sharath; Mallick, Arijit; Lukose, Binit; Mane, Manoj V.; Heine, Thomas; Banerjee, Rahul (2012-12-05).
743:
was reported. MOF under solvent-free conditions can also be used for catalytic activity in the cycloaddition of CO
1313:
Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.; Chae, Hee K.; Eddaoudi, Mohamed; Kim, Jaheon (2003-06-12).
3543:"Record Ultralarge-Pores, Low Density Three-Dimensional Covalent Organic Framework for Controlled Drug Delivery" 2522:"A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water" 793:
A few COFs possess the stability and conductivity necessary to perform well in energy storage applications like
3625: 2795:
Fenton, Julie L.; Burke, David W.; Qian, Dingwen; Olvera de la Cruz, Monica; Dichtel, William R. (2021-01-27).
830: 556:(AFM) have also been used to characterize COF microstructural information as well. Additionally, methods like 3351:"A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries" 2742:"Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation" 357:
Another class of high performance polymer frameworks with regular porosity and high surface area is based on
2656:"High H 2 Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic Frameworks at 298 K" 2520:
Huang, Ning; Lee, Ka Hung; Yue, Yan; Xu, Xiaoyi; Irle, Stefan; Jiang, Qiuhong; Jiang, Donglin (2020-09-14).
850: 553: 501: 180: 154: 79: 2309:"Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area" 64: 192: 135: 3610: 219:; in the context of this page it refers to the geometry of the units defined by the points of extension. 2974: 528: 305: 236: 139: 442:
the introduction of the second precursor in vapor form. This results in the deposition of the COF as a
3349:
Luo, Zhiqiang; Liu, Luojia; Ning, Jiaxin; Lei, Kaixiang; Lu, Yong; Li, Fujun; Chen, Jun (2018-07-20).
3237: 3409: 3299: 3001:
Liang, Huihui; Xu, Mengli; Zhu, Yongmei; Wang, Linyu; Xie, Yi; Song, Yonghai; Wang, Li (2020-01-24).
2667: 2362: 2221: 1695: 1637: 1588: 1475:
Feng, Liang; Wang, Kun-Yu; Lv, Xiu-Liang; Yan, Tian-Hao; Li, Jian-Rong; Zhou, Hong-Cai (2020-02-12).
1137: 945: 497: 3517: 3099:"Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges" 2266: 1534: 604:
storage of any material. Thus 3D COFs are most promising new candidates in the quest for practical H
3463:"Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities" 2947:
Hussain, MD. Waseem; Bhardwaj, Vipin; GIRI, ARKAPRABHA; Chande, Ajit; Patra, Abhijit (2019-11-27).
835: 818: 794: 565: 548:(TEM) can resolve surface structure and morphology, and microstructural information, respectively. 3402:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2408:"Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks" 3498: 3378: 3331: 3287: 3268: 3182: 3079: 3059: 3040: 2832: 2777: 2557: 2497: 2189: 2134: 1985: 1766: 1746: 1727: 1512: 1454: 1360: 1161: 1023: 969: 527:
In order to verify and analyze COF linkage formation, various techniques can be employed such as
517: 293: 95: 3596: 349: 996:"Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials" 3564: 3490: 3482: 3443: 3425: 3370: 3323: 3315: 3260: 3218: 3136: 3118: 3032: 2908: 2824: 2816: 2769: 2761: 2691: 2683: 2609: 2549: 2541: 2489: 2481: 2437: 2429: 2388: 2380: 2328: 2282: 2247: 2239: 2181: 2173: 2126: 2084: 2076: 2032: 2024: 1977: 1969: 1899: 1866: 1858: 1817: 1719: 1711: 1661: 1653: 1606: 1550: 1504: 1496: 1446: 1407: 1399: 1352: 1344: 1295: 1287: 1153: 1073: 1065: 1015: 961: 911: 903: 521: 513: 336: 2521: 2057:"ÎČ-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage" 3554: 3474: 3433: 3417: 3398:"Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries" 3362: 3307: 3252: 3210: 3172: 3164: 3126: 3110: 3071: 3022: 2956: 2898: 2890: 2861: 2808: 2753: 2721: 2675: 2638: 2599: 2533: 2473: 2462:"Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity" 2419: 2370: 2320: 2274: 2229: 2165: 2118: 2068: 2016: 1961: 1950:"Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors" 1927: 1848: 1809: 1758: 1703: 1645: 1596: 1542: 1488: 1438: 1391: 1334: 1326: 1277: 1248: 1217: 1190: 1145: 1112: 1057: 1007: 953: 895: 719:. That means the functions of COFs have not yet been well explored, but COFs can be used as 520:(PXRD) is used. In conjunction with simulated powder packing models, PXRD can determine COF 492: 1625: 17: 2987: 782: 778: 740: 675: 268: 184: 995: 934:"Covalent organic frameworks: a materials platform for structural and functional designs" 3592: 3413: 3303: 2671: 2588:"Eyes of covalent organic frameworks: cooperation between analytical chemistry and COFs" 2366: 2225: 1699: 1641: 1592: 1141: 949: 3438: 3397: 3131: 3098: 2903: 2878: 2278: 2153: 1546: 736: 724: 38: 3075: 1683: 994:
Aykanat, Aylin; Meng, Zheng; Benedetto, Georganna; Mirica, Katherine A. (2020-07-14).
3619: 3502: 3382: 3335: 3272: 3186: 3083: 3044: 2836: 2561: 2501: 2193: 2138: 1989: 1784:
Jackson, Karl T.; Rabbani, Mohammad G.; Reich, Thomas E.; El-Kaderi, Hani M. (2011).
1770: 1516: 1426: 1266:"Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks" 1027: 973: 845: 757: 629: 589: 362: 150: 56: 2781: 1731: 1476: 1458: 1165: 2797:"Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes" 1364: 747:
and epoxides into cyclic organic carbonates with enhanced catalyst recyclability.
