Knowledge (XXG)

Crofton formula

Source 📝

155: 53: 2609: 2404: 900:
over concatenation of curves, so it suffices to prove the formula for a single line segment. Since the right-hand side does not depend on the positioning of the line segment, it must equal some function of the segment's length. Because, again, the formula is additive over concatenation of line
887: 1768: 419: 1972: 743: 748: 1648: 1440:
line either twice or not at all, the unoriented Crofton formula for convex curves can be stated without numerical factors: the measure of the set of straight lines which intersect a convex curve is equal to its length.
2604:{\displaystyle {\frac {|\partial S|}{E}}={\frac {|{\text{unit sphere in }}\mathbb {R} ^{n}|}{|{\text{unit ball in }}\mathbb {R} ^{n-1}|}}=2{\sqrt {\pi }}{\frac {\Gamma ({\frac {n+1}{2}})}{\Gamma ({\frac {n}{2}})}}} 1435:
of the space of unoriented lines. The Crofton formula is often stated in terms of the corresponding density in the latter space, in which the numerical factor is not 1/4 but 1/2. Since a convex curve intersects
1069: 1395: 995: 901:
segments, the integral must be a constant times the length of the line segment. It remains only to determine the factor of 1/4; this is easily done by computing both sides when γ is the
1855: 1444:
The same formula (with the same multiplicative constants) apply for hyperbolic spaces and spherical spaces, when the kinematic measure is suitably scaled. The proof is essentially the same.
1203: 2236: 1810: 148: 334: 658: 604: 460: 1423:, thus the formula is correct with an undetermined multiplicative constant. Then explicitly calculate this constant, using the simplest possible case: two circles of radius 1. 2353: 2075: 633: 535: 496: 1110: 2132: 1515: 222: 80: 2399: 1130: 274: 572: 322: 246: 184: 100: 1643: 1616: 1569: 1542: 1257: 1230: 1162: 941: 2661: 2635: 2101: 1421: 1286: 2376: 2681: 2324: 2304: 2284: 2152: 2046: 2026: 2006: 1850: 1830: 1589: 653: 294: 1291: 2904: 882:{\displaystyle C_{n}={\frac {1}{2\cdot |{\text{unit ball in }}\mathbb {R} ^{n-1}|}}={\frac {\Gamma {({\frac {n+1}{2}})}}{2\pi ^{\frac {n-1}{2}}}}} 1763:{\displaystyle Pr(l{\text{ intersects }}S_{1}|l{\text{ intersects }}S_{2})={\frac {\operatorname {area} (S_{1})}{\operatorname {area} (S_{2})}}} 1474:
Given two nested, convex, closed curves, the inner one is shorter. In general, for two such codimension 1 surfaces, the inner one has less area.
2706:
can be viewed as a measure-theoretic generalization of the Crofton formula and the Crofton formula is used in the inversion formula of the
1000: 2885: 2742: 2840:
Izrail Moiseevich Gel'fand; Mark Iosifovich Graev (1991), "Crofton's function and inversion formulas in real integral geometry",
2792: 2950: 498:, so it is a natural integration measure for speaking of an "average" number of intersections. It is usually called the 2684: 950: 2940: 1771: 1167: 2206: 2178: 2104: 1780: 105: 2918: 2945: 2161: 414:{\displaystyle \operatorname {length} (\gamma )={\frac {1}{4}}\iint n_{\gamma }(\varphi ,p)\;d\varphi \;dp.} 159: 2924: 1967:{\displaystyle Pr(l{\text{ intersects }}P|l,P{\text{ intersects }}S)={\frac {|S|}{|\partial S|\cdot E}}} 577: 433: 2329: 2051: 609: 511: 472: 2713: 2157: 1074: 297: 2663:
gives the classic example "the average shadow of a convex body is 1/4 of its surface area". General
2110: 1448: 154: 2873: 2857: 1480: 200: 41: 2697: 1397:
The proof is done similarly as above. First note that both sides of the formula are additive in
59: 2381: 2881: 2807: 2738: 1437: 1115: 425: 259: 187: 33: 544: 307: 231: 169: 85: 2900: 2849: 2766: 1452: 301: 2778: 1621: 1594: 1547: 1520: 1235: 1208: 1135: 919: 738:{\displaystyle \operatorname {area} (S)=C_{n}\iint n_{\gamma }(\varphi ,p)\;d\varphi \;dp.} 2774: 2703: 944: 466: 2640: 2614: 2181:: Among all closed curves with a given perimeter, the circle has the unique maximum area. 2080: 1400: 1265: 2358: 2666: 2309: 2289: 2241: 2137: 2031: 2011: 1977: 1835: 1815: 1574: 638: 538: 279: 37: 25: 2934: 2815: 2861: 1432: 897: 505:
The right-hand side in the Crofton formula is sometimes called the Favard length.
