Knowledge

Cramér's conjecture

Source 📝

1273: 811: 297:
and sometimes this formulation is called Cramér's conjecture. However, this stronger version is not supported by more accurate heuristic models, which nevertheless support the first version of Cramér's conjecture. Neither form has yet been proven or disproven.
614: 292: 1015: 1258:
In fact, due to the work done by Granville, it is now widely believed that Cramér's conjecture is false. Indeed, there some theorems concerning short intervals between primes, such as Maier's theorem, which contradict Cramér's
599: 1580: 1802: 1032:
shows that the Cramér random model does not adequately describe the distribution of primes on short intervals, and a refinement of Cramér's model taking into account divisibility by small primes suggests that
1891: 404: 1079: 1128:
As a result of the work of H. Maier on gaps between consecutive primes, the exact formulation of Cramér's conjecture has been called into question It is still probably true that for every constant
1412: 145: 487: 1634: 2295:
and Kevin McCurley, Open Problems in Number Theoretic Complexity, II. Algorithmic number theory (Ithaca, NY, 1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994.
1332: 882: 1667: 806:{\displaystyle \limsup _{n\to \infty }{\frac {p_{n+1}-p_{n}}{\log p_{n}}}\cdot {\frac {\left(\log \log \log p_{n}\right)^{2}}{\log \log p_{n}\log \log \log \log p_{n}}}>0.} 2604:
Equidistribution in number theory, an introduction. Proceedings of the NATO Advanced Study Institute on equidistribution in number theory, Montréal, Canada, July 11--22, 2005
1246: 2699: 1476: 1109: 2216: 1178: 1152: 1444: 189: 1914: 1198: 921: 2230: 2894: 509: 1685: 1675: 1083: 2889: 2744: 2727: 2692: 2722: 2615: 2523: 1484: 1699: 2863: 2779: 2685: 1817: 1116: 320: 2717: 2884: 1972: 1036: 1339: 1112: 2809: 836: 57: 2305: 2749: 893: 311: 2784: 1940: 419: 2858: 1811:
has calculated many large prime gaps. He measures the quality of fit to Cramér's conjecture by measuring the ratio
820: 2734: 2253: 2843: 2789: 824: 1588: 503:
In the other direction, E. Westzynthius proved in 1931 that prime gaps grow more than logarithmically. That is,
2848: 2816: 2804: 1930: 2833: 2774: 2754: 2739: 2176:
Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence (2018). "Long gaps between primes".
1934: 1447: 1021: 2046:
Westzynthius, E. (1931), "Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind",
2828: 2759: 1286: 842: 2821: 1639: 2794: 2080:
R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247
2838: 2799: 2595: 2472: 2422: 1925: 1203: 819:
conjectured that the left-hand side of the above formula is infinite, and this was proven in 2014 by
2853: 2400: 1283:
conjectured the following asymptotic equality, stronger than Cramér's conjecture, for record gaps:
2764: 2446: 2412: 2382: 2337: 2185: 2146: 2103: 410: 2663: 1945: 1029: 2660: 2641: 2611: 2567: 2519: 2438: 307: 176: 2020:
Baker, R. C., Harman, G., Pintz, J. (2001), "The Difference Between Consecutive Primes, II",
1452: 1094: 2621: 2599: 2583: 2557: 2529: 2480: 2430: 2372: 2345: 2327: 2245: 2195: 2156: 2113: 2063: 2055: 2029: 1989: 1980: 1948:
on the numbers of primes in short intervals for which the model predicts an incorrect answer
1693:. This is again formally equivalent to the Shanks conjecture but suggests lower-order terms 1157: 1131: 1025: 36: 2579: 2494: 287:{\displaystyle \limsup _{n\rightarrow \infty }{\frac {p_{n+1}-p_{n}}{(\log p_{n})^{2}}}=1,} 2625: 2607: 2587: 2575: 2533: 2515: 2490: 2349: 2292: 2067: 2059: 1420: 1120: 828: 2606:. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 237. Dordrecht: 2476: 2426: 1010:{\displaystyle \limsup _{n\rightarrow \infty }{\frac {p_{n+1}-p_{n}}{\log ^{2}p_{n}}}=1} 2541: 2507: 1899: 1183: 497: 172: 2644: 1414:
which is formally identical to the Shanks conjecture but suggests a lower-order term.