712: 692: 597: 481: 405: 397: 318: 1011: 933: 289: 3168: 1762: 1649: 695:
functionalities alternately linked in a mesoporous hexagonal skeleton, is highly
134:(COF-5) revealed 2-dimensional expanded porous graphitic layers that have either 3462: 2948: 2796: 2169: 1949: 1887:; Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. 1884: 716: 696: 168: 3114: 2960: 1786:"Synthesis of highly porous borazine-linked polymers and their application to H 1745:
Yusran, Yusran; Li, Hui; Guan, Xinyu; Fang, Qianrong; Qiu, Shilun (June 2020).
957: 207: 3350: 2308: 1601: 1576: 1442: 1178:
Kitagawa, S.; Kitaura, R.; Noro, S.; Functional Porous Coordination Polymers.
700: 461: 94:). Powder X-ray diffraction studies of the highly crystalline products having 60: 3486: 3429: 3319: 3122: 3036: 2820: 2765: 2687: 2655: 2613: 2545: 2485: 2433: 2384: 2243: 2210:"Seeded growth of single-crystal two-dimensional covalent organic frameworks" 2177: 2130: 2080: 2056: 2028: 1973: 1862: 1821: 1715: 1657: 1610: 1500: 1450: 1403: 1348: 1314: 1291: 1069: 1019: 965: 907: 781:
for energy-related catalysis, including carbon dioxide electro-reduction and
2604: 2587: 2375: 2351:"Single-crystal x-ray diffraction structures of covalent organic frameworks" 2350: 2234: 2209: 1707: 1427:"From Top-Down to Bottom-Up to Hybrid Nanotechnologies: Road to Nanodevices" 1149: 1116: 443: 3568: 3559: 3542: 3494: 3447: 3421: 3374: 3366: 3327: 3311: 3264: 3222: 3214: 3140: 3027: 3002: 2928:"New Technology to Capture, Convert Carbon Dioxide | MIT Technology Review" 2912: 2894: 2865: 2828: 2773: 2695: 2553: 2537: 2493: 2441: 2392: 2332: 2324: 2251: 2185: 2088: 2036: 1981: 1903: 1870: 1723: 1665: 1508: 1411: 1356: 1299: 1194: 1157: 1077: 915: 3518:"Nano-sponges on graphene make efficient filters of industrial wastewater" 2654:
Mendoza-Cortés, José L.; Han, Sang Soo; Goddard, William A. (2012-02-16).
2267:"Synthesis of 2D Covalent Organic Frameworks at the Solid–Vapor Interface" 385: 183:(MOFs), and covalent organic frameworks (COFs). Zeolites are microporous, 3478: 3256: 2812: 2757: 2477: 1965: 1492: 1339: 1282: 1265: 735:
In 2015 the use of highly porous, catalyst-decorated COFs for converting
720: 366: 358: 330: 301: 143: 43: 3177: 2586:
Guo, Hao; Zhang, Longwen; Xue, Rui; Ma, Baolong; Yang, Wu (2019-03-26).
1330: 1252: 2949:"Functional Ionic Porous Frameworks Based on Triaminoguanidinium for CO 2741: 2461: 2424: 2407: 2122: 2106: 1853: 1836: 1813: 1785: 1395: 1379: 1378:
Yu, Hai-Dong; Regulacio, Michelle D.; Ye, Enyi; Han, Ming-Yong (2013).
1061: 1045: 899: 883: 855: 798: 401: 257: 216: 188: 176: 2725: 2679: 2642: 2072: 2020: 1931: 1221: 688: 297: 165: 2004: 1577:"Reticular chemistry at the atomic, molecular, and framework scales" 199:
areas surpassing those of well-known zeolites and porous silicates.
2460:
Meng, Zheng; Stolz, Robert M.; Mirica, Katherine A. (2019-07-31).
480: 394: 384: 241: 239:", abiding by the concept termed by Arthur R. von Hippel in 1956. 206: 884:"Covalent organic frameworks (COFs): from design to applications" 760:
sensors, as well as electrochemical sensors for small molecules.
1837:"On the road towards electroactive covalent organic frameworks" 1535:"Two- and Three-dimensional Covalent Organic Frameworks (COFs)" 613: 191:
and are a new development on the interface between molecular
3058:
Hu, Hui; Yan, Qianqian; Ge, Rile; Gao, Yanan (July 2018).
1575:
Zhang, Yue-Biao; Li, Qiaowei; Deng, Hexiang (2021-11-28).
568:
can be used to identify elemental composition and ratios.
817:
A 3D COF was created, characterised by an interconnected
400:
reaction which eliminates water (exemplified by reacting
3060:"Covalent organic frameworks as heterogeneous catalysts" 932:
Huang, Ning; Wang, Ping; Jiang, Donglin (2016-09-20).
333:) ring with the elimination of three water molecules. 1315:"Reticular synthesis and the design of new materials" 769:
electrochemical, as well as photochemical reactions.
687:
A highly ordered π-conjugation TP-COF, consisting of
3288:"Covalent‐Organic‐Framework‐Based Li–CO 2 Batteries" 2154:"Electronic Devices Using Open Framework Materials" 1095: 1093: 1091: 1089: 1087: 353:
Formation of CTF-1 COF featuring triazine linkages.