2757:
Ueno, Seitarô (1955), "On the densities in a two-dimensional generalized space",
2185: 1470:
Crofton's formula yields elegant proofs of the following results, among others:
902: 17: 2811: 52: 2770: 1455:; the integral is then performed with the natural measure on the space of 1456: 325: 2853: 1462:
More general forms exist, such as the kinematic formula of Chern.
1064:{\displaystyle (\varphi ,x,y)\in [0,2\pi )\times \mathbb {R} ^{2}} 190: 153: 908:
The proof for the generalized version proceeds exactly as above.
2203:
Cauchy's surface area formula: Given any convex compact subset
2028:, that is, the expected length of the orthogonal projection of 1390:{\displaystyle \int _{T\in E^{2}}|C\cap T(D)|dT=4|C|\cdot |D|} 1770:
This is the justification for the surface area heuristic in
2326:
is the orthogonal projection to a random hyperplane of
1262:
Given rectifiable simple (no self-intersection) curves
1132:
counterclockwise around the origin, then translate by
606:
on it, which is also invariant under rigid motions of
2793:"On the Kinematic Formula in the Lives of the Saints" 2669: 2643: 2617: 2407: 2384: 2361: 2332: 2312: 2292: 2244: 2209: 2140: 2113: 2083: 2054: 2034: 2014: 1980: 1858: 1838: 1818: 1783: 1651: 1624: 1597: 1577: 1550: 1523: 1483: 1403: 1294: 1268: 1238: 1211: 1170: 1138: 1118: 1077: 1003: 953: 922: 751: 661: 641: 612: 580: 547: 514: 475: 436: 337: 310: 282: 262: 234: 203: 172: 108: 88: 62: 2927:, a visualization of Cauchy's surface area formula. 1618:, conditional on it intersecting the outer surface 1232:on itself, thus we obtained a kinematic measure on 2675: 2655: 2629: 2603: 2393: 2370: 2355:), then by integrating Crofton formula first over 2347: 2318: 2298: 2278: 2230: 2146: 2126: 2095: 2069: 2040: 2020: 2000: 1966: 1844: 1824: 1804: 1762: 1637: 1610: 1583: 1563: 1536: 1509: 1415: 1389: 1280: 1251: 1224: 1197: 1156: 1124: 1104: 1063: 989: 935: 881: 737: 647: 627: 598: 574:, and we can similarly define a kinematic measure 566: 529: 490: 454: 413: 316: 288: 268: 240: 216: 178: 142: 94: 74: 990:{\displaystyle [0,2\pi )\times \mathbb {R} ^{2}} 252:intersect. We can parametrize the general line 2710:-plane Radon transform of Gel'fand and Graev 2683:gives generalization of Barbier's theorem for 1451:surface or more generally to two-dimensional 8: 2925:Alice, Bob, and the average shadow of a cube 2800:Notices of the American Mathematical Society 2735:Integral geometry and geometric probability 1198:{\displaystyle dx\wedge dy\wedge d\varphi } 508:In general, the space of oriented lines in 276:in which it points and its signed distance 2188:of every bounded rectifiable closed curve 1477:Given two nested, convex, closed