2878: 1808: 1280: 816: 28: 2450: 1997: 2249: 605: 594:{\displaystyle \limsup _{n\to \infty }{\frac {p_{n+1}-p_{n}}{\log p_{n}}}=\infty .} 164: 2545: 2485: 2217:
254A, Supplement 4: Probabilistic models and heuristics for the primes (optional)
17: 2161: 2134: 2118: 2091: 832: 493: 48: 2434: 1973:"On the order of magnitude of the difference between consecutive prime numbers" 2562: 1670: 44: 43:: intuitively, that gaps between consecutive primes are always small, and the 2571: 2668: 2649: 2212: 2033: 897: 180: 40: 2677: 2442: 1272: 2463:
Nicely, Thomas R. (1999), "New maximal prime gaps and first occurrences",
2401:"Nearest-neighbor-spacing distribution of prime numbers and quantum chaos" 1993: 2386: 2341: 2199: 1575:{\displaystyle G(x)\sim {\frac {x}{\pi (x)}}(2\log \pi (x)-\log x+c),} 2363:
Cadwell, J. H. (1971), "Large Intervals Between Consecutive Primes",
2377: 2332: 2318:
Shanks, Daniel (1964), "On Maximal Gaps between Successive Primes",
179:. While this is the statement explicitly conjectured by Cramér, his 1797:{\displaystyle G(x)\sim \log ^{2}x-2\log x\log \log x-(1-c)\log x.} 2417: 2190: 2151: 2108: 2090:
Ford, Kevin; Green, Ben; Konyagin, Sergei; Tao, Terence (2016).
2681: 2546:"Cramér vs. Cramér. On Cramér's probabilistic model for primes" 1886:{\displaystyle R={\frac {\log p_{n}}{\sqrt {p_{n+1}-p_{n}}}}.} 1336:
J.H. Cadwell has proposed the formula for the maximal gaps:
399:{\displaystyle p_{n+1}-p_{n}=O({\sqrt {p_{n}}}\,\log p_{n})} 1937:, much weaker but still unproven upper bounds on prime gaps 1689: 1679: 1087: 2276:
János Pintz, Very large gaps between consecutive primes,
1417:
Marek Wolf has proposed the formula for the maximal gaps
1074:{\displaystyle c\geq 2e^{-\gamma }\approx 1.1229\ldots } 1407:{\displaystyle G(x)\sim \log ^{2}x-\log x\log \log x,} 2231:"Harald Cramér and the distribution of prime numbers" 1902: 1820: 1702: 1642: 1591: 1487: 1455: 1423: 1342: 1289: 1206: 1186: 1160: 1134: 1097: 1039: 924: 845: 617: 512: 422: 323: 192: 60: 140:{\displaystyle p_{n+1}-p_{n}=O((\log p_{n})^{2}),\ } 2219:, section on The Cramér random model, January 2015. 839:. The two sets of authors improved the result by a 2550:Functiones et Approximatio Commentarii Mathematici 1908: 1885: 1796: 1661: 1628: 1574: 1470: 1438: 1406: 1326: 1240: 1192: 1172: 1146: 1103: 1073: 1009: 876: 805: 593: 481: 398: 286: 139: 2598:(2007). "The distribution of prime numbers". In 2048:Commentationes Physico-Mathematicae Helsingsfors 1896:He writes, "For the largest known maximal gaps, 926: 900:—in which the probability that a number of size 619: 514: 194: 2326:(88), American Mathematical Society: 646–651, 2092:"Large gaps between consecutive prime numbers" 2022:Proceedings of the London Mathematical Society 482:{\displaystyle p_{n+1}-p_{n}=O(p_{n}^{0.525})} 2693: 51:just how small they must be. It states that 8: 2178:Journal of the American Mathematical Society 1966: 1964: 1962: 2700: 2686: 2678: 1629:{\displaystyle c=\log(C_{2})=0.2778769...