Knowledge

Craton

Source 📝

554:. Jordan proposes that cratons formed from a high degree of partial melting of the upper mantle, with 30 to 40 percent of the source rock entering the melt. Such a high degree of melting was possible because of the high mantle temperatures of the Archean. The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium and thus lower in chemical density than undepleted mantle. This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled, so that the physical density of the cratonic roots matched that of the surrounding hotter, but more chemically dense, mantle. In addition to cooling the craton roots and lowering their chemical density, the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle. The resulting mantle roots have remained stable for billions of years. Jordan suggests that depletion occurred primarily in 223: 31: 528:, which originate in the roots of cratons, and which are almost always over 2 billion years and often over 3 billion years in age. Rock of Archean age makes up only 7% of the world's current cratons; even allowing for erosion and destruction of past formations, this suggests that only 5 to 40 percent of the present continental crust formed during the Archean. Cratonization likely was completed during the 653:
and may be Archean, while the second is found at depths from 180 to 240 km (110 to 150 mi) and may be younger. The second layer may be a less depleted thermal boundary layer that stagnated against the depleted "lid" formed by the first layer. The impact origin model does not require plumes or accretion; this model is, however, not incompatible with either.
489:. These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt. Peridotite is strongly influenced by the inclusion of moisture. Craton peridotite moisture content is unusually low, which leads to much greater strength. It also contains high percentages of low-weight 652:
The chemistry of xenoliths and seismic tomography both favor the two accretional models over the plume model. However, other geochemical evidence favors mantle plumes. Tomography shows two layers in the craton roots beneath North America. One is found at depths shallower than 150 km (93 mi)
593:
magma and a solid residue very close in composition to Archean lithospheric mantle, but continental shields do not contain enough komatiite to match the expected depletion. Either much of the komatiite never reached the surface, or other processes aided craton root formation. There are many competing
584:
However, melt extraction alone cannot explain all the properties of craton roots. Jordan notes in his paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers (120 mi). The great depths of craton roots required further explanation. The 30
643:
A fourth theory presented in a 2015 publication suggests that the origin of the cratons is similar to crustal plateaus observed on Venus, which may have been created by large asteroid impacts. In this model, large impacts on the Earth's early lithosphere penetrated deep into the mantle and created
458:, and the low-velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons. Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy and a low intrinsic density. This low density offsets density increases from 893:
Ratheesh-Kumar, R.T.; Windley, B.F.; Xiao, W.J.; Jia, X-L.; Mohanty, D.P.; Zeba-Nezrin, F.K. (October 2019). "Early growth of the Indian lithosphere: implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India".
602:
Jordan's model suggests that further cratonization was a result of repeated continental collisions. The thickening of the crust associated with these collisions may have been balanced by craton root thickening according to the principle of
493:
instead of higher-weight calcium and iron. Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting.
656:
All these proposed mechanisms rely on buoyant, viscous material separating from a denser residue due to mantle flow, and it is possible that more than one mechanism contributed to craton root formation.
607:. Jordan likens this model to "kneading" of the cratons, allowing low density material to move up and higher density to move down, creating stable cratonic roots as deep as 400 km (250 mi). 1858:
Lundmark, Anders Mattias; Lamminen, Jarkko (2016). "The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia".
685:
leads to the formation of so-called polygenetic peneplains of mixed origin. Another result of the longevity of cratons is that they may alternate between periods of high and low relative
577:
of xenoliths indicates that the oldest melting events took place in the early to middle Archean. Significant cratonization continued into the late Archean, accompanied by voluminous
520:. There is much about this process that remains uncertain, with very little consensus in the scientific community. However, the first cratonic landmasses likely formed during the 462:
and prevents the craton from sinking into the deep mantle. Cratonic lithosphere is much older than oceanic lithosphere—up to 4 billion years versus 180 million years.