1684:"Porous, Crystalline, Covalent Organic Frameworks" 1044:Feng, Xiao; Ding, Xuesong; Jiang, Donglin (2012). 365:reaction of simple, cheap, and abundant aromatic 1477:"Modular Total Synthesis in Reticular Chemistry" 797:, and various different metal-ion batteries and 381:A structural representation of the TpOMe-DAQ COF 317:The most popular COF synthesis route is a boron 419:A structural representation of the DAAQ-TFP COF 3396:Miner, Elise M.; Dincă, Mircea (2019-07-15). 1380:"Chemical routes to top-down nanofabrication" 8: 2406:Haase, Frederik; Lotsch, Bettina V. (2020). 562:inductively coupled plasma mass spectrometry 1747:"Covalent Organic Frameworks for Catalysis" 361:materials which can be achieved by dynamic 175:Types of porous crystalline solids include 1533:Chen, Q.; Dalapati, S.; Jiang, D. (2017), 3558: 3437: 3176: 3130: 3026: 2902: 2603: 2423: 2374: 2233: 1852: 1600: 1539:Comprehensive Supramolecular Chemistry II 1338: 1281: 3467:Journal of the American Chemical Society 3245:Journal of the American Chemical Society 2801:Journal of the American Chemical Society 2746:Journal of the American Chemical Society 2466:Journal of the American Chemical Society 2061:Journal of the American Chemical Society 2009:Journal of the American Chemical Society 1954:Journal of the American Chemical Society 1481:Journal of the American Chemical Society 1270:Journal of the American Chemical Society 1231: 1229: 1205:James, S. L.; Metal-organic frameworks. 414: 376: 348: 335: 288: 267: 211:Schematic Figure of Reticular Chemistry. 3611:Welcome to the Yaghi Laboratory Website 3355:Angewandte Chemie International Edition 3097:Guo, Jia; Jiang, Donglin (2020-06-24). 2735: 2733: 2581: 2579: 2577: 2575: 2573: 2571: 2526:Angewandte Chemie International Edition 2515: 2513: 2511: 2455: 2453: 2451: 2344: 2342: 2313:Angewandte Chemie International Edition 2100: 2098: 1425:Teo, Boon K.; Sun, X. H. (2006-12-05). 871: 777:COFs have been studied as non-metallic 3203:ACS Applied Materials & Interfaces 2983: 2972: 2926:Martin, Richard (September 24, 2015). 1470: 1468: 2271:Encyclopedia of Interfacial Chemistry 2050: 2048: 2046: 1943: 1941: 1939: 1677: 1675: 1528: 1526: 1039: 1037: 989: 987: 985: 983: 927: 925: 877: 875: 7: 1835:Dogru, Mirjam; Bein, Thomas (2014). 2660:The Journal of Physical Chemistry A 227:Reticular synthesis enables facile 153:and colleagues, which received the 2953:Conversion and Combating Microbes" 2279:10.1016/b978-0-12-409547-2.13071-9 1547:10.1016/b978-0-12-409547-2.12608-3 882:Ding, San-Yuan; Wang, Wei (2013). 27:Class of solid chemical substances 25: 861:Hydrogen-bonded organic framework 55:While at University of Michigan, 3585: 558:X-ray photoelectron spectroscopy 546:transmission electron microscopy 2592:Reviews in Analytical Chemistry 462:Brunauer–Emmett–Teller analysis 3516:Irving, Michael (2022-08-05). 2273:, Elsevier, pp. 446–452, 1541:, Elsevier, pp. 271–290, 841:Conjugated microporous polymer 1: 3076:10.1016/S1872-2067(18)63057-8 1624:von Hippel, A. (1956-02-24). 1264:Yaghi, Omar M. (2016-12-07). 1046:"Covalent organic frameworks" 1012:10.1021/acs.chemmater.9b05289 707:Porosity/surface-area effects 550:Scanning tunneling microscope 410:1,3,5-triformylphloroglucinol 3169:10.1016/j.mtchem.2018.12.002 3064:Chinese Journal of Catalysis 1763:10.1016/j.enchem.2020.100035 1650:10.1126/science.123.3191.315 813:Pharmaceutical drug delivery 542:scanning electron microscope 345:Triazine based trimerization 3598:covalent organic framework 2265:Chen, T.; Wang, D. (2018), 2170:10.1021/acs.chemrev.0c00033 540:imagine techniques such as 31:Covalent organic frameworks 18:Covalent organic frameworks 3642: 3115:10.1021/acscentsci.0c00463 3015:ACS Applied Nano Materials 2961:10.26434/chemrxiv.10332431 1883:Kuhn, P.; Antonietti, M.; 1682:Cote, A. P. (2005-11-18). 1431:Journal of Cluster Science 958:10.1038/natrevmats.2016.68 577:Gas storage and separation 533:nuclear magnetic resonance 286:the formation of 3D COFs. 3157:Materials Today Chemistry 1602:10.1007/s12274-020-3226-6 1443:10.1007/s10876-006-0086-5 500:, respectively. Emergent 2412:Chemical Society Reviews 1384:Chemical Society Reviews 1050:Chemical Society Reviews 938:Nature Reviews Materials 674:. The COFs outperformed 518:powder X-ray diffraction 308:of phenyldiboronic acid. 304:rings, synthesized by a 203:Secondary building units 181:metal-organic frameworks 2605:10.1515/revac-2017-0023 2376:10.1126/science.aat7679 2235:10.1126/science.aar7883 1708:10.1126/science.1120411 1626:"Molecular Engineering" 1150:10.1126/science.1139915 1117:10.1126/science.1120411 851:Metal-organic framework 554:atomic force microscopy 531:(IR) spectroscopy, and 502:electrical conductivity 296:of COF-1 consisting of 195:and materials science. 