Knowledge (XXG)

Cremona–Richmond configuration

Source 📝

17: 158:
contains each of the points derived from its three duads. Thus, the duads and synthemes of the abstract configuration correspond one-for-one, in an incidence-preserving way, with these 15 points and 15 lines derived from the original six points, which form a realization of the configuration. The same realization may be projected into Euclidean space or the Euclidean plane.
141:: it is possible to exchange points for lines while preserving all the incidences of the configuration. This duality gives the Tutte–Coxeter graph additional symmetries beyond those of the Cremona–Richmond configuration, which swap the two sides of its bipartition. These symmetries correspond to the 157:
through the other four points; thus, the duads of the six points correspond one-for-one with these 15 derived points. Any three duads that together form a syntheme determine a line, the intersection line of the three hyperplanes containing two of the three duads in the syntheme, and this line
281:, but Sylvester treats these systems of pairs and partitions in the context of a more general study of tuples and partitions of sets, does not reserve special attention to the case of a six-element set, and does not associate any geometric meaning to the sets. 123:. Identified in this way, a point of the configuration is incident to a line of the configuration if and only if the duad corresponding to the point is one of the three pairs in the syntheme corresponding to the line. 188:
in the set of all 27 lines on a cubic) and 15 tangent planes, with three lines in each plane and three planes through each line. Intersecting these lines and planes by another plane results in a 15
610:"An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface" 113: 989: 130:
of all permutations of the six elements underlying this system of duads and synthemes acts as a symmetry group of the Cremona–Richmond configuration, and gives the
119:. Similarly, the lines of the configuration may be identified with the 15 ways of partitioning the same six elements into three pairs; these partitions are called 797: 631:"On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines" 134:
group of the configuration. Every flag of the configuration (an incident point-line pair) can be taken to every other flag by a symmetry in this group.
547: 1004: 958: 393: 918: 153:
Any six points in general position in four-dimensional space determine 15 points where a line through two of the points intersects the
32:
of 15 lines and 15 points, having 3 points on each line and 3 lines through each point, and containing no triangles. It was studied by
1046: 790: 463: 994: 161:
The Cremona–Richmond configuration also has a one-parameter family of realizations in the plane with order-five cyclic symmetry.
1025: 535: 458: 424: 224:
used the four-dimensional realization of this configuration as the frontispiece for two volumes of his 1922–1925 textbook,
968: 783: 539: 138: 984: 999: 711: 247:; perhaps due to some mistakes in his work, the contemporaneous contribution of Martinetti fell into obscurity. 900: 585: 209: 41: 29: 57: 933: 943: 185: 49: 232:
also rediscovered the same configuration, and found a realization of it with order-five cyclic symmetry.
71: 1020: 888: 953: 923: 863: 841: 770: 765: 196:
configuration. The specific incidence pattern of Schläfli's lines and planes was later published by
963: 928: 908: 806: 752: 16: 938: 858: 480: 142: 705:
Zacharias, Max (1951), "Streifzüge im Reich der Konfigurationen: Eine Reyesche Konfiguration (15
626: 605: 527: 377: 169: 609: 589: 748: 543: 381: 336: 868: 820: 720: 675: 642: 573: 472: 436: 402: 355: 732: 557: 450: 416: 369: 728: 656: 553: 446: 412: 365: 127: 851: 660: 360: 204:). The observation that the resulting configuration contains no triangles was made by 1040: 513: 492: 197: 181: 33: 441: 846: 131: 519:
Teoremi stereometrici dal quali si deducono le proprietà dell' esagrammo di Pascal
517: 630: 221: 913: 878: 825: 679: 407: 154: 53: 724: 385: 340: 757: 235:
The name of the configuration comes from the studies of it by Cremona (
68:
The points of the Cremona–Richmond configuration may be identified with the
647: 476: 495:(1868), "Mémoire de géométrie pure sur les surfaces du troisieme ordre", 115:
unordered pairs of elements of a six-element set; these pairs are called
775: 577: 220:
found a description of the configuration as a self-inscribed polygon.