surfaces 912:Poincare’s formula for intersecting curves 725: 718: 401: 394: 2668: 2642: 2616: 2585: 2556: 2547: 2540: 2526: 2514: 2510: 2509: 2503: 2498: 2491: 2485: 2481: 2480: 2474: 2469: 2466: 2452: 2435: 2422: 2411: 2408: 2406: 2383: 2360: 2339: 2335: 2334: 2331: 2311: 2291: 2268: 2251: 2243: 2231:{\displaystyle S\subset \mathbb {R} ^{n}} 2222: 2218: 2217: 2208: 2139: 2114: 2112: 2082: 2061: 2057: 2056: 2053: 2033: 2013: 1987: 1979: 1950: 1936: 1925: 1918: 1910: 1907: 1893: 1879: 1871: 1857: 1837: 1817: 1805:{\displaystyle S\subset \mathbb {R} ^{n}} 1796: 1792: 1791: 1782: 1748: 1724: 1708: 1696: 1687: 1679: 1673: 1664: 1650: 1629: 1623: 1602: 1596: 1576: 1555: 1549: 1528: 1522: 1501: 1488: 1482: 1402: 1382: 1374: 1366: 1358: 1341: 1318: 1310: 1299: 1293: 1267: 1243: 1237: 1216: 1210: 1169: 1137: 1117: 1076: 1055: 1051: 1050: 1002: 981: 977: 976: 952: 927: 921: 857: 826: 822: 816: 805: 793: 789: 788: 782: 777: 765: 756: 750: 697: 684: 660: 640: 619: 615: 614: 611: 579: 552: 546: 521: 517: 516: 513: 482: 478: 477: 474: 435: 373: 356: 336: 309: 281: 261: 233: 208: 202: 171: 143:{\displaystyle n_{\gamma }(\varphi ,p)=2} 113: 107: 87: 61: 2842:Functional Analysis and Its Applications 1431:The space of oriented lines is a double 947:on the plane. It can be parametrized as 158:Application of the Crofton formula in a 51: 2725: 2107:, this probability is upper bounded by 1447:The Crofton formula generalizes to any 896:Both sides of the Crofton formula are 328:over the space of all oriented lines: 36:relating the length of a curve to the 7: 2192:has perimeter at most the length of 300:. The Crofton formula expresses the 1571:, the probability of a random line 635:. Then for any rectifiable surface 228:) be the number of points at which 2579: 2550: 2416: 1930: 819: 599:{\displaystyle d\varphi \wedge dp} 455:{\displaystyle d\varphi \wedge dp} 14: 2919:Cauchy–Crofton formula page 2897:Introduction to Integral Geometry 2759:Memoirs of the Faculty of Science 2348:{\displaystyle \mathbb {R} ^{n}} 2070:{\displaystyle \mathbb {R} ^{n}} 628:{\displaystyle \mathbb {R} ^{n}} 530:{\displaystyle \mathbb {R} ^{n}} 491:{\displaystyle \mathbb {R} ^{2}} 2286:be the expected shadow area of 2048:to a random linear subspace of 1591:intersecting the inner surface 1105:{\displaystyle T(\varphi ,x,y)} 56:The line defined by choices of 2595: 2582: 2574: 2553: 2527: 2499: 2492: 2470: 2457: 2453: 2449: 2443: 2436: 2432: 2423: 2412: 2273: 2269: 2265: 2259: 2252: 2248: 2127:{\displaystyle {\frac {1}{2}}} 1995: 1984: 1958: 1947: 1937: 1926: 1919: 1911: 1901: 1880: 1865: 1754: 1741: 1730: 1717: 1702: 1680: 1658: 1383: 1375: 1367: 1359: 1342: 1338: 1332: 1319: 