155:Newcomb Cleveland Prize 80:hexahydroxytriphenylene 3560:10.1002/anie.202300172 3422:10.1098/rsta.2018.0225 3367:10.1002/anie.201805540 3312:10.1002/adma.201905879 3215:10.1021/acsami.5b12370 3028:10.1021/acsanm.9b02117 2982:Cite journal requires 2895:10.1002/anie.201700271 2866:10.1002/anie.200890235 2538:10.1002/anie.202005274 2325:10.1002/anie.200904637 1195:10.1002/anie.200300610 1000:Chemistry of Materials 831:Jose L. Mendoza-Cortes 487: 446:on the solid support. 424:Solvothermal synthesis 420: 390: 382: 354: 341: 309: 273: 248: 212: 193:coordination chemistry 136:staggered conformation 2851:Angew. Chem. Int. Ed. 1889:Angew. Chem. Int. Ed. 1180:Angew. Chem. Int. Ed. 795:lithium-ion batteries 484: 418: 388: 380: 352: 339: 306:condensation reaction 292: 271: 245: 237:molecular engineering 210: 140:eclipsed conformation 65:phenyl diboronic acid 3479:10.1021/jacs.9b08147 3257:10.1021/jacs.7b11940 2883:Angew. Chem. Int. Ed 2813:10.1021/jacs.0c11159 2758:10.1021/jacs.8b05136 2478:10.1021/jacs.9b03441 1966:10.1021/jacs.8b06460 1493:10.1021/jacs.9b12408 1283:10.1021/jacs.6b11821 3414:2019RSPTA.37780225M 3304:2019AdM....3105879L 3103:ACS Central Science 2752:(32): 10094–10098. 2672:2012JPCA..116.1621M 2532:(38): 16587–16593. 2472:(30): 11929–11937. 2367:2018Sci...361...48M 2226:2018Sci...361...52E 2067:(45): 16821–16824. 2015:(48): 19524–19527. 1960:(35): 10941–10945. 1700:2005Sci...310.1166C 1694:(5751): 1166–1170. 1642:1956Sci...123..315V 1593:2021NaRes..14..335Z 1331:10.1038/nature01650 1276:(48): 15507–15509. 1253:10.1038/nature01650 1142:2007Sci...316..268E 950:2016NatRM...116068H 836:Reticular chemistry 566:combustion analysis 433:Templated synthesis 264:Synthetic chemistry 229:bottom-up synthesis 223:Reticular synthesis 3595:has a profile for 3553:(13): e202300172. 3408:(2149): 20180225. 3292:Advanced Materials 2637:, pp 11580–11581. 2425:10.1039/D0CS01027H 2123:10.1039/C9MH00856J 2111:Materials Horizons 1854:10.1039/C3CC46767H 1814:10.1039/c1py00374g 1396:10.1039/c3cs60113g 1062:10.1039/c2cs35157a 900:10.1039/C2CS35072F 699:, harvests a wide 683:Optical properties 488: 421: 391: 383: 373:Imine condensation 355: 342: 313:Boron condensation 310: 294:Skeletal structure 274: 249: 233:bottom-up approach 213: 96:empirical formulas 3601: 3547:Angewandte Chemie 3361:(30): 9443–9446. 2889:(24): 6946–6951. 2726:10.1021/om1009632 2680:10.1021/jp206981d 2643:10.1021/ja803247y 2628:J. Am. Chem. Soc. 2418:(23): 8469–8500. 2319:(50): 9457–9460. 2288:978-0-12-809894-3 2164:(16): 8581–8640. 2073:10.1021/ja409421d 2021:10.1021/ja308278w 1932:10.1021/ja8096256 1847:(42): 5531–5546. 1802:Polymer Chemistry 1636:(3191): 315–317. 1556:978-0-12-803199-5 1325:(6941): 705–714. 1136:(5822): 268–272. 1006:(13): 5372–5409. 522:crystal structure 514:X-ray diffraction 439:dynamic chemistry 37:) are a class of 16:(Redirected from 3633: 3599: 3589: 3588: 3573: 3572: 3562: 3538: 3532: 3531: 3529: 3528: 3513: 3507: 3506: 3458: 3452: 3451: 3441: 3393: 3387: 3386: 3346: 3340: 3339: 3283: 3277: 3276: 3251:(3): 1116–1122. 3242: 3233: 3227: 3226: 3209:(8): 5366–5375. 3197: 3191: 3190: 3180: 3151: 3145: 3144: 3134: 3094: 3088: 3087: 3070:(7): 1167–1179. 3055: 3049: 3048: 3030: 2998: 2992: 2991: 2985: 2980: 2978: 2970: 2968: 2967: 2944: 2938: 2937: 2935: 2934: 2923: 2917: 2916: 2906: 2874: 2868: 2860:, pp 8826-8830. 2847: 2841: 2840: 2807:(3): 1466–1473. 2792: 2786: 2785: 2737: 2728: 2720:, pp 6790–6800. 2706: 2700: 2699: 2666:(6): 1621–1631. 2651: 2645: 2624: 2618: 2617: 2607: 2583: 2566: 2565: 2517: 2506: 2505: 2457: 2446: 2445: 2427: 2403: 2397: 2396: 2378: 2346: 2337: 2336: 2304: 2298: 2297: 2296: 2295: 2262: 2256: 2255: 2237: 2204: 2198: 2197: 2158:Chemical Reviews 2149: 2143: 2142: 2102: 2093: 2092: 2052: 2041: 2040: 2000: 1994: 1993: 1945: 1934: 1926:, pp 4570-4571. 1916:J. Am. Chem. Soc 1912: 1906: 1898:, pp 3450-3453. 1881: 1875: 1874: 1856: 1832: 1826: 1825: 1781: 1775: 1774: 1742: 1736: 1735: 1679: 1670: 1669: 1621: 1615: 1614: 1604: 1572: 1566: 1565: 1564: 1563: 1530: 1521: 1520: 1487:(6): 3069–3076. 1472: 1463: 1462: 1422: 1416: 1415: 1375: 1369: 1368: 1342: 1310: 1304: 1303: 1285: 1261: 1255: 1233: 1224: 1222:10.1039/B200393G 1203: 1197: 1189:, pp 2334-2375. 