} 35:, formulated by the Swedish mathematician 2561: 2484: 2416: 2376: 2331: 2189: 2160: 2150: 2117: 2107: 1901: 1871: 1852: 1840: 1827: 1819: 1722: 1701: 1647: 1641: 1611: 1590: 1503: 1486: 1454: 1422: 1362: 1341: 1309: 1288: 1232: 1205: 1185: 1159: 1133: 1096: 1053: 1038: 992: 979: 967: 948: 941: 929: 923: 868: 844: 788: 754: 731: 720: 690: 678: 660: 641: 634: 622: 616: 573: 555: 536: 529: 517: 511: 470: 465: 446: 427: 421: 387: 376: 368: 362: 347: 328: 322: 266: 256: 235: 216: 209: 197: 191: 183:actually supports the stronger statement 122: 112: 84: 65: 59: 1271: 413:. The best known unconditional bound is 302:Conditional proven results on prime gaps 39:in 1936, is an estimate for the size of 1958: 41:gaps between consecutive prime numbers 1115:. János Pintz has suggested that the 7: 1327:{\displaystyle G(x)\sim \log ^{2}x.} 877:{\displaystyle \log \log \log p_{n}} 1180:such that there is a prime between 2895:Unsolved problems in number theory 2512:Unsolved problems in number theory 1662:{\displaystyle C_{2}=1.3203236...} 1268:Related conjectures and heuristics 936: 892:Cramér's conjecture is based on a 629: 585: 524: 204: 25: 2308:, University of Cambridge (2020). 2890:Conjectures about prime numbers 1264:(internal references removed). 1253:Similarly, Robin Visser writes 1241:{\displaystyle x+d(\log x)^{c}} 1119:may be infinite, and similarly 912:or Cramér model of the primes. 2250:10.1080/03461238.1995.10413946 2238:Scandinavian Actuarial Journal 1779: 1767: 1712: 1706: 1617: 1604: 1566: 1545: 1539: 1524: 1518: 1512: 1497: 1491: 1465: 1459: 1433: 1427: 1352: 1346: 1299: 1293: 1229: 1216: 933: 626: 521: 476: 458: 393: 359: 263: 243: 201: 128: 119: 99: 96: 1: 2664:"Cramér-Granville Conjecture" 2486:10.1090/S0025-5718-99-01065-0 2283::2 (April 1997), pp. 286–301. 1024:. However, as pointed out by 915:In the Cramér random model, 2162:10.4007/annals.2016.183.3.3 2135:"Large gaps between primes" 2119:10.4007/annals.2016.183.3.4 604:His result was improved by 2911: 2465:Mathematics of Computation 2435:10.1103/physreve.89.022922 2365:Mathematics of Computation 2320:Mathematics of Computation 1446:expressed in terms of the 2713: 2306:Large Gaps Between Primes 1916:has remained near 1.13." 1123:and Kevin McCurley write 1113:Euler–Mascheroni constant 409:on the assumption of the 2708:Prime number conjectures 2602:; Rudnick, Zeév (eds.). 2278:Journal of Number Theory 1941:Firoozbakht's conjecture 884:factor later that year. 2859:Schinzel's hypothesis H 2563:10.7169/facm/1229619660 2133:Maynard, James (2016). 1971:Cramér, Harald (1936), 1471:{\displaystyle \pi (x)} 1448:prime-counting function 1104:{\displaystyle \gamma } 908:. This is known as the 888:Heuristic justification 835:, and independently by 2885:Analytic number theory 2229:Granville, A. (1995), 1910: 1887: 1798: 1663: 1630: 1576: 1472: 1440: 1408: 1328: 1277: 1242: 1194: 1174: 1173:{\displaystyle d>0} 1154:, there is a constant 1148: 1147:{\displaystyle c>2} 1105: 1075: 1011: 878: 807: 595: 483: 400: 288: 141: 2864:Waring's prime number 2139:Annals of Mathematics 2096:Annals of Mathematics 2034:10.1112/plms/83.3.532 2028:(3), Wiley: 532–562, 1931:Legendre's conjecture 1911: 1888: 1799: 1664: 1631: 1577: 1473: 1441: 1409: 1329: 1275: 1243: 1195: 1175: 1149: 1106: 1076: 1012: 879: 808: 596: 484: 401: 289: 142: 2399:Wolf, Marek (2014), 