454:
more than twice the typical 100 km (60 mi) thickness of mature oceanic or non-cratonic, continental lithosphere. At that depth, craton roots extend into the
1381: 544:
The origin of the roots of cratons is still debated. However, the present understanding of cratonization began with the publication in 1978 of a paper by
565:
This model of melt extraction from the upper mantle has held up well with subsequent observations. The properties of mantle xenoliths confirm that the
754: 880:
The Large-wavelength Deformations of the Lithosphere: Materials for a history of the evolution of though from the earliest times toi plate tectonics
1836: 974:"Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform" 1416: 681:. While the process of etchplanation is associated to humid climate and pediplanation with arid and semi-arid climate, shifting climate over 1014:
Cordani, U.G.; Teixeira, W.; D'Agrella-Filho, M.S.; Trindade, R.I. (June 2009). "The position of the Amazonian Craton in supercontinents".
783: 1927: 1051:"Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons" 1900: 1651: 1361: 1279: 1218: 1135:
Hand, M.; Reid, A.; Jagodzinski, L. (1 December 2007). "Tectonic Framework and Evolution of the Gawler Craton, Southern Australia".
159: 122: 82: 929:
Kusky, T. M.; Windley, B. F.; Zhai, M.-G. (2007). "Tectonic evolution of the North China Block: from orogen to craton to orogen".
1100:
Hoffman, P F (May 1988). "United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia".
1966: 230: 1444:"Formation of cratonic mantle keels by arc accretion: Evidence from S receiver functions: FORMATION OF CRATONIC MANTLE KEELS" 835: 214:. They have a thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth's mantle. 619:
of molten material from the deep mantle. This would have built up a thick layer of depleted mantle underneath the cratons.
1995: 1674:
Ernst, Richard E.; Buchan, Kenneth L.; Campbell, Ian H. (February 2005). "Frontiers in large igneous province research".
1049:
Nguuri, T. K.; Gore, J.; James, D. E.; Webb, S. J.; Wright, C.; Zengeni, T. G.; Gwavava, O.; Snoke, J. A. (1 July 2001).
2028: 729: 574: 343:
from regions that are more geologically active and unstable. Cratons are composed of two layers: a continental
1936:
Hamilton, Warren B. (August 1998). "Archean magmatism and deformation were not products of plate tectonics".
1171: 459: 1831: 1782: 762: 280: 431: 1721:
Yuan, Huaiyu; Romanowicz, Barbara (August 2010). "Lithospheric layering in the North American craton".
875: 1945: 1869: 1860: 1791: 1730: 1683: 1492: 1396: 1321: 1144: 1109: 1023: 988: 938: 419: 690: 1826: 566: 533: 478: 202:; the exceptions occur where geologically recent rifting events have separated cratons and created 1911: 1807: 1754: 1508: 1465: 1082: 954: 911: 447: 415: 351: 253: 207: 1483:
Jordan, Thomas H. (August 1978). "Composition and development of the continental tectosphere".
689:. High relative sea level leads to increased oceanicity, while the opposite leads to increased 1923: 1777: 1746: 1647: 1412: 1357: 1349: 1275: 1214: 1191: 973: 831: 791: 734: 701: 498:
peridotites represent the crystalline residues after extraction of melts of compositions like
340: 226: 191: 573:
of craton root xenoliths is extremely dry, which would give the roots a very high viscosity.
2023: 1953: 1915: 1877: 1799: 1738: 1691: 1639: 1500: 1455: 1404: 1329: 1183: 1152: 1117: 1072: 1062: 1031: 996: 992: 946: 903: 717: 644:
enormous lava ponds. The paper suggests these lava ponds cooled to form the craton's root.
550: 545: 482: 423: 356: 345: 289: 271: 244: 211: 187: 133: 93: 53: 713: 427: 222: 199: 1949: 1907:
Sr. Lecturer, Geography, School of Humanities, Central Queensland University, Australia.