1176: 1170: 1169: 1125: 1119: 1111:, pp 1166-1170. 1097: 1082: 1081: 1041: 1032: 1031: 991: 978: 977: 929: 920: 919: 879: 805:Water filtration 779:electrocatalysts 773:Electrocatalysis 676:molecular sieves 585:Hydrogen storage 508:Characterization 300:rings joined by 21: 3641: 3640: 3636: 3635: 3634: 3632: 3631: 3630: 3626:Porous polymers 3616: 3615: 3607: 3606: 3605: 3590: 3586: 3581: 3576: 3540: 3539: 3535: 3526: 3524: 3515: 3514: 3510: 3460: 3459: 3455: 3395: 3394: 3390: 3348: 3347: 3343: 3298:(48): 1905879. 3285: 3284: 3280: 3240: 3235: 3234: 3230: 3199: 3198: 3194: 3153: 3152: 3148: 3096: 3095: 3091: 3057: 3056: 3052: 3010: 3006: 3000: 2999: 2995: 2981: 2971: 2965: 2963: 2952: 2946: 2945: 2941: 2932: 2930: 2925: 2924: 2920: 2876: 2875: 2871: 2848: 2844: 2794: 2793: 2789: 2739: 2738: 2731: 2710:Organometallics 2707: 2703: 2653: 2652: 2648: 2625: 2621: 2585: 2584: 2569: 2519: 2518: 2509: 2459: 2458: 2449: 2405: 2404: 2400: 2361:(6397): 48–52. 2348: 2347: 2340: 2306: 2305: 2301: 2293: 2291: 2289: 2264: 2263: 2259: 2220:(6397): 52–57. 2206: 2205: 2201: 2151: 2150: 2146: 2104: 2103: 2096: 2054: 2053: 2044: 2002: 2001: 1997: 1947: 1946: 1937: 1913: 1909: 1882: 1878: 1834: 1833: 1829: 1797: 1793: 1789: 1783: 1782: 1778: 1744: 1743: 1739: 1681: 1680: 1673: 1623: 1622: 1618: 1574: 1573: 1569: 1561: 1559: 1557: 1532: 1531: 1524: 1474: 1473: 1466: 1424: 1423: 1419: 1390:(14): 6006–18. 1377: 1376: 1372: 1312: 1311: 1307: 1263: 1262: 1258: 1234: 1227: 1207:Chem. Soc. Rev. 1204: 1200: 1177: 1173: 1127: 1126: 1122: 1098: 1085: 1056:(18): 6010–22. 1043: 1042: 1035: 993: 992: 981: 931: 930: 923: 881: 880: 873: 869: 827: 815: 807: 791: 783:water splitting 775: 766: 753: 746: 741:carbon monoxide 733: 709: 685: 673: 669: 665: 661: 657: 653: 647: 639: 635: 627: 625:Methane storage 620: 611: 607: 603: 595: 587: 579: 574: 537:solid-state NMR 510: 479: 470: 457: 452: 435: 426: 375: 347: 328: 324: 315: 283: 266: 225: 205: 185:aluminosilicate 163: 133: 129: 125: 121: 117: 113: 109: 105: 101: 93: 89: 85: 77: 74: 70: 53: 39:porous polymers 28: 23: 22: 15: 12: 11: 5: 3639: 3637: 3629: 3628: 3618: 3617: 3614: 3613: 3591: 3584: 3583: 3582: 3580: 3579:External links 3577: 3575: 3574: 3533: 3508: 3453: 3388: 3341: 3278: 3228: 3192: 3146: 3109:(6): 869–879. 3089: 3050: 3021:(1): 555–562. 3008: 3004: 2993: 2984:|journal= 2950: 2939: 2918: 2869: 2842: 2787: 2729: 2701: 2646: 2619: 2567: 2507: 2447: 2398: 2338: 2299: 2287: 2257: 2199: 2144: 2117:(2): 411–454. 2094: 2042: 1995: 1935: 1907: 1876: 1827: 1795: 1791: 1787: 1776: 1737: 1671: 1616: 1587:(2): 335–337. 1567: 1555: 1522: 1464: 1437:(4): 529–540. 1417: 1370: 1305: 1256: 1247:, pp 705-714. 1225: 1216:, pp 276-288. 1198: 1171: 1120: 1083: 1033: 979: 921: 894:(2): 548–568. 888:Chem. Soc. Rev 870: 868: 865: 864: 863: 858: 853: 848: 843: 838: 833: 826: 823: 814: 811: 806: 803: 790: 789:Energy storage 787: 774: 771: 765: 762: 758:chemiresistive 752: 749: 744: 737:carbon dioxide 732: 731:Carbon capture 729: 725:gas separation 708: 705: 684: 681: 671: 667: 663: 659: 655: 651: 646: 645:Gas separation 643: 637: 633: 626: 623: 618: 609: 605: 601: 593: 586: 583: 578: 575: 573: 570: 564:(ICP-MS), and 509: 506: 478: 475: 469: 466: 456: 453: 451: 448: 434: 431: 425: 422: 374: 371: 346: 343: 326: 322: 314: 311: 282: 279: 265: 262: 224: 221: 204: 201: 162: 159: 131: 127: 123: 119: 115: 111: 107: 103: 99: 91: 87: 83: 75: 72: 68: 59:(currently at 52: 49: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3638: 3627: 3624: 3623: 3621: 3612: 3609: 3608: 3603: 3602: 3594: 3578: 3570: 3566: 3561: 3556: 3552: 3548: 3544: 3537: 3534: 3523: 3519: 3512: 3509: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3464: 3457: 3454: 3449: 3445: 3440: 3435: 3431: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3392: 3389: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3345: 3342: 3337: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3279: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3239: 3232: 3229: 3224: 3220: 3216: 3212: 3208: 3204: 3196: 3193: 3188: 3184: 3179: 3174: 3170: 3166: 3162: 3158: 3150: 3147: 3142: 3138: 3133: 3128: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3093: 3090: 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3054: 3051: 3046: 3042: 3038: 3034: 3029: 3024: 3020: 3016: 3012: 2997: 2994: 2989: 2976: 2962: 2958: 2954: 2943: 2940: 2929: 2922: 2919: 2914: 2910: 2905: 2900: 2896: 