1994:10.4064/aa-2-1-23-46 1935:Andrica's conjecture 1926:Prime number theorem 1900: 1818: 1700: 1640: 1589: 1485: 1453: 1439:{\displaystyle G(x)} 1421: 1340: 1287: 1204: 1184: 1158: 1132: 1095: 1037: 922: 896:model—essentially a 843: 615: 510: 420: 321: 190: 58: 2829:Legendre's constant 2645:"Cramér Conjecture" 2477:1999MaCom..68.1311N 2427:2014PhRvE..89b2922W 910:Cramér random model 475: 175:, and "log" is the 33:Cramér's conjecture 2780:Elliott–Halberstam 2765:Chinese hypothesis 2661:Weisstein, Eric W. 2642:Weisstein, Eric W. 2610:. pp. 59–83. 2471:(227): 1311–1315, 1906: 1883: 1794: 1659: 1626: 1572: 1468: 1436: 1404: 1324: 1278: 1276:Prime gap function 1238: 1190: 1170: 1144: 1101: 1071: 1007: 940: 904:is prime is 1/log 874: 803: 633: 608:, who proved that 591: 528: 479: 461: 411:Riemann hypothesis 396: 284: 208: 137: 2872: 2871: 2800:Landau's problems 2617:978-1-4020-5403-7 2600:Granville, Andrew 2596:Soundararajan, K. 2525:978-0-387-20860-2 2141:. Second series. 2098:. Second series. 1909:{\displaystyle R} 1878: 1877: 1522: 1193:{\displaystyle x} 999: 925: 795: 685: 618: 580: 513: 374: 308:conditional proof 273: 193: 177:natural logarithm 136: 18:Cramer conjecture 16:(Redirected from 2902: 2718:Hardy–Littlewood 2702: 2695: 2688: 2679: 2674: 2673: 2655: 2654: 2629: 2591: 2565: 2537: 2514:(3rd ed.). 2499: 2497: 2488: 2460: 2454: 2453: 2420: 2396: 2390: 2389: 2380: 2371:(116): 909–913, 2360: 2354: 2352: 2335: 2315: 2309: 2302: 2296: 2290: 2284: 2274: 2268: 2266: 2265: 2264: 2258: 2252:, archived from 2235: 2226: 2220: 2210: 2204: 2203: 2200:10.1090/jams/876 2193: 2173: 2167: 2166: 2164: 2154: 2130: 2124: 2123: 2121: 2111: 2087: 2081: 2078: 2072: 2070: 2043: 2037: 2036: 2017: 2011: 2010: 2009: 2008: 2002: 1996:, archived from 1981:Acta Arithmetica 1977: 1968: 1915: 1913: 1912: 1907: 1892: 1890: 1889: 1884: 1879: 1876: 1875: 1863: 1862: 1847: 1846: 1845: 1844: 1828: 1803: 1801: 1800: 1795: 1727: 1726: 1692: 1682: 1668: 1666: 1665: 1660: 1652: 1651: 1635: 1633: 1632: 1627: 1616: 1615: 1581: 1579: 1578: 1573: 1523: 1521: 1504: 1477: 1475: 1474: 1469: 1445: 1443: 1442: 1437: 1413: 1411: 1410: 1405: 1367: 1366: 1333: 1331: 1330: 1325: 1314: 1313: 1247: 1245: 1244: 1239: 1237: 1236: 1199: 1197: 1196: 1191: 1179: 1177: 1176: 1171: 1153: 1151: 1150: 1145: 1110: 1108: 1107: 1102: 1090: 1080: 1078: 1077: 1072: 1061: 1060: 1026:Andrew Granville 1016: 1014: 1013: 1008: 1000: 998: 997: 996: 984: 983: 973: 972: 971: 959: 958: 942: 939: 883: 881: 880: 875: 873: 872: 812: 810: 809: 804: 796: 794: 793: 792: 759: 758: 736: 735: 730: 726: 725: 724: 691: 686: 684: 683: 682: 666: 665: 664: 652: 651: 635: 632: 600: 598: 597: 592: 581: 579: 578: 577: 561: 560: 559: 547: 546: 530: 527: 488: 486: 485: 480: 474: 469: 451: 450: 438: 437: 405: 403: 402: 397: 392: 391: 375: 373: 372: 363: 352: 351: 339: 338: 293: 291: 290: 285: 274: 272: 271: 270: 261: 260: 241: 240: 239: 227: 226: 210: 207: 146: 144: 143: 138: 134: 127: 126: 117: 116: 89: 88: 76: 75: 21: 2910: 2909: 2905: 2904: 2903: 2901: 2900: 2899: 2875: 2874: 2873: 2868: 2709: 2706: 2659: 2658: 2640: 2639: 2636: 2618: 2608:Springer-Verlag 2594: 2540: 2526: 2516:Springer-Verlag 2508:Guy, Richard