1873: 1795: 1734: 1687: 1496: 1400: 1325: 1148: 1121: 1113: 1027: 942: 697: 628: 411: 203: 168: 1957: 1000: 696:
Many cratons have had subdued topographies since Precambrian times. For example, the
30: 2017: 1811: 1631: 1469: 958: 915: 709: 455: 435: 367: 295: 1978: 1881: 1086: 907: 1971:
Department of Geophysics, Colorado School of Mines, Journal of Conference Abstracts
1758: 1512: 632: 616: 559: 1780:; Finkl Jr., Charles W. (1980). "Cratonic erosion unconformities and peneplains". 1274:(2nd ed.). Cambridge, UK: Cambridge University Press. pp. 373, 602–603. 206:
along their edges. Cratons are characteristically composed of ancient crystalline
1695: 1156: 1999: 705: 529: 495: 451: 389: 183: 1643: 555: 486: 474: 1195: 1035: 669:
of cratons has been labelled the "cratonic regime". It involves processes of
450:
shows that cratons are underlain by anomalously cold mantle corresponding to
1187: 686: 682: 678: 674: 670: 590: 503: 490: 466: 1750: 1460: 1443: 1067: 1050: 604: 381: 35: 1742: 830:(Fourth ed.). Alexandria, Virginia: American Geological Institute. 631:
of subducting oceanic lithosphere became lodged beneath a proto-craton,
1077: 666: 570: 525: 521: 385: 262: 17: 815:(5th ed.). Sydney: Macquarie Dictionary Publishers Pty Ltd. 2009. 1504: 1382:"Geochemical/petrologic constraints on the origin of cratonic mantle" 499: 177: 39: 1408: 950: 1803: 1632:"Archean mantle plumes: Evidence from greenstone belt geochemistry" 1601: 1599: 1597: 1334: 1309: 882:. Geological Society of America memoir. Vol. 196. p. 331. 615:
A second model suggests that the surface crust was thickened by a
578: 470: 221: 29: 1998:. Smithsonian National Museum of Natural History. Archived from 1380:
Lee, C. (2006). Benn, K.; Mareschal, J.C.; Condie, K.C. (eds.).
322: 313: 304: 195: 198:
of continents, cratons are generally found in the interiors of
586: 151: 349:, in which the basement rock crops out at the surface, and a 172: 235: 145: 65: 1983:. Symposium A08, Early Evolution of the Continental Crust. 784:"Definition of craton in British and Commonwealth English" 712:
had been eroded into a subdued terrain already during the
111: 71: 38:
Period when the two continents were joined as part of the
1253: 1251: 1249: 677:
that lead to the formation of flattish surfaces known as
182:"strength") is an old and stable part of the continental 105: 1996:"The Dynamic Earth @ National Museum of Natural History" 1538: 1536: 1534: 1356:. New York: W.H. Freeman and Company. pp. 297–302. 585:
to 40 percent partial melting of mantle rock at 4 to 10
1584: 1582: 1580: 1578: 1236: 1234: 1232: 1230: 1213:(3rd ed.). Oxford: Wiley-Blackwell. p. 349. 1442:
Miller, Meghan S.; Eaton, David W. (September 2010).