2892: 2888: 2884: 2880: 2873: 2870: 2867: 2863: 2859: 2855: 2852: 2846: 2843: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2791: 2788: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2736: 2734: 2730: 2727: 2723: 2719: 2715: 2711: 2705: 2702: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2650: 2647: 2644: 2640: 2636: 2632: 2629: 2623: 2620: 2615: 2611: 2606: 2601: 2597: 2593: 2589: 2582: 2580: 2578: 2576: 2574: 2572: 2568: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2516: 2514: 2512: 2508: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2456: 2454: 2452: 2448: 2443: 2439: 2435: 2431: 2426: 2421: 2417: 2413: 2409: 2402: 2399: 2394: 2390: 2386: 2382: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2345: 2343: 2339: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2303: 2300: 2290: 2284: 2280: 2276: 2272: 2268: 2261: 2258: 2253: 2249: 2245: 2241: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2203: 2200: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2101: 2099: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2051: 2049: 2047: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 1999: 1996: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1944: 1942: 1940: 1936: 1933: 1929: 1925: 1921: 1917: 1911: 1908: 1905: 1901: 1897: 1893: 1890: 1886: 1880: 1877: 1872: 1868: 1864: 1860: 1855: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1780: 1777: 1772: 1768: 1764: 1760: 1757:(3): 100035. 1756: 1752: 1748: 1741: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1678: 1676: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1617: 1612: 1608: 1603: 1598: 1594: 1590: 1586: 1582: 1581:Nano Research 1578: 1571: 1568: 1558: 1552: 1548: 1544: 1540: 1536: 1529: 1527: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1471: 1469: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1421: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1341: 1340:2027.42/62718 1336: 1332: 1328: 1324: 1320: 1316: 1309: 1306: 1301: 1297: 1293: 1289: 1284: 1279: 1275: 1271: 1267: 1260: 1257: 1254: 1250: 1246: 1242: 1238: 1232: 1230: 1226: 1223: 1219: 1215: 1211: 1208: 1202: 1199: 1196: 1192: 1188: 1184: 1181: 1175: 1172: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1121: 1118: 1114: 1110: 1106: 1102: 1096: 1094: 1092: 1090: 1088: 1084: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1038: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 990: 988: 986: 984: 980: 975: 971: 967: 963: 959: 955: 951: 947: 944:(10): 16068. 943: 939: 935: 928: 926: 922: 917: 913: 909: 905: 901: 897: 893: 889: 885: 878: 876: 872: 866: 862: 859: 857: 854: 852: 849: 847: 846:Omar M. Yaghi 844: 842: 839: 837: 834: 832: 829: 828: 824: 822: 820: 812: 810: 804: 802: 800: 796: 788: 786: 784: 780: 772: 770: 763: 761: 759: 750: 748: 742: 738: 730: 728: 726: 722: 718: 714: 706: 704: 702: 698: 694: 690: 682: 680: 677: 644: 642: 631: 630:Omar M. Yaghi 624: 622: 615: 599: 591: 590:Omar M. Yaghi 584: 582: 576: 571: 569: 567: 563: 559: 555: 551: 547: 543: 538: 534: 530: 525: 523: 519: 515: 507: 505: 503: 499: 494: 486:conductivity. 483: 476: 474: 468:Crystallinity 467: 465: 463: 454: 449: 447: 445: 440: 432: 430: 423: 417: 413: 411: 407: 403: 399: 396: 387: 379: 372: 370: 368: 364: 363:trimerization 360: 351: 344: 338: 334: 332: 320: 312: 307: 303: 299: 295: 291: 287: 280: 278: 270: 263: 261: 259: 253: 244: 240: 238: 234: 230: 222: 220: 218: 209: 202: 200: 196: 194: 190: 186: 182: 178: 173: 170: 167: 160: 158: 156: 152: 151:Omar M. Yaghi 147: 145: 141: 137: 122:(COF-1) and C 97: 81: 66: 62: 58: 57:Omar M. Yaghi 50: 48: 45: 40: 36: 32: 19: 3597: 3550: 3546: 3536: 3525:. Retrieved 3521: 3511: 3473:(1): 16–20. 3470: 3466: 3456: 3405: 3401: 3391: 3358: 3354: 3344: 3295: 3291: 3281: 3248: 3244: 3231: 3206: 3202: 3195: 3178:10397/101525 3160: 3156: 3149: 3106: 3102: 3092: 3067: 3063: 3053: 3018: 3014: 2996: 2975:cite journal 2964:. Retrieved 2942: 2931:. Retrieved 2921: 2886: 2882: 2872: 2857: 2853: 2850: 2845: 2804: 2800: 2790: 2749: 2745: 2717: 2713: 2709: 2704: 2663: 2659: 2649: 2634: 2630: 2627: 2622: 2595: 2591: 2529: 2525: 2469: 2465: 2415: 2411: 2401: 2358: 2354: 2316: 2312: 2302: 2292:, retrieved 2270: 2260: 2217: 2213: 2202: 2161: 2157: 2147: 2114: 2110: 2064: 2060: 2012: 2008: 1998: 1957: 1953: 1923: 1919: 1915: 1910: 1895: 1891: 1888: 1879: 1844: 1841:Chem. Commun 1840: 1830: 1808:(12): 2775. 