1151: 1139: 1099: 1081: 1043: 1028: 1022: 1004: 969: 954: 844: 823: 806: 778: 715: 703: 674: 668: 391: 379: 350: 344: 131: 119: 1: 2685:bodies of constant brightness 1852:be a random hyperplane, then 1205:is invariant under action of 2921:, with demonstration applets 1777:Given compact convex subset 1510:{\displaystyle S_{1},S_{2}} 217:{\displaystyle n_{\gamma }} 40:number of times a "random" 2967: 2200:is already a convex curve. 2196:, with equality only when 655:of codimension 1, we have 75:{\displaystyle \varphi ,p} 2637:gives Barbier's theorem, 2394:{\displaystyle d\varphi } 1772:bounding volume hierarchy 193:. Given an oriented line 32:) is a classic result of 28:(1826–1915), (also 2791:Calegari, Danny (2020). 2179:isoperimetric inequality 2105:isoperimetric inequality 2008:is the average width of 1125:{\displaystyle \varphi } 269:{\displaystyle \varphi } 2895:Santalo, L. A. (1953). 2880:. AMS. pp. 36–40. 2611:In particular, setting 2162:curve of constant width 567:{\displaystyle S^{n-1}} 317:{\displaystyle \gamma } 241:{\displaystyle \gamma } 179:{\displaystyle \gamma } 95:{\displaystyle \gamma } 2899:. pp. 12–13, 54. 2878:Geometry and Billiards 2771:10.2206/kyushumfs.9.65 2677: 2657: 2631: 2605: 2395: 2372: 2349: 2320: 2300: 2280: 2232: 2148: 2128: 2097: 2071: 2042: 2022: 2002: 1968: 1895: intersects  1873: intersects  1846: 1832:be a random line, and 1826: 1806: 1764: 1689: intersects  1666: intersects  1639: 1612: 1585: 1565: 1538: 1511: 1417: 1391: 1282: 1253: 1226: 1199: 1158: 1126: 1106: 1065: 991: 937: 883: 739: 649: 629: 600: 568: 531: 492: 456: 415: 318: 290: 270: 242: 218: 180: 163: 160:Monte-Carlo simulation 151: 144: 96: 76: 30:Cauchy-Crofton formula 2951:Differential geometry 2733:Luis Santaló (1976), 2678: 2658: 2632: 2606: 2396: 2373: 2350: 2321: 2301: 2281: 2233: 2149: 2129: 2098: 2072: 2043: 2023: 2003: 1969: 1847: 1827: 1807: 1765: 1640: 1638:{\displaystyle S_{2}} 1613: 1611:{\displaystyle S_{1}} 1586: 1566: 1564:{\displaystyle S_{2}} 1539: 1537:{\displaystyle S_{1}} 1512: 1418: 1392: 1283: 1254: 1252:{\displaystyle E^{2}} 1227: 1225:{\displaystyle E^{2}} 1200: 1159: 1157:{\displaystyle (x,y)} 1127: 1107: 1066: 992: 938: 936:{\displaystyle E^{2}} 884: 740: 650: 630: 601: 569: 532: 493: 457: 416: 319: 291: 271: 243: 219: 181: 157: 145: 97: 82:intersects the curve 77: 55: 2714:Steinhaus longimeter 2667: 2641: 2615: 2476:unit sphere in  2405: 2382: 2359: 2330: 2310: 2290: 2242: 2207: 2138: 2134:, with equality iff 2111: 2081: 2052: 2032: 2012: 1978: 1856: 1836: 1816: 1781: 1649: 1622: 1595: 1575: 1548: 1521: 1481: 1401: 1292: 1266: 1236: 1209: 1168: 1136: 1116: 1075: 1001: 951: 920: 749: 659: 639: 610: 578: 545: 