160: 139: 123: 114: 99: 83: 74: 59: 186:, which consists of Earth's two topmost layers, the 148: 142: 108: 102: 68: 62: 516:The process by which cratons were formed is called 136: 96: 56: 1553: 1551: 1437: 1435: 569:is much lower beneath continents than oceans. The 27:Old and stable part of the continental lithosphere 1708: 1605: 376:, referring to stable continental platforms, and 339:is used to distinguish the stable portion of the 1772: 1770: 1768: 1636:Mantle Plumes: Their Identification Through Time 1389:American Geophysical Union Geophysical Monograph 1182:(13). Society for Science & the Public: 24. 931:Geological Society, London, Special Publications 755:"Definition of craton in North American English" 1272:Principles of igneous and metamorphic petrology 34:Cratons of South America and Africa during the 1630:Tomlinson, Kirsty Y.; Condie, Kent C. (2001). 1209:Kearey, P.; Klepeis, K.A.; Vine, F.J. (2009). 446:Cratons have thick lithospheric roots. Mantle 194:. Having often survived cycles of merging and 1102:Annual Review of Earth and Planetary Sciences 594:hypotheses of how cratons have been formed. 366:was first proposed by the Austrian geologist 355:which overlays the shield in some areas with 8: 1270:Philpotts, Anthony R.; Ague, Jay J. (2009). 434:(also called the Laurentia Craton), and the 393: 371: 1617: 635:the craton with chemically depleted rock. 1375: 1373: 1303: 1301: 1299: 1297: 1295: 1293: 1291: 1459: 1333: 1076: 1066: 826:Jackson, Julia A., ed. (1997). "craton". 532:. Subsequent growth of continents was by 862: 850: 746: 627:A third model suggests that successive 1967:"How did the Archean Earth Lose Heat?" 1569: 1542: 1525: 477:have been delivered to the surface as 1588: 1257: 1240: 524:eon. This is indicated by the age of 7: 1839:from the original on January 6, 2018 598:Repeated continental collision model 1557: 1308:Hansen, Vicki L. (24 August 2015). 1172:"Continental Hearts – Science News" 1170:Petit, Charles (18 December 2010). 1122:10.1146/annurev.ea.16.050188.002551 981:Earth and Planetary Science Letters 1310:"Impact origin of Archean cratons" 972:Artemieva, Irina M (August 2003). 210:, which may be covered by younger 25: 1922:(Sixth ed.), W. H. Freeman, 1902:Geological Evolution of Australia 1825:Lindberg, Johan (April 4, 2016). 1391:. Geophysical Monograph Series. 469:) carried up from the mantle by 132: 92: 52: 1882:10.1016/j.precamres.2016.01.003 1709:Kearey, Klepeis & Vine 2009 1606:Kearey, Klepeis & Vine 2009 908:10.1016/j.precamres.2019.105491 1: 1958:10.1016/S0301-9268(98)00042-4 1001:10.1016/S0012-821X(03)00327-3 392:shortened the former term to 1965:Hamilton, Warren B. (1999). 1696:10.1016/j.lithos.2004.09.004 1448:Geophysical Research Letters 1157:10.2113/gsecongeo.102.8.1377 1055:Geophysical Research Letters 410:Examples of cratons are the 178: 730:List of shields and cratons 623:Subducting ocean slab model 2045: 173: 1644:10.1130/0-8137-2352-3.341 1827:"berggrund och ytformer" 1036:10.1016/j.gr.2008.12.005 704:was flattish already by 536:at continental margins. 1618:Miller & Eaton 2010 1188:10.1002/scin.5591781325 993:2003E&PSL.213..431A 648:Evidence for each model 1832:Uppslagsverket Finland 1783:The Journal of Geology 460:geothermal contraction 426:in South America, the 394: 372: 332: 281:Large igneous province 43: 1899:Dayton, Gene (2006). 