1805: 1801: 1779: 1754: 1750: 1740: 1691: 1687: 1633: 1629: 1619: 1584: 1580: 1570: 1560:, retrieved 1538: 1484: 1480: 1434: 1430: 1420: 1387: 1383: 1373: 1322: 1318: 1308: 1273: 1269: 1259: 1244: 1240: 1236: 1213: 1209: 1206: 1201: 1186: 1182: 1179: 1174: 1133: 1129: 1123: 1108: 1104: 1100: 1053: 1049: 1003: 999: 941: 937: 891: 887: 816: 808: 792: 776: 767: 754: 734: 713:surface area 710: 693:triphenylene 686: 648: 628: 598:surface area 588: 580: 572:Applications 526: 511: 498:π-π stacking 489: 477:Conductivity 471: 458: 436: 427: 406:benzaldehyde 398:condensation 392: 356: 319:condensation 316: 284: 281:COF linkages 275: 254: 250: 226: 214: 197: 174: 164: 148: 54: 34: 30: 29: 717:gas storage 697:luminescent 544:(SEM), and 169:crystalline 138:(COF-1) or 3600:(Q5178887) 3527:2022-08-06 2966:2022-06-22 2933:2015-09-27 2294:2021-03-01 1885:Thomas, A. 1751:EnergyChem 1562:2021-03-01 867:References 819:mesoporous 701:wavelength 552:(STM) and 450:Properties 61:UCBerkeley 3522:New Atlas 3503:209317683 3487:0002-7863 3430:1364-503X 3383:205407552 3336:204545588 3320:0935-9648 3273:207188096 3187:139305086 3163:: 34–60. 3123:2374-7943 3084:102933312 3045:214062588 3037:2574-0970 2837:231596406 2821:0002-7863 2766:0002-7863 2688:1089-5639 2614:2191-0189 2562:218765357 2546:1433-7851 2502:195694903 2486:0002-7863 2434:0306-0012 2385:0036-8075 2244:0036-8075 2194:220670221 2178:0009-2665 2139:204292382 2131:2051-6347 2081:0002-7863 2029:0002-7863 1990:207193051 1974:0002-7863 1863:1359-7345 1822:1759-9954 1771:219459194 1716:0036-8075 1658:0036-8075 1611:1998-0124 1517:210882977 1501:0002-7863 1451:1040-7278 1404:0306-0012 1349:0028-0836 1292:0002-7863 1070:0306-0012 1028:225664378 1020:0897-4756 974:138892338 966:2058-8437 908:0306-0012 764:Catalysis 723:, or for 721:catalysts 444:thin film 161:Structure 144:Angstroms 3620:Category 3569:36688253 3495:31820958 3448:31130094 3375:29863784 3328:31609043 3265:29284263 3223:26840757 3141:32607434 2913:28318084 2829:33438399 2782:51696424 2774:30021065 2696:22188543 2554:32436331 2494:31241936 2442:33155009 2393:29976818 2333:19921728 2252:29930093 2186:32692163 2089:24147596 2037:23153356 1982:30132332 1904:18330878 1871:24667827 1798:storage" 1794:, and CH 1732:35798005 1724:16293756 1666:17774519 1509:31971790 1459:98710293 1412:23653019 1357:12802325 1300:27934016 1166:19555677 1158:17431178 1078:22821129 916:23060270 825:See also 799:cathodes 529:infrared 455:Porosity 367:nitriles 359:triazine 331:boroxine 302:boroxine 217:zeolites 177:zeolites 44:polymers 3593:Scholia 3439:6562342 3410:Bibcode 3300:Bibcode 3132:7318070 2904:5485174 2668:Bibcode 2363:Bibcode 2355:Science 2222:Bibcode 2214:Science 1696:Bibcode 1688:Science 1638:Bibcode 1630:Science 1589:Bibcode 1365:4300639 1138:Bibcode 1130:Science 1101:Science 946:Bibcode 856:Zeolite 751:Sensing 727:, etc. 666:, and H 560:(XPS), 402:aniline 258:crystal 247:(COFs). 189:ligands 51:History 3567:  3501:  3493:  3485:  3446:  3436:  3428:  3381:  3373:  3334:  3326:  3318:  3271:  3263:  3221:  3185:  3139:  3129:  3121:  3082:  3043:  3035:  2911:  2901:  2835:  2827:  2819:  2780:  2772:  2764:  2694:  2686:  2612:  2560:  2552:  2544:  2500:  2492:  2484:  2440:  2432:  2391:  2383:  2331:  2285:  2250:  2242:  2192:  2184:  2176:  2137:  2129:  2087:  2079:  2035:  2027:  1988:  1980:  1972:  1902:  1869:  1861:  1820:  1769:  1730:  1722:  1714:  1664:  1656:  1609:  1553:  1515:  1507:  1499:  1457:  1449:  1410:  1402:  1363:  1355:  1347:  1319:Nature 1298:  1290:  1237:Nature 1164:  1156:  1076:  1068:  1026:  1018:  972:  964:  914:  906:  689:pyrene 493:Mirica 298:phenyl 166:Porous 78:) and 3499:S2CID 3379:S2CID 3332:S2CID 3269:S2CID 3241:(PDF) 3183:S2CID 3080:S2CID 3041:S2CID 2833:S2CID 2778:S2CID 2598:(1). 2558:S2CID 2498:S2CID 2190:S2CID 2135:S2CID 1986:S2CID 1767:S2CID 1728:S2CID 1513:S2CID 1455:S2CID 1361:S2CID 1162:S2CID 1024:S2CID 970:S2CID 739:into 404:with 395:imine 3565:PMID 3491:PMID 3483:ISSN 3444:PMID 3426:ISSN 3371:PMID 3324:PMID 3316:ISSN 3261:PMID 3219:PMID 3137:PMID 3119:ISSN 3033:ISSN 2988:help 2909:PMID 2854:2008 2825:PMID 2817:ISSN 2770:PMID 2762:ISSN 2714:2010 2692:PMID 2684:ISSN 2631:2008 2610:ISSN 2550:PMID 2542:ISSN 2490:PMID 2482:ISSN 2438:PMID 2430:ISSN 2389:PMID 2381:ISSN 2329:PMID 2283:ISBN 2248:PMID 2240:ISSN 2182:PMID 2174:ISSN 2127:ISSN 2085:PMID 2077:ISSN 2033:PMID 2025:ISSN 1978:PMID 1970:ISSN 1920:2009 1900:PMID 1892:2008 1867:PMID 1859:ISSN 1818:ISSN 1790:, CO 1720:PMID 1712:ISSN 1662:PMID 1654:ISSN 1607:ISSN 1551:ISBN 