K. 2506: 2503: 2502: 2462: 2461: 2457: 2398: 2397: 2393: 2378:10.2307/2004355 2362: 2361: 2357: 2333:10.2307/2002951 2317: 2316: 2312: 2303: 2299: 2293:Leonard Adleman 2291: 2287: 2275: 2271: 2262: 2260: 2256: 2233: 2228: 2227: 2223: 2211: 2207: 2175: 2174: 2170: 2132: 2131: 2127: 2089: 2088: 2084: 2079: 2075: 2045: 2044: 2040: 2019: 2018: 2014: 2006: 2004: 2000: 1975: 1970: 1969: 1960: 1955: 1946:Maier's theorem 1922: 1898: 1897: 1867: 1848: 1836: 1829: 1816: 1815: 1718: 1698: 1697: 1684: 1674: 1643: 1638: 1637: 1607: 1587: 1586: 1508: 1483: 1482: 1451: 1450: 1419: 1418: 1358: 1338: 1337: 1305: 1285: 1284: 1270: 1228: 1202: 1201: 1182: 1181: 1156: 1155: 1130: 1129: 1121:Leonard Adleman 1093: 1092: 1082: 1049: 1035: 1034: 1030:Maier's theorem 1022:probability one 988: 975: 974: 963: 944: 943: 920: 919: 890: 864: 841: 840: 829:Sergei Konyagin 784: 750: 737: 716: 697: 693: 692: 674: 667: 656: 637: 636: 613: 612: 569: 562: 551: 532: 531: 508: 507: 442: 423: 418: 417: 383: 364: 343: 324: 319: 318: 314:statement that 304: 262: 252: 242: 231: 212: 211: 188: 187: 158: 118: 108: 80: 61: 56: 55: 23: 22: 15: 12: 11: 5: 2908: 2906: 2898: 2897: 2892: 2887: 2877: 2876: 2870: 2869: 2867: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2825: 2824: 2819: 2814: 2813: 2812: 2797: 2792: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2731: 2730: 2725: 2714: 2711: 2710: 2707: 2705: 2704: 2697: 2690: 2682: 2676: 2675: 2656: 2635: 2634:External links 2632: 2631: 2630: 2616: 2592: 2556:(2): 361–376. 2538: 2524: 2501: 2500: 2455: 2391: 2355: 2310: 2304:Robin Visser, 2297: 2285: 2269: 2221: 2205: 2168: 2145:(3): 915–933. 2125: 2102:(3): 935–974. 2082: 2073: 2038: 2012: 1957: 1956: 1954: 1951: 1950: 1949: 1943: 1938: 1928: 1921: 1918: 1905: 1894: 1893: 1882: 1874: 1870: 1866: 1861: 1858: 1855: 1851: 1843: 1839: 1835: 1832: 1826: 1823: 1806: 1805: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1725: 1721: 1717: 1714: 1711: 1708: 1705: 1673:constant; see 1658: 1655: 1650: 1646: 1625: 1622: 1619: 1614: 1610: 1606: 1603: 1600: 1597: 1594: 1583: 1582: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1520: 1517: 1514: 1511: 1507: 1502: 1499: 1496: 1493: 1490: 1467: 1464: 1461: 1458: 1435: 1432: 1429: 1426: 1403: 1400: 1397: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1373: 1370: 1365: 1361: 1357: 1354: 1351: 1348: 1345: 1323: 1320: 1317: 1312: 1308: 1304: 1301: 1298: 1295: 1292: 1269: 1266: 1262: 1261: 1251: 1250: 1235: 1231: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1189: 1169: 1166: 1163: 1143: 1140: 1137: 1100: 1070: 1067: 1064: 1059: 1056: 1052: 1048: 1045: 1042: 1018: 1017: 1006: 1003: 995: 991: 987: 982: 978: 970: 966: 962: 957: 954: 951: 947: 938: 935: 932: 928: 927:lim sup 889: 886: 871: 867: 863: 860: 857: 854: 851: 848: 814: 813: 802: 799: 791: 787: 783: 780: 777: 774: 771: 768: 765: 762: 757: 753: 749: 746: 743: 740: 734: 729: 723: 719: 715: 712: 709: 706: 703: 700: 696: 689: 681: 677: 673: 670: 663: 659: 655: 650: 647: 644: 640: 631: 628: 625: 621: 620:lim sup 602: 601: 590: 587: 584: 576: 572: 568: 565: 558: 554: 550: 545: 542: 539: 535: 526: 523: 520: 516: 515:lim sup 492:due to Baker, 