1778:Fairbridge, Rhodes W. 575:Rhenium–osmium dating 432:North American Craton 430:in South Africa, the 225: 33: 1938:Precambrian Research 1861:Precambrian Research 1461:10.1029/2010GL044366 1354:Earth System History 1068:10.1029/2000GL012587 896:Precambrian Research 813:Macquarie Dictionary 714:Late Mesoproterozoic 438:in South Australia. 420:East European Craton 1977:(1). Archived from 1950:1998PreR...91..143H 1920:Understanding Earth 1918:(4 February 2010), 1912:Grotzinger, John P. 1874:2016PreR..275..197L 1796:1980JG.....88...69F 1743:10.1038/nature09332 1735:2010Natur.466.1063Y 1729:(7310): 1063–1068. 1688:2005Litho..79..271E 1497:1978Natur.274..544J 1401:2006GMS...164...89L 1326:2015Lsphe...7..563H 1149:2007EcGeo.102.1377H 1114:1988AREPS..16..543H 1028:2009GondR..15..396C 943:2007GSLSP.280....1K 828:Glossary of geology 788:Oxford Dictionaries 759:Oxford Dictionaries 639:Impact origin model 567:geothermal gradient 558:and secondarily as 2029:Historical geology 1350:Stanley, Steven M. 706:Middle Proterozoic 611:Molten plume model 589:pressure produces 416:North China Craton 333: 227:Geologic provinces 190:and the uppermost 44: 1916:Jordan, Thomas H. 1491:(5671): 544–548. 1418:978-0-87590-429-0 1260:, pp. 25–26. 1061:(13): 2501–2504. 1016:Gondwana Research 735:Cratonic sequence 718:rapakivi granites 702:Western Australia 691:inland conditions 341:continental crust 330: 329: 16:(Redirected from 2036: 2010: 2008: 2007: 1982: 1961: 1944:(1–2): 143–179. 1932: 1906: 1886: 1885: 1855: 1849: 1848: 1846: 1844: 1822: 1816: 1815: 1774: 1763: 1762: 1718: 1712: 1706: 1700: 1699: 1682:(3–4): 271–297. 1671: 1665: 1664: 1662: 1660: 1627: 1621: 1615: 1609: 1603: 1592: 1586: 1573: 1567: 1561: 1555: 1546: 1540: 1529: 1523: 1517: 1516: 1505:10.1038/274544a0 1480: 1474: 1473: 1463: 1439: 1430: 1429: 1427: 1425: 1386: 1377: 1368: 1367: 1346: 1340: 1339: 1337: 1305: 1286: 1285: 1267: 1261: 1255: 1244: 1238: 1225: 1224: 1211:Global tectonics 1206: 1200: 1199: 1167: 1161: 1160: 1143:(8): 1377–1395. 1137:Economic Geology 1132: 1126: 1125: 1097: 1091: 1090: 1080: 1070: 1046: 1040: 1039: 1022:(3–4): 396–407. 1011: 1005: 1004: 987:(3–4): 431–446. 978: 969: 963: 962: 926: 920: 919: 890: 884: 883: 872: 866: 860: 854: 848: 842: 841: 823: 817: 816: 809: 803: 802: 800: 799: 790:. Archived from 780: 774: 773: 771: 770: 761:. Archived from 751: 556:subduction zones 546:Thomas H. Jordan 465:Rock fragments ( 424:Amazonian Craton 397: 375: 357:sedimentary rock 320: 311: 302: 287: 278: 269: 260: 251: 242: 236: 212:sedimentary rock 181: 176: 175: 163: 158: 157: 154: 153: 150: 147: 144: 141: 138: 126: 121: 120: 117: 116: 113: 110: 107: 104: 101: 98: 86: 81: 80: 77: 76: 73: 70: 67: 64: 61: 58: 21: 2044: 2043: 2039: 2038: 2037: 2035: 2034: 2033: 2014: 2013: 2005: 2003: 1993: 1990: 1964: 1935: 1930: 1910: 1898: 1895: 1893:Further reading 1890: 1889: 1857: 1856: 1852: 1842: 1840: 1824: 1823: 1819: 1776: 1775: 1766: 1720: 1719: 1715: 1707: 1703: 1673: 1672: 1668: 1658: 1656: 1654: 1629: 1628: 1624: 1616: 1612: 1604: 1595: 1587: 1576: 1568: 1564: 1556: 1549: 1541: 1532: 1524: 1520: 1482: 1481: 1477: 1441: 1440: 1433: 1423: 1421: 1419: 1409:10.1029/164GM08 1384: 1379: 1378: 1371: 1364: 1348: 1347: 1343: 1307: 1306: 1289: 1282: 1269: 1268: 1264: 