Knowledge (XXG)

Coverage probability

Source 📝

179:. Other constructions include the Wald, exact, Agresti-Coull, and likelihood intervals. While the Wilson score interval may not be the most conservative estimate, it produces average coverage probabilities that are equal to nominal levels while still producing a comparatively narrow confidence interval. 130:
If all assumptions used in deriving a confidence interval are met, the nominal coverage probability will equal the coverage probability (termed "true" or "actual" coverage probability for emphasis). If any assumptions are not met, the actual coverage probability could either be less than or greater
388: 159:. The confidence interval aims to contain the unknown mean remission duration with a given probability. In this example, the coverage probability would be the real probability that the interval actually contains the true mean remission duration. 174:
is a classic example where coverage probabilities rarely equal nominal levels. For the binomial case, several techniques for constructing intervals have been created. The Wilson score interval is one well-known construction based on the
313: 285: 235: 305: 107:
of the procedure for constructing confidence intervals. Hence, referring to a "nominal confidence level" or "nominal confidence coefficient" (e.g., as a synonym for
186:
is interpreted with respect to a set of hypothetical repetitions of the entire data collection and analysis procedure. In these hypothetical repetitions,
131:
than the nominal coverage probability. When the actual coverage probability is greater than the nominal coverage probability, the interval is termed a
399: 171: 601: 462: 209:
In prediction, when the coverage probability is equal to the nominal coverage probability, that is known as predictive probability matching.
198:. The coverage probability is the fraction of these computed confidence intervals that include the desired but unobservable parameter value. 643: 167: 497: 187: 206:
In estimation, when the coverage probability is equal to the nominal coverage probability, that is known as probability matching.
627: 383:{\displaystyle P\left(T_{u}\leq \vartheta \leq T_{v}\right)\geq \gamma \quad ({\text{for any allowed parameter }}\vartheta )} 162:
A discrepancy between the coverage probability and the nominal coverage probability frequently occurs when approximating a
540:
Agresti, Alan; Coull, Brent (1998). "Approximate Is Better than "Exact" for Interval Estimation of Binomial Proportions".
123:
already. The nominal coverage probability is often set at 0.95. By contrast, the (true) coverage probability is the
690: 513:
Severini, T; Mukerjee, R; Ghosh, M (2002). "On an exact probability matching property of right-invariant priors".
120: 191: 163: 404: 80: 49: 194:
as the actual data are considered, and a confidence interval is computed from each of these data sets; see
238: 76: 45: 41: 217:
The construction of the confidence interval ensures that the probability of finding the true parameter
576: 152: 112: 414: 409: 244: 195: 176: 64: 33: 557: 522: 220: 647: 493: 458: 452: 37: 17: 290: 639: 591: 549: 655: 68: 628:"Two-sided confidence intervals for the single proportion: Comparison of seven methods" 144: 684: 156: 449:
in the sense of "nominal" and "actual coverage probability"; cf., for instance,
60: 29: 135:; if it is less than the nominal coverage probability, the interval is termed 644:
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
596: 92: 651: 561: 526: 451:
Wackerly, Dennis; Mendenhall, William; Schaeffer, Richard L. (2008),
148: 553: 79:
where the interval surrounds an out-of-sample value as assessed by
48:
where the interval surrounds the true value as assessed by
575:
Brown, Lawrence; Cai, T. Tony; DasGupta, Anirban (2001).
147:
number of months that people with a particular type of
127:
probability that the interval contains the parameter.
316: 293: 247: 223: 44:(parameter) of interest. It can be defined as the 671:Recent developments on probability matching priors 508: 506: 382: 299: 279: 229: 95:pre-specified by the analyst, referred to as the 673:. New York Science Publishers. pp. 227–252. 103:of the constructed interval, is effectively the 577:"Interval Estimation for a binomial proportion" 457:(7th ed.), Cengage Learning, p. 437, 143:. For example, suppose the interest is in the 8: 490:The Oxford Dictionary of Statistical Terms. 67:will include an out-of-sample value of the 595: 454:Mathematical Statistics with Applications 369: 348: 329: 315: 292: 268: 255: 246: 222: 481: 426: 400:Binomial proportion confidence interval 433:However, some textbooks use the terms 7: 155:following successful treatment with 133:conservative (confidence) interval 14: 607:from the original on 23 June 2010 115:and misleading, as the notion of 111:) generally has to be considered 371:for any allowed parameter  365: 55:In statistical prediction, the 669:Ghosh, M; Mukerjee, R (1998). 