484: 661:"Elementary researches in the analysis of combinatorial aggregation" 461:(1958), "Twelve points in PG(5,3) with 95040 self-transformations", 15: 779: 313:
This history and most of the references in it are drawn from
687:
Visconti, E. (1916), "Sulle configurazioni piane atrigone",
564:
Martinetti, V. (1886), "Sopra alcune configurazioni piane",
698: 506: 314: 298: 590:"On the figure of six points in space of four dimensions." 208:, and the same configuration also appears in the work of 386:"Small triangle-free configurations of points and lines" 427:(1950), "Self-dual configurations and regular graphs", 82: 184:
containing sets of 15 real lines (complementary to a
74: 1013: 977: 899: 834: 813: 107: 522:, Atti della R. Accademia dei Lincei, vol. 1 277:. The terminology of duads and synthemes is from 635:Philosophical Transactions of the Royal Society 791: 429:Bulletin of the American Mathematical Society 294: 98: 85: 8: 798: 784: 776: 205: 646: 440: 406: 359: 290: 278: 229: 97: 84: 81: 73: 244: 217: 213: 177: 173: 145:of the symmetric group on six elements. 45: 318: 274: 270: 256: 240: 236: 201: 37: 771:Image ofCremona–Richmond configuration 766:Image ofCremona–Richmond configuration 709:), Stern- und Kettenkonfigurationen", 566:Annali di Matematica Pura ed Applicata 309: 307: 137:The Cremona–Richmond configuration is 689:Giornale di Matematiche di Battaglini 7: 266: 264: 262: 260: 538:, vol. 103, Providence, R.I.: 394:Discrete and Computational Geometry 108:{\displaystyle 15={\tbinom {6}{2}}} 532:Configurations of points and lines 464:Proceedings of the Royal Society A 89: 20:The Cremona–Richmond configuration 14: 348:European Journal of Combinatorics 317:. The reference to Baker is from 753:"Cremona–Richmond Configuration" 536:Graduate Studies in Mathematics 442:10.1090/S0002-9904-1950-09407-5 949:Cremona–Richmond configuration 26:Cremona–Richmond configuration 1: 540:American Mathematical Society 361:10.1016/S0195-6698(03)00031-3 1026:Kirkman's schoolgirl problem 959:Grünbaum–Rigby configuration 210:Herbert William Richmond 919:Möbius–Kantor configuration 341:"Polycyclic configurations" 295:Boben & Pisanski (2003) 52:with parameters (2,2). Its 1063: 1005:Bruck–Ryser–Chowla theorem 614:Quart. J. Pure Appl. Math. 1047:Configurations (geometry) 995:Szemerédi–Trotter theorem 712:Mathematische Nachrichten 680:10.1080/14786444408644856 408:10.1007/s00454-005-1224-9 384:; Žitnik, Arjana (2006), 985:Sylvester–Gallai theorem 725:10.1002/mana.19510050602 990:De Bruijn–Erdős theorem 934:Desargues configuration 648:10.1098/rstl.1863.0010 477:10.1098/rspa.1958.0184 226:Principles of Geometry 109: 50:generalized quadrangle 21: 1021:Design of experiments 497:J. Reine Angew. Math. 110: 19: 954:Kummer configuration 924:Pappus configuration 807:Incidence structures 72: 24:In mathematics, the 964:Klein configuration 944:Schläfli double six 929:Hesse configuration 