490: 489: 478: 473: 468: 464: 460: 457: 454: 449: 445: 441: 436: 433: 430: 426: 407: 406: 395: 390: 386: 382: 379: 371: 367: 361: 358: 355: 350: 346: 342: 337: 334: 331: 327: 306:Cramér gave a 303: 300: 295: 294: 283: 280: 277: 269: 265: 259: 255: 251: 248: 245: 238: 234: 230: 225: 222: 219: 215: 206: 203: 200: 196: 195:lim sup 173:big O notation 154: 148: 147: 133: 130: 125: 121: 115: 111: 107: 104: 101: 98: 95: 92: 87: 83: 79: 74: 71: 68: 64: 49:asymptotically 24: 14: 13: 10: 9: 6: 4: 3: 2: 2907: 2896: 2893: 2891: 2888: 2886: 2883: 2882: 2880: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2823: 2820: 2818: 2815: 2811: 2808: 2807: 2806: 2803: 2802: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2785:Firoozbakht's 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2729: 2726: 2724: 2721: 2720: 2719: 2716: 2715: 2712: 2703: 2698: 2696: 2691: 2689: 2684: 2683: 2680: 2671: 2670: 2665: 2662: 2657: 2652: 2651: 2646: 2643: 2638: 2637: 2633: 2627: 2623: 2619: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2564: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2521: 2517: 2513: 2509: 2505: 2504: 2496: 2492: 2487: 2482: 2478: 2474: 2470: 2466: 2459: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2419: 2414: 2411:(2): 022922, 2410: 2406: 2402: 2395: 2392: 2388: 2384: 2379: 2374: 2370: 2366: 2359: 2356: 2351: 2347: 2343: 2339: 2334: 2329: 2325: 2321: 2314: 2311: 2307: 2301: 2298: 2294: 2289: 2286: 2282: 2279: 2273: 2270: 2259:on 2015-09-23 2255: 2251: 2247: 2243: 2239: 2232: 2225: 2222: 2218: 2214: 2209: 2206: 2201: 2197: 2192: 2187: 2183: 2179: 2172: 2169: 2163: 2158: 2153: 2148: 2144: 2140: 2136: 2129: 2126: 2120: 2115: 2110: 2105: 2101: 2097: 2093: 2086: 2083: 2077: 2074: 2069: 2065: 2061: 2057: 2053: 2050:(in German), 2049: 2042: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2003:on 2018-07-23 1999: 1995: 1991: 1987: 1983: 1982: 1974: 1967: 1965: 1963: 1959: 1952: 1947: 1944: 1942: 1939: 1936: 1932: 1929: 1927: 1924: 1923: 1919: 1917: 1903: 1880: 1872: 1868: 1864: 1859: 1856: 1853: 1849: 1841: 1837: 1833: 1830: 1824: 1821: 1814: 1813: 1812: 1810: 1809:Thomas Nicely 1791: 1788: 1785: 1782: 1776: 1773: 1770: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1723: 1719: 1715: 1709: 1703: 1696: 1695: 1694: 1691: 1687: 1681: 1677: 1672: 1669:is twice the 1656: 1653: 1648: 1644: 1623: 1620: 1612: 1608: 1601: 1598: 1595: 1592: 1569: 1563: 1560: 1557: 1554: 1551: 1548: 1542: 1536: 1533: 1530: 1527: 1515: 1509: 1505: 1500: 1494: 1488: 1481: 1480: 1479: 1462: 1456: 1449: 1430: 1424: 1415: 1401: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1363: 1359: 1355: 1349: 1343: 1334: 1321: 1318: 1315: 1310: 1306: 1302: 1296: 1290: 1282: 1281:Daniel Shanks 1274: 1267: 1265: 1260: 1256: 1255: 1254: 1249: 1233: 1225: 1222: 1219: 1213: 1210: 1207: 1187: 1167: 1164: 1161: 1141: 1138: 1135: 1126: 1125: 1124: 1122: 1118: 1114: 1098: 1089: 1085: 1068: 1065: 1062: 1057: 1054: 1050: 1046: 1043: 1040: 1031: 1027: 1023: 1004: 1001: 993: 989: 985: 980: 976: 968: 964: 960: 955: 952: 949: 945: 930: 918: 917: 916: 913: 911: 907: 903: 899: 895: 894:probabilistic 887: 885: 869: 865: 861: 858: 855: 852: 849: 846: 838: 