1256: 1247: 1239: 1228: 1221: 1208: 1207: 1203: 1169: 1168: 1164: 1134: 1133: 1129: 1099: 1098: 1094: 1048: 1047: 1043: 1013: 1012: 1008: 976: 971: 970: 966: 951:10.1144/sp280.1 928: 927: 923: 892: 891: 887: 874: 873: 869: 861: 857: 849: 845: 838: 825: 824: 820: 811: 810: 806: 797: 795: 782: 781: 777: 768: 766: 753: 752: 748: 743: 726: 683:geological time 663: 650: 641: 625: 613: 600: 542: 514: 444: 428:Kaapvaal Craton 408: 331: 325: 318: 316: 309: 307: 300: 292: 288: Extended 285: 283: 276: 274: 267: 265: 258: 256: 249: 247: 240: 220: 204:passive margins 200:tectonic plates 161: 135: 131: 124: 95: 91: 84: 55: 51: 28: 23: 22: 15: 12: 11: 5: 2042: 2040: 2032: 2031: 2026: 2016: 2015: 2012: 2011: 1989: 1988:External links 1986: 1985: 1984: 1981:on 2006-05-14. 1962: 1933: 1929:978-1429219518 1928: 1908: 1894: 1891: 1888: 1887: 1850: 1835:(in Swedish). 1817: 1804:10.1086/628474 1764: 1713: 1711:, p. 352. 1701: 1666: 1652: 1622: 1610: 1608:, p. 351. 1593: 1574: 1572:, p. 544. 1562: 1547: 1545:, p. 547. 1530: 1528:, p. 546. 1518: 1475: 1431: 1417: 1369: 1362: 1341: 1335:10.1130/L371.1 1320:(5): 563–578. 1287: 1280: 1262: 1245: 1226: 1219: 1201: 1162: 1127: 1108:(1): 543–603. 1092: 1041: 1006: 964: 921: 885: 876:Şengör, A.M.C. 867: 865:, "platform ". 855: 843: 836: 818: 804: 775: 745: 744: 742: 739: 738: 737: 732: 725: 722: 708:times and the 698:Yilgarn Craton 665:The long-term 662: 659: 649: 646: 640: 637: 624: 621: 612: 609: 599: 596: 541: 538: 513: 510: 443: 440: 412:Dharwar Craton 407: 404: 386:orogenic belts 380:as a term for 328: 327: 317: 308: 299: 293: 284: 275: 266: 257: 248: 239: 234: 229:of the world ( 219: 216: 42:supercontinent 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2041: 2030: 2027: 2025: 2022: 2021: 2019: 2002:on 2005-03-06 2001: 1997: 1994:Smithsonian. 1992: 1991: 1987: 1980: 1976: 1972: 1968: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1934: 1931: 1925: 1921: 1917: 1913: 1909: 1904: 1903: 1897: 1896: 1892: 1883: 1879: 1875: 1871: 1867: 1863: 1862: 1854: 1851: 1838: 1834: 1833: 1828: 1821: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1784: 1779: 1773: 1771: 1769: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1717: 1714: 1710: 1705: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1670: 1667: 1655: 1653:9780813723525 1649: 1645: 1641: 1637: 1633: 1626: 1623: 1619: 1614: 1611: 1607: 1602: 1600: 1598: 1594: 1591:, p. 26. 1590: 1585: 1583: 1581: 1579: 1575: 1571: 1566: 1563: 1559: 1554: 1552: 1548: 1544: 1539: 1537: 1535: 1531: 1527: 1522: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1476: 1471: 1467: 1462: 1457: 1453: 1449: 1445: 1438: 1436: 1432: 1420: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1383: 1376: 1374: 1370: 1365: 1363:0-7167-2882-6 1359: 1355: 1351: 1345: 1342: 1336: 1331: 1327: 1323: 1319: 1315: 1311: 1304: 1302: 1300: 1298: 1296: 1294: 1292: 1288: 1283: 1281:9780521880060 1277: 1273: 1266: 1263: 1259: 1254: 1252: 1250: 1246: 1243:, p. 25. 