1505:PMID 1497:ISSN 1447:ISSN 1408:PMID 1400:ISSN 1353:PMID 1345:ISSN 1296:PMID 1288:ISSN 1241:2003 1210:2003 1183:2004 1154:PMID 1105:2005 1074:PMID 1066:ISSN 1016:ISSN 962:ISSN 912:PMID 904:ISSN 715:for 691:and 393:The 90:(OH) 35:COFs 3555:doi 3475:doi 3471:142 3434:PMC 3418:doi 3406:377 3363:doi 3308:doi 3253:doi 3249:140 3211:doi 3173:hdl 3165:doi 3127:PMC 3111:doi 3072:doi 3023:doi 2957:doi 2899:PMC 2891:doi 2862:doi 2809:doi 2805:143 2754:doi 2750:140 2722:doi 2676:doi 2664:116 2639:doi 2635:130 2600:doi 2534:doi 2474:doi 2470:141 2420:doi 2371:doi 2359:361 2321:doi 2275:doi 2230:doi 2218:361 2166:doi 2162:120 2119:doi 2069:doi 2065:135 2017:doi 2013:134 1962:doi 1958:140 1928:doi 1924:131 1849:doi 1810:doi 1759:doi 1704:doi 1692:310 1646:doi 1634:123 1597:doi 1543:doi 1489:doi 1485:142 1439:doi 1392:doi 1335:hdl 1327:doi 1323:423 1278:doi 1274:138 1249:doi 1245:423 1218:doi 1191:doi 1146:doi 1134:316 1113:doi 1109:310 1058:doi 1008:doi 954:doi 896:doi 670:/CH 658:, H 654:/CO 614:THF 110:·(C 106:BO) 3622:: 3563:. 3551:62 3549:. 3545:. 3520:. 3497:. 3489:. 3481:. 3469:. 3465:. 3442:. 3432:. 3424:. 3416:. 3404:. 3400:. 3377:. 3369:. 3359:57 3357:. 3353:. 3330:. 3322:. 3314:. 3306:. 3296:31 3294:. 3290:. 3267:. 3259:. 3247:. 3243:. 3217:. 3205:. 3181:. 3171:. 3161:12 3159:. 3135:. 3125:. 3117:. 3105:. 3101:. 3078:. 3068:39 3066:. 3062:. 3039:. 3031:. 3017:. 3013:. 3003:"H 2979:: 2977:}} 2973:{{ 2955:. 2907:. 2897:. 2887:56 2885:. 2881:. 2858:47 2856:, 2831:. 2823:. 2815:. 2803:. 2799:. 2776:. 2768:. 2760:. 2748:. 2744:. 2732:^ 2718:29 2716:, 2712:. 2690:. 2682:. 2674:. 2662:. 2658:. 2633:, 2608:. 2596:38 2594:. 2590:. 2570:^ 2556:. 2548:. 2540:. 2530:59 2528:. 2524:. 2510:^ 2496:. 2488:. 2480:. 2468:. 2464:. 2450:^ 2436:. 2428:. 2416:49 2414:. 2410:. 2387:. 2379:. 2369:. 2357:. 2353:. 2341:^ 2327:. 2317:48 2315:. 2311:. 2281:, 2269:, 2246:. 2238:. 2228:. 2216:. 2212:. 2188:. 2180:. 2172:. 2160:. 2156:. 2133:. 2125:. 2113:. 2109:. 2097:^ 2083:. 2075:. 2063:. 2059:. 2045:^ 2031:. 2023:. 2011:. 2007:. 1984:. 1976:. 1968:. 1956:. 1952:. 1938:^ 1922:, 1918:. 1896:47 1894:. 1865:. 1857:. 1845:50 1843:. 1839:. 1816:. 1804:. 1800:. 1765:. 1753:. 1749:. 1726:. 1718:. 1710:. 1702:. 1690:. 1686:. 1674:^ 1660:. 1652:. 1644:. 1632:. 1628:. 1605:. 1595:. 1585:14 1583:. 1579:. 1549:, 1537:, 1525:^ 1511:. 1503:. 1495:. 1483:. 1479:. 1467:^ 1453:. 1445:. 1435:17 1433:. 1429:. 1406:. 1398:. 1388:42 1386:. 1382:. 1359:. 1351:. 1343:. 1333:. 1321:. 1317:. 1294:. 1286:. 1272:. 1268:. 1243:, 1239:. 1228:^ 1214:32 1212:, 1187:43 1185:, 1160:. 1152:. 1144:. 1132:. 1107:, 1103:. 1086:^ 1072:. 1064:. 1054:41 1052:. 1048:. 1036:^ 1022:. 1014:. 1004:32 1002:. 998:. 982:^ 968:. 960:. 952:. 940:. 936:. 924:^ 910:. 902:. 892:42 890:. 886:. 874:^ 801:. 662:/N 524:. 260:. 179:, 130:BO 116:12 98:(C 84:18 82:(C 67:(C 3604:. 3571:. 3557:: 3530:. 3505:. 3477:: 3450:. 3420:: 3412:: 3385:. 3365:: 3338:. 3310:: 3302:: 3275:. 3255:: 3225:. 3213:: 3207:8 3189:. 3175:: 3167:: 3143:. 3113:: 3107:6 3086:. 3074:: 3047:. 3025:: 3019:3 3009:2 3007:O 3005:2 2990:) 2986:( 2969:. 2959:: 2951:2 2936:. 2915:. 2893:: 2864:: 2839:. 2811:: 2784:. 2756:: 2724:: 2698:. 2678:: 2670:: 2641:: 2616:. 2602:: 2564:. 2536:: 2504:. 2476:: 2444:. 2422:: 2395:. 2373:: 2365:: 2335:. 2323:: 2277:: 2254:. 2232:: 2224:: 2196:. 2168:: 2141:. 2121:: 2115:7 2091:. 2071:: 2039:. 2019:: 1992:. 1964:: 1930:: 1873:. 1851:: 1824:. 1812:: 1806:2 1796:4 1792:2 1788:2 1773:. 1761:: 1755:2 1734:. 1706:: 1698:: 1668:. 1648:: 1640:: 1613:. 1599:: 1591:: 1545:: 1519:. 1491:: 1461:. 1441:: 1414:. 1394:: 1367:. 1337:: 1329:: 1302:. 1280:: 1251:: 1220:: 1193:: 1168:. 1148:: 1140:: 1115:: 1080:. 1060:: 1030:. 1010:: 976:. 956:: 948:: 942:1 918:. 898:: 745:2 672:4 668:2 664:2 660:2 656:2 652:2 650:H 638:4 634:4 619:2 610:2 606:2 602:2 594:2 329:( 327:3 325:O 323:3 132:2 128:4 126:H 124:9 120:1 118:) 114:H 112:9 108:6 104:2 102:H 100:3 92:6 88:6 86:H 76:2 73:4 71:H 69:6 33:( 20:)

Index

Covalent organic frameworks
porous polymers
polymers
Omar M. Yaghi
UCBerkeley
phenyl diboronic acid
hexahydroxytriphenylene
empirical formulas
staggered conformation
eclipsed conformation
Angstroms
Omar M. Yaghi
Newcomb Cleveland Prize
Porous
crystalline
zeolites
metal-organic frameworks
aluminosilicate
ligands
coordination chemistry

zeolites
bottom-up synthesis
bottom-up approach
molecular engineering

crystal


Skeletal structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