837:James Maynard 834: 830: 826: 822: 818: 800: 797: 789: 785: 781: 778: 775: 772: 769: 766: 763: 760: 755: 751: 747: 744: 741: 738: 732: 727: 721: 717: 713: 710: 707: 704: 701: 698: 694: 687: 679: 675: 671: 668: 661: 657: 653: 648: 645: 642: 638: 623: 611: 610: 609: 607: 588: 582: 574: 570: 566: 563: 556: 552: 548: 543: 540: 537: 533: 518: 506: 505: 504: 501: 499: 495: 471: 466: 462: 455: 452: 447: 443: 439: 434: 431: 428: 424: 416: 415: 414: 412: 388: 384: 380: 377: 369: 365: 356: 353: 348: 344: 340: 335: 332: 329: 325: 317: 316: 315: 313: 309: 301: 299: 281: 278: 275: 267: 257: 253: 249: 246: 236: 232: 228: 223: 220: 217: 213: 198: 186: 185: 184: 182: 178: 174: 170: 166: 162: 157: 153: 131: 123: 113: 109: 105: 102: 93: 90: 85: 81: 77: 72: 69: 66: 62: 54: 53: 52: 50: 46: 42: 38: 37:Harald Cramér 34: 30: 29:number theory 19: 2769: 2750:Bateman–Horn 2667: 2648: 2603: 2553: 2549: 2542:Pintz, János 2511: 2468: 2464: 2458: 2408: 2405:Phys. Rev. E 2404: 2394: 2368: 2364: 2358: 2323: 2319: 2313: 2300: 2288: 2280: 2277: 2272: 2261:, retrieved 2254:the original 2241: 2237: 2224: 2208: 2181: 2177: 2171: 2142: 2138: 2128: 2099: 2095: 2085: 2076: 2051: 2047: 2041: 2025: 2021: 2015: 2005:, retrieved 1998:the original 1985: 1979: 1895: 1807: 1657:1.3203236... 1624:0.2778769... 1584: 1416: 1335: 1279: 1263: 1257: 1252: 1127: 1019: 914: 909: 905: 901: 891: 815: 606:R. A. Rankin 603: 502: 491: 408: 310:of the much 305: 296: 168: 165:prime number 160: 159:denotes the 155: 151: 149: 32: 26: 2844:Oppermann's 2790:Gilbreath's 2760:Bunyakovsky 1671:twin primes 833:Terence Tao 47:quantifies 2879:Categories 2849:Polignac's 2822:Twin prime 2817:Legendre's 2805:Goldbach's 2735:Agoh–Giuga 2626:1141.11043 2588:1226.11096 2534:1058.11001 2350:0128.04203 2263:2007-06-05 2184:: 65–105. 2068:0003.24601 2060:57.0186.02 2007:2012-03-12 1953:References 821:Kevin Ford 817:Paul Erdős 45:conjecture 2834:Lemoine's 2775:Dickson's 2755:Brocard's 2740:Andrica's 2669:MathWorld 2650:MathWorld 2572:0208-6573 2418:1212.3841 2244:: 12–28, 2213:Terry Tao 2191:1412.5029 2152:1408.5110 2109:1408.4505 1988:: 23–46, 1865:− 1834:⁡ 1786:⁡ 1774:− 1765:− 1759:⁡ 1753:⁡ 1744:⁡ 1735:− 1729:⁡ 1716:∼ 1602:⁡ 1555:⁡ 1549:− 1537:π 1534:⁡ 1510:π 1501:∼ 1457:π 1396:⁡ 1390:⁡ 1381:⁡ 1375:− 1369:⁡ 1356:∼ 1316:⁡ 1303:∼ 1223:⁡ 1117:limit sup 1099:γ 1091:), where 1069:… 1063:≈ 1058:γ 1055:− 1044:≥ 986:⁡ 961:− 937:∞ 934:→ 898:heuristic 862:⁡ 856:⁡ 850:⁡ 825:Ben Green 782:⁡ 776:⁡ 770:⁡ 764:⁡ 748:⁡ 742:⁡ 714:⁡ 708:⁡ 702:⁡ 688:⋅ 672:⁡ 654:− 630:∞ 627:→ 586:∞ 567:⁡ 549:− 525:∞ 522:→ 440:− 381:⁡ 341:− 250:⁡ 229:− 205:∞ 202:→ 181:heuristic 106:⁡ 78:− 2839:Mersenne 2770:Cramér's 2544:(2007). 2510:(2004). 2451:25003349 2443:25353560 2054:: 1–37, 1920:See also 2795:Grimm's 2745:Artin's 2580:2363833 2495:1627813 2473:Bibcode 2423:Bibcode 2387:2004355 2342:2002951 1690:A114907 1688::  1680:A005597 1678::  1111:is the 1088:A125313 1086::  2624:  2614:  2586:  2578:  2570:  2532:  2522:  2518:. A8. 2493:  2449:  2441:  2385:  2348:  2340:  2066:  2058:  1585:where 1259:model. 