1242: 1237: 1235: 1233: 1231: 1227: 1222: 1220:9781405107778 1216: 1212: 1205: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1093: 1088: 1084: 1079: 1074: 1069: 1064: 1060: 1056: 1052: 1045: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1007: 1002: 998: 994: 990: 986: 982: 975: 968: 965: 960: 956: 952: 948: 944: 940: 936: 932: 925: 922: 917: 913: 909: 905: 901: 897: 889: 886: 881: 877: 871: 868: 864: 859: 856: 852: 847: 844: 839: 833: 829: 822: 819: 814: 808: 805: 794:on 2015-04-02 793: 789: 785: 779: 776: 765:on 2015-04-02 764: 760: 756: 750: 747: 740: 736: 733: 731: 728: 727: 723: 721: 719: 715: 711: 710:Baltic Shield 707: 703: 699: 694: 692: 688: 684: 680: 676: 675:etchplanation 672: 671:pediplanation 668: 660: 658: 654: 647: 645: 638: 636: 634: 630: 622: 620: 618: 610: 608: 606: 597: 595: 592: 588: 582: 581:magmatism. 580: 576: 572: 568: 563: 561: 560:flood basalts 557: 553: 552: 547: 539: 537: 535: 531: 527: 523: 519: 518:cratonization 511: 509: 507: 505: 501: 497: 492: 488: 485:pipes called 484: 480: 476: 472: 468: 463: 461: 457: 456:asthenosphere 453: 449: 441: 439: 437: 436:Gawler Craton 433: 429: 425: 421: 417: 413: 405: 403: 401: 398:, from which 396: 391: 387: 383: 379: 374: 369: 368:Leopold Kober 365: 360: 358: 354: 353: 348: 347: 342: 338: 324: 321: >65 315: 306: 297: 296:Oceanic crust 294: 291: 282: 273: 264: 255: 246: 238: 237: 232: 228: 224: 217: 215: 213: 209: 208:basement rock 205: 201: 197: 193: 189: 185: 180: 170: 166: 165: 156: 129: 128: 119: 89: 88: 79: 49: 41: 37: 32: 19: 2004:. Retrieved 2000:the original 1979:the original 1974: 1970: 1941: 1937: 1919: 1901: 1865: 1859: 1853: 1843:February 13, 1841:. Retrieved 1830: 1820: 1790:(1): 69–86. 1787: 1781: 1726: 1722: 1716: 1704: 1679: 1675: 1669: 1657:. Retrieved 1635: 1625: 1613: 1565: 1521: 1488: 1484: 1478: 1451: 1447: 1422:. Retrieved 1392: 1388: 1353: 1344: 1317: 1313: 1271: 1265: 1210: 1204: 1179: 1176:Science News 1175: 1165: 1140: 1136: 1130: 1105: 1101: 1095: 1058: 1054: 1044: 1019: 1015: 1009: 984: 980: 967: 934: 930: 924: 899: 895: 888: 879: 870: 863:Jackson 1997 858: 853:, "shield ". 851:Jackson 1997 846: 827: 821: 812: 807: 796:. Retrieved 792:the original 787: 778: 767:. Retrieved 763:the original 758: 749: 695: 664: 655: 651: 642: 633:underplating 626: 617:rising plume 614: 601: 583: 564: 549: 543: 517: 515: 508: 464: 445: 409: 399: 377: 363: 361: 350: 344: 336: 334: 312: 20–65 47: 45: 1868:: 197–208. 1659:21 November 1570:Jordan 1978 1543:Jordan 1978 1526:Jordan 1978 1454:(18): n/a. 1424:20 November 1314:Lithosphere 1078:10919/24271 937:(1): 1–34. 540:Root origin 530:Proterozoic 496:Harzburgite 487:kimberlites 483:subvolcanic 473:containing 452:lithosphere 390:Hans Stille 370:in 1921 as 303: 0–20 218:Terminology 184:lithosphere 2018:Categories 2006:2011-01-09 1589:Petit 2010 1258:Petit 2010 1241:Petit 2010 902:: 105491. 837:0922152349 798:2015-03-28 769:2015-03-28 741:References 720:intruded. 687:sea levels 679:peneplains 479:inclusions 475:peridotite 448:tomography 414:in India, 1812:129231129 1470:129901730 1196:0036-8423 959:129902429 916:210295037 716:when the 591:komatiite 534:accretion 512:Formation 504:komatiite 491:magnesium 467:xenoliths 442:Structure 402:derives. 