909:Complete quadrangle 699:Boben et al. (2006) 507:Boben et al. (2006) 315:Boben et al. (2006) 299:Boben et al. (2006) 186:Schläfli double six 170:Ludwig Schläfli 143:outer automorphisms 58:Tutte–Coxeter graph 939:Reye configuration 749:Weisstein, Eric W. 578:10.1007/BF02420733 105: 103: 22: 1034: 1033: 549:978-0-8218-4308-6 471:(1250): 279–293, 459:Coxeter, H. S. M. 425:Coxeter, H. S. M. 206:Martinetti (1886) 198:Luigi Cremona 96: 1054: 869:Projective plane 821:Incidence matrix 800: 793: 786: 777: 762: 761: 735: 696: 682: 665: 657:Sylvester, J. J. 651: 650: 621: 620:: 55–65, 110–120 601: 580: 560: 528:Grünbaum, Branko 523: 504: 487: 453: 444: 419: 410: 390: 378:Grünbaum, Branko 372: 363: 345: 322: 311: 302: 291:Zacharias (1951) 288: 282: 279:Sylvester (1844) 268: 230:Zacharias (1951) 114: 112: 111: 106: 104: 102: 101: 88: 1062: 1061: 1057: 1056: 1055: 1053: 1052: 1051: 1037: 1036: 1035: 1030: 1009: 973: 895: 830: 826:Incidence graph 809: 804: 747: 746: 743: 708: 704: 686: 663: 655: 625: 604: 586:Richmond, H. W. 584: 563: 550: 526: 512: 491: 457: 423: 388: 382:Pisanski, Tomaž 375: 343: 334: 331: 326: 325: 312: 305: 289: 285: 269: 258: 253: 245:Richmond (1900) 218:Visconti (1916) 195: 191: 167: 151: 128:symmetric group 83: 70: 69: 66: 12: 11: 5: 1060: 1058: 1050: 1049: 1039: 1038: 1032: 1031: 1029: 1028: 1023: 1017: 1015: 1011: 1010: 1008: 1007: 1002: 1000:Beck's theorem 997: 992: 987: 981: 979: 975: 974: 972: 971: 966: 961: 956: 951: 946: 941: 936: 931: 926: 921: 916: 911: 905: 903: 901:Configurations 897: 896: 894: 893: 892: 891: 883: 882: 881: 873: 872: 871: 866: 856: 855: 854: 852:Steiner system 849: 838: 836: 832: 831: 829: 828: 823: 817: 815: 814:Representation 811: 810: 805: 803: 802: 795: 788: 780: 774: 773: 768: 763: 742: 741:External links 739: 738: 737: 706: 702: 697:. As cited by 684: 653: 623: 602: 582: 572:(1): 161–192, 561: 548: 524: 510: 505:. As cited by 489: 455: 421: 401:(3): 405–427, 376:Boben, Marko; 373: 354:(4): 431–457, 330: 327: 324: 323: 319:Coxeter (1950) 303: 283: 275:Coxeter (1958) 271:Coxeter (1950) 255: 254: 252: 249: 193: 189: 182:cubic surfaces 166: 163: 150: 147: 100: 95: 92: 87: 80: 77: 65: 62: 13: 10: 9: 6: 4: 3: 2: 1059: 1048: 1045: 1044: 1042: 1027: 1024: 1022: 1019: 1018: 1016: 1012: 1006: 1003: 1001: 998: 996: 993: 991: 988: 986: 983: 982: 980: 976: 970: 967: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 906: 904: 902: 898: 890: 887: 886: 884: 880: 877: 876: 875:Graph theory 874: 870: 867: 865: 862: 861: 860: 857: 853: 850: 848: 845: 844: 843: 842:Combinatorics 840: 839: 837: 833: 827: 824: 822: 819: 818: 816: 812: 808: 801: 796: 794: 789: 787: 782: 781: 778: 772: 769: 767: 764: 760: 759: 754: 750: 745: 744: 740: 734: 730: 726: 722: 718: 714: 713: 703: 700: 694: 690: 685: 681: 677: 673: 669: 662: 658: 654: 649: 644: 640: 636: 632: 628: 624: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 562: 559: 