1066:1.1229 831:, and 496:, and 494:Harman 312:weaker 150:where 135:  2854:Pólya 2447:S2CID 2413:arXiv 2383:JSTOR 2338:JSTOR 2257:(PDF) 2234:(PDF) 2186:arXiv 2147:arXiv 2104:arXiv 2001:(PDF) 1976:(PDF) 1020:with 498:Pintz 472:0.525 2810:weak 2612:ISBN 2568:ISSN 2520:ISBN 2439:PMID 1933:and 1686:OEIS 1676:OEIS 1636:and 1200:and 1165:> 1139:> 1084:OEIS 798:> 2728:2nd 2723:1st 2622:Zbl 2584:Zbl 2558:doi 2530:Zbl 2481:doi 2431:doi 2373:doi 2346:Zbl 2328:doi 2246:doi 2196:doi 2157:doi 2143:183 2114:doi 2100:183 2064:Zbl 2056:JFM 2030:doi 1990:doi 1831:log 1783:log 1756:log 1750:log 1741:log 1720:log 1599:log 1552:log 1531:log 1393:log 1387:log 1378:log 1360:log 1307:log 1220:log 977:log 859:log 853:log 847:log 779:log 773:log 767:log 761:log 745:log 739:log 711:log 705:log 699:log 669:log 564:log 378:log 247:log 171:is 163:th 103:log 27:In 2881:: 2666:. 2647:. 2620:. 2582:. 2576:MR 2574:. 2566:. 2554:37 2552:. 2548:. 2528:. 2491:MR 2489:, 2479:, 2469:68 2467:, 2445:, 2437:, 2429:, 2421:, 2409:89 2407:, 2403:, 2381:, 2369:25 2367:, 2344:, 2336:, 2324:18 2322:, 2281:63 2240:, 2236:, 2215:, 2194:. 2182:31 2180:. 2155:. 2137:. 2112:. 2094:. 2062:, 2026:83 2024:, 1984:, 1978:, 1961:^ 1683:, 1478:: 1028:, 827:, 823:, 801:0. 500:. 167:, 31:, 2701:e 2694:t 2687:v 2672:. 2653:. 2628:. 2590:. 2560:: 2536:. 2498:. 2483:: 2475:: 2433:: 2425:: 2415:: 2375:: 2353:. 2330:: 2267:. 2248:: 2242:1 2202:. 2198:: 2188:: 2165:. 2159:: 2149:: 2122:. 2116:: 2106:: 2071:. 2052:5 2032:: 1992:: 1986:2 1904:R 1881:. 1873:n 1869:p 1860:1 1857:+ 1854:n 1850:p 1842:n 1838:p 1825:= 1822:R 1804:. 1792:. 1789:x 1780:) 1777:c 1771:1 1768:( 1762:x 1747:x 1738:2 1732:x 1724:2 1713:) 1710:x 1707:( 1704:G 1654:= 1649:2 1645:C 1621:= 1618:) 1613:2 1609:C 1605:( 1596:= 1593:c 1570:, 1567:) 1564:c 1561:+ 1558:x 1546:) 1543:x 1540:( 1528:2 1525:( 1519:) 1516:x 1513:( 1506:x 1498:) 1495:x 1492:( 1489:G 1466:) 1463:x 1460:( 1434:) 1431:x 1428:( 1425:G 1402:, 1399:x 1384:x 1372:x 1364:2 1353:) 1350:x 1347:( 1344:G 1322:. 1319:x 1311:2 1300:) 1297:x 1294:( 1291:G 1248:. 1234:c 1230:) 1226:x 1217:( 1214:d 1211:+ 1208:x 1188:x 1168:0 1162:d 1142:2 1136:c 1081:( 1051:e 1047:2 1041:c 1005:1 1002:= 994:n 990:p 981:2 969:n 965:p 956:1 953:+ 950:n 946:p 931:n 906:x 902:x 870:n 866:p 790:n 786:p 756:n 752:p 733:2 728:) 722:n 718:p 695:( 680:n 676:p 662:n 658:p 649:1 646:+ 643:n 639:p 624:n 589:. 583:= 575:n 571:p 557:n 553:p 544:1 541:+ 538:n 534:p 519:n 477:) 467:n 463:p 459:( 456:O 453:= 448:n 444:p 435:1 432:+ 429:n 425:p 394:) 389:n 385:p 370:n 366:p 360:( 357:O 354:= 349:n 345:p 336:1 333:+ 330:n 326:p 282:, 279:1 276:= 268:2 264:) 258:n 254:p 244:( 237:n 233:p 224:1 221:+ 218:n 214:p 199:n 169:O 161:n 156:n 152:p 132:, 129:) 124:2 120:) 114:n 110:p 100:( 97:( 94:O 91:= 86:n 82:p 73:1 70:+ 67:n 63:p 20:)

Index

Cramer conjecture
number theory
Harald Cramér
gaps between consecutive prime numbers
conjecture
asymptotically
prime number
big O notation
natural logarithm
heuristic
conditional proof
weaker
Riemann hypothesis
Harman
Pintz
R. A. Rankin
Paul Erdős
Kevin Ford
Ben Green
Sergei Konyagin
Terence Tao
James Maynard
probabilistic
heuristic
probability one
Andrew Granville
Maier's theorem
OEIS
A125313
Euler–Mascheroni constant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.