439:nominal confidence coefficient 377: 366: 274: 248: 1: 447:actual confidence coefficient 280:{\displaystyle (T_{u},T_{v})} 190:data sets following the same 172:binomial confidence intervals 109:nominal coverage probability 105:nominal coverage probability 707: 230:{\displaystyle \vartheta } 119:itself inherently implies 626:Newcombe, Robert (1998). 542:The American Statistician 435:nominal confidence level 192:probability distribution 638:(2, issue 8): 857–872. 443:actual confidence level 405:Confidence distribution 300:{\displaystyle \gamma } 77:proportion of instances 46:proportion of instances 632:Statistics in Medicine 384: 301: 281: 231: 170:. The construction of 101:confidence coefficient 75:can be defined as the 597:10.1214/ss/1009213286 385: 302: 282: 232: 182:The "probability" in 164:discrete distribution 314: 291: 245: 241:-dependent interval 221: 202:Probability Matching 184:coverage probability 73:coverage probability 57:coverage probability 22:coverage probability 584:Statistical Science 415:Interval estimation 410:False coverage rate 196:Neyman construction 177:normal distribution 93:degree of certainty 65:prediction interval 34:confidence interval 658:on 5 January 2013. 488:Dodge, Y. (2003). 380: 297: 277: 227: 81:long-run frequency 50:long-run frequency 28:for short, is the 691:Estimation theory 464:978-1-111-79878-9 372: 137:anti-conservative 40:will include the 38:confidence region 18:estimation theory 698: 675: 674: 666: 660: 659: 654:. Archived from 623: 617: 616: 614: 612: 606: 599: 581: 572: 566: 565: 537: 531: 530: 510: 501: 486: 469: 467: 431: 389: 387: 386: 381: 373: 370: 358: 354: 353: 352: 334: 333: 306: 304: 303: 298: 286: 284: 283: 278: 273: 272: 260: 259: 236: 234: 233: 228: 117:confidence level 97:confidence level 706: 705: 701: 700: 699: 697: 696: 695: 681: 680: 679: 678: 668: 667: 663: 625: 624: 620: 610: 608: 604: 579: 574: 573: 569: 554:10.2307/2685469 539: 538: 534: 512: 511: 504: 487: 483: 478: 473: 472: 465: 450: 432: 428: 423: 396: 344: 325: 324: 320: 312: 311: 289: 288: 264: 251: 243: 242: 219: 218: 215: 204: 89: 69:random variable 16:In statistical 12: 11: 5: 704: 702: 694: 693: 683: 682: 677: 676: 661: 618: 590:(2): 101–117. 567: 548:(2): 119–126. 532: 521:(4): 952–957. 502: 480: 479: 477: 474: 471: 470: 463: 425: 424: 422: 419: 418: 417: 412: 407: 402: 395: 392: 391: 390: 379: 376: 368: 364: 361: 357: 351: 347: 343: 340: 337: 332: 328: 323: 319: 296: 287:is (at least) 276: 271: 267: 263: 258: 254: 250: 226: 214: 211: 203: 200: 168:continuous one 88: 85: 13: 10: 9: 6: 4: 3: 2: 703: 692: 689: 688: 686: 672: 665: 662: 657: 653: 649: 645: 641: 637: 633: 629: 622: 619: 603: 598: 593: 589: 585: 578: 571: 568: 563: 559: 555: 551: 547: 543: 536: 533: 528: 524: 520: 516: 509: 507: 503: 499: 498:0-19-920613-9 495: 491: 485: 482: 475: 466: 460: 456: 455: 448: 444: 440: 436: 430: 427: 420: 416: 413: 411: 408: 406: 403: 401: 398: 397: 393: 374: 362: 359: 355: 349: 345: 341: 338: 335: 330: 326: 321: 317: 310: 309: 308: 294: 269: 265: 261: 256: 252: 240: 224: 212: 210: 207: 201: 199: 197: 193: 189: 185: 180: 178: 173: 169: 165: 160: 158: 154: 150: 146: 142: 138: 134: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 86: 84: 82: 78: 74: 70: 66: 62: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 670: 664: 656:the original 635: 631: 621: 609:. Retrieved 587: 583: 570: 545: 541: 535: 518: 514: 489: 484: 453: 446: 442: 438: 434: 429: 216: 208: 205: 183: 181: 161: 157:chemotherapy 140: 136: 132: 129: 124: 116: 113:tautological 108: 104: 100: 96: 90: 72: 56: 54: 25: 21: 15: 188:independent 61:probability 30:probability 515:Biometrika 476:References 151:remain in 141:permissive 121:nominality 91:The fixed 42:true value 375:ϑ 363:γ 360:≥ 342:≤ 339:ϑ 336:≤ 295:γ 225:ϑ 153:remission 685:Category 602:Archived 500:, p. 93. 394:See also 26:coverage 652:9595616 611:17 July 562:2685469 527:4140551 237:in the 213:Formula 166:with a 87:Concept 63:that a 59:is the 32:that a 650:  560:  525:  496:  461:  441:, and 239:sample 149:cancer 125:actual 71:. The 20:, the 605:(PDF) 580:(PDF) 558:JSTOR 523:JSTOR 492:OUP, 421:Notes 139:, or 24:, or 648:PMID 613:2009 494:ISBN 459:ISBN 145:mean 640:doi 592:doi 550:doi 445:or 437:or 99:or 36:or 687:: 646:. 636:17 634:. 630:. 600:. 588:16 586:. 582:. 556:. 546:52 544:. 519:89 517:. 505:^ 307:: 83:. 52:. 642:: 615:. 594:: 564:. 552:: 529:. 468:. 378:) 367:( 356:) 350:v 346:T 331:u 327:T 322:( 318:P 275:) 270:v 266:T 262:, 257:u 253:T 249:(

Index

estimation theory
probability
confidence interval
confidence region
true value
proportion of instances
long-run frequency
probability
prediction interval
random variable
proportion of instances
long-run frequency
degree of certainty
tautological
nominality
mean
cancer
remission
chemotherapy
discrete distribution
continuous one
binomial confidence intervals
normal distribution
independent
probability distribution
Neyman construction
sample
Binomial proportion confidence interval
Confidence distribution
False coverage rate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.