362:The word 335:The term 1837:Archived 1751:20740006 1558:Lee 2006 1352:(1999). 1087:15687067 878:(2003). 724:See also 605:isostacy 526:diamonds 406:Examples 388:. Later 382:mountain 373:Kratogen 352:platform 254:Platform 36:Triassic 2024:Cratons 1946:Bibcode 1870:Bibcode 1792:Bibcode 1759:4380594 1731:Bibcode 1684:Bibcode 1513:4286280 1493:Bibcode 1397:Bibcode 1322:Bibcode 1145:Bibcode 1110:Bibcode 1024:Bibcode 989:Bibcode 939:Bibcode 667:erosion 661:Erosion 571:olivine 522:Archean 196:rifting 167:; from 18:Cratons 1926:  1810:  1757:  1749:  1723:Nature 1676:Lithos 1650:  1511:  1485:Nature 1468:  1415:  1395:: 89. 1360:  1278:  1217:  1194:  1085:  957:  914:  834:  551:Nature 500:basalt 471:magmas 422:, the 418:, the 400:craton 395:Kraton 378:orogen 364:craton 346:shield 337:craton 326: 319:  310:  301:  286:  279:  277:  270:  268:  263:Orogen 261:  259:  252:  250:  245:Shield 243:  241:  192:mantle 179:kratos 174:κράτος 48:craton 40:Pangea 1808:S2CID 1755:S2CID 1509:S2CID 1466:S2CID 1385:(PDF) 1083:S2CID 977:(PDF) 955:S2CID 912:S2CID 629:slabs 579:mafic 290:crust 272:Basin 188:crust 169:Greek 130:, or 85:KRAYT 1924:ISBN 1845:2018 1747:PMID 1661:2021 1648:ISBN 1426:2021 1413:ISBN 1358:ISBN 1276:ISBN 1215:ISBN 1192:ISSN 832:ISBN 673:and 502:and 231:USGS 164:-tən 162:KRAY 125:KRAT 1954:doi 1878:doi 1866:275 1800:doi 1739:doi 1727:466 1692:doi 1640:doi 1501:doi 1489:274 1456:doi 1405:doi 1393:164 1330:doi 1184:doi 1180:178 1153:doi 1141:102 1118:doi 1073:hdl 1063:doi 1032:doi 997:doi 985:213 947:doi 935:280 904:doi 900:336 700:of 587:GPa 562:. 548:in 481:in 384:or 127:-on 87:-on 2020:: 1973:. 1969:. 1952:. 1942:91 1940:. 1914:; 1876:. 1864:. 1829:. 1806:. 1798:. 1788:88 1786:. 1767:^ 1753:. 1745:. 1737:. 1725:. 1690:. 1680:79 1678:. 1646:. 1638:. 1634:. 1596:^ 1577:^ 1550:^ 1533:^ 1507:. 1499:. 1487:. 1464:. 1452:37 1450:. 1446:. 1434:^ 1411:. 1403:. 1387:. 1372:^ 1328:. 1316:. 1312:. 1290:^ 1248:^ 1229:^ 1190:. 1178:. 1174:. 1151:. 1139:. 1116:. 1106:16 1104:. 1081:. 1071:. 1059:28 1057:. 1053:. 1030:. 1020:15 1018:. 995:. 983:. 979:. 953:. 945:. 933:. 910:. 898:. 786:. 757:. 693:. 506:. 359:. 323:Ma 314:Ma 305:Ma 171:: 152:ən 146:eɪ 90:, 66:eɪ 46:A 2009:. 1975:4 1960:. 1956:: 1948:: 1905:. 1884:. 1880:: 1872:: 1847:. 1814:. 1802:: 1794:: 1761:. 1741:: 1733:: 1698:. 1694:: 1686:: 1663:. 1642:: 1620:. 1560:. 1515:. 1503:: 1495:: 1472:. 1458:: 1428:. 1407:: 1399:: 1366:. 1338:. 1332:: 1324:: 1318:7 1284:. 1223:. 1198:. 1186:: 1159:. 1155:: 1147:: 1124:. 1120:: 1112:: 1089:. 1075:: 1065:: 1038:. 1034:: 1026:: 1003:. 999:: 991:: 961:. 949:: 941:: 918:. 906:: 840:. 801:. 772:. 298:: 233:) 155:/ 149:t 143:r 140:k 137:ˈ 134:/ 118:/ 115:n 112:ɒ 109:t 106:æ 103:r 100:k 97:ˈ 94:/ 78:/ 75:n 72:ɒ 69:t 63:r 60:k 57:ˈ 54:/ 50:( 20:)

Index

Cratons

Triassic
Pangea
/ˈkrtɒn/
KRAYT-on
/ˈkrætɒn/
KRAT-on
/ˈkrtən/
KRAY-tən
Greek
lithosphere
crust
mantle
rifting
tectonic plates
passive margins
basement rock
sedimentary rock

Geologic provinces
USGS
Shield
Platform
Orogen
Basin
Large igneous province
crust
Oceanic crust
Ma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.