555: 551: 545: 541: 537: 533: 529: 525: 521: 520: 515: 511: 508: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 465: 460: 456: 452: 448: 443: 438: 434: 430: 426: 422: 418: 414: 409: 404: 400: 396: 395: 387: 383: 379: 374: 371: 367: 362: 357: 353: 349: 342: 338: 333: 332: 328: 320: 316: 310: 308: 304: 300: 296: 292: 287: 284: 280: 276: 272: 267: 265: 263: 261: 257: 250: 248: 246: 242: 238: 233: 231: 227: 223: 219: 215: 211: 207: 203: 199: 187: 183: 179: 175: 171: 164: 162: 159: 156: 148: 146: 144: 140: 135: 133: 129: 124: 122: 118: 93: 90: 78: 75: 63: 61: 59: 55: 51: 47: 43: 39: 35: 31: 30:configuration 27: 18: 1014:Applications 948: 847:Block design 756: 716: 710: 692: 688: 671: 670:, Series 3, 667: 638: 634: 627:Schläfli, L. 617: 613: 606:Schläfli, L. 597: 593: 569: 568:, Series 2, 565: 531: 518: 500: 496: 468: 462: 432: 428: 398: 392: 351: 347: 337:Pisanski, T. 286: 234: 225: 168: 160: 152: 136: 132:automorphism 125: 120: 116: 67: 25: 23: 885:Statistics 719:: 329–345, 674:: 285–295, 641:: 193–241, 514:Cremona, L. 493:Cremona, L. 435:: 413–455, 335:Boben, M.; 222:H. F. Baker 149:Realization 48:). It is a 914:Fano plane 879:Hypergraph 668:Phil. Mag. 329:References 155:hyperplane 54:Levi graph 864:Incidence 758:MathWorld 600:: 125–160 594:Quart. J. 139:self-dual 121:synthemes 1041:Category 978:Theorems 889:Blocking 859:Geometry 659:(1844), 629:(1863), 608:(1858), 588:(1900), 530:(2009), 516:(1877), 339:(2003), 180:) found 64:Symmetry 42:Richmond 733:0043473 695:: 27–41 558:2510707 503:: 1–133 451:0038078 417:2202110 370:1975946 212: ( 200: ( 172: ( 165:History 56:is the 44: ( 36: ( 34:Cremona 835:Fields 731:  556:  546:  485:100667 483:  449:  415:  368:  243:) and 40:) and 664:(PDF) 481:JSTOR 389:(PDF) 344:(PDF) 251:Notes 117:duads 28:is a 969:Dual 544:ISBN 241:1877 237:1868 214:1900 202:1868 178:1863 174:1858 126:The 46:1900 38:1877 721:doi 676:doi 643:doi 639:153 574:doi 473:doi 469:247 437:doi 403:doi 356:doi 216:). 1043:: 755:, 751:, 729:MR 727:, 715:, 693:54 691:, 672:24 666:, 637:, 633:, 616:, 612:, 598:31 596:, 592:, 570:14 554:MR 552:, 542:, 534:, 501:68 499:, 479:, 467:, 447:MR 445:, 433:56 431:, 413:MR 411:, 399:35 397:, 391:, 380:; 366:MR 364:, 352:24 350:, 346:, 306:^ 297:; 293:; 273:; 259:^ 239:, 228:. 192:15 176:, 76:15 60:. 799:e 792:t 785:v 736:. 723:: 717:5 707:3 701:. 683:. 678:: 652:. 645:: 622:. 618:2 581:. 576:: 509:. 488:. 475:: 454:. 439:: 420:. 405:: 358:: 321:. 301:. 194:3 190:3 99:) 94:2 91:6 86:( 79:=

Index


configuration
Cremona
1877
Richmond
1900
generalized quadrangle
Levi graph
Tutte–Coxeter graph
symmetric group
automorphism
self-dual
outer automorphisms
hyperplane
Ludwig Schläfli
1858
1863
cubic surfaces
Schläfli double six
Luigi Cremona
1868
Martinetti (1886)
Herbert William Richmond
1900
Visconti (1916)
H. F. Baker
Zacharias (1951)
1868
1877
Richmond (1900)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.