512: 473: 434: 335: 308: 280: 260: 232: 201: 170: 106: 86: 60: 2821:on 20 November 2020 2656:{\displaystyle n=3} 2630:{\displaystyle n=2} 2096:{\displaystyle n=2} 1416:{\displaystyle C,D} 1288:in the plane, then 1281:{\displaystyle C,D} 465:is invariant under 2874:Tabachnikov, Serge 2854:10.1007/BF01090671 2737:, Addison-Wesley, 2673: 2653: 2627: 2601: 2505:unit ball in  2391: 2371:{\displaystyle dp} 2368: 2345: 2316: 2296: 2276: 2228: 2144: 2124: 2093: 2067: 2038: 2018: 1998: 1964: 1842: 1822: 1802: 1760: 1635: 1608: 1581: 1561: 1534: 1507: 1413: 1387: 1278: 1249: 1222: 1195: 1154: 1122: 1102: 1061: 987: 933: 879: 784:unit ball in  735: 645: 625: 596: 564: 527: 488: 452: 411: 314: 286: 266: 238: 214: 176: 164: 152: 140: 102:twice, therefore, 92: 72: 2941:Integral geometry 2676:{\displaystyle n} 2599: 2593: 2572: 2545: 2532: 2506: 2477: 2461: 2319:{\displaystyle T} 2299:{\displaystyle S} 2279:{\displaystyle E} 2158:Barbier's theorem 2147:{\displaystyle S} 2122: 2041:{\displaystyle S} 2021:{\displaystyle S} 2001:{\displaystyle E} 1990: 1962: 1953: 1896: 1874: 1845:{\displaystyle P} 1825:{\displaystyle l} 1758: 1690: 1667: 1584:{\displaystyle l} 1453:Finsler manifolds 997:, such that each 877: 873: 842: 811: 785: 648:{\displaystyle S} 500:kinematic measure 426:differential form 364: 289:{\displaystyle p} 256:by the direction 34:integral geometry 2958: 2908: 2891: 2865: 2864: 2837: 2831: 2830: 2828: 2826: 2820: 2814:. Archived from 2806:(7): 1042–1044. 2797: 2788: 2782: 2781: 2754: 2748: 2747: 2730: 2682: 2680: 2679: 2674: 2662: 2660: 2659: 2654: 2636: 2634: 2633: 2628: 2610: 2608: 2607: 2602: 2600: 2598: 2594: 2586: 2577: 2573: 2568: 2557: 2548: 2546: 2541: 2533: 2531: 2530: 2525: 2524: 2513: 2507: 2504: 2502: 2496: 2495: 2490: 2489: 2484: 2478: 2475: 2473: 2467: 2462: 2460: 2456: 2439: 2427: 2426: 2415: 2409: 2400: 2398: 2397: 2392: 2377: 2375: 2374: 2369: 2354: 2352: 2351: 2346: 2344: 2343: 2338: 2325: 2323: 2322: 2317: 2305: 2303: 2302: 2297: 2285: 2283: 2282: 2277: 2272: 2255: 2237: 2235: 2234: 2229: 2227: 2226: 2221: 2170: 2153: 2151: 2150: 2145: 2133: 2131: 2130: 2125: 2123: 2115: 2102: 2100: 2099: 2094: 2076: 2074: 2073: 2068: 2066: 2065: 2060: 2047: 2045: 2044: 2039: 2027: 2025: 2024: 2019: 2007: 2005: 2004: 1999: 1991: 1988: 1973: 1971: 1970: 1965: 1963: 1961: 1954: 1951: 1940: 1929: 1923: 1922: 1914: 1908: 1897: 1894: 1883: 1875: 1872: 1851: 1849: 1848: 1843: 1831: 1829: 1828: 1823: 1811: 1809: 1808: 1803: 1801: 1800: 1795: 1769: 1767: 1766: 1761: 1759: 1757: 1753: 1752: 1733: 1729: 1728: 1709: 1701: 1700: 1691: 1688: 1683: 1678: 1677: 1668: 1665: 1644: 1642: 1641: 1636: 1634: 1633: 1617: 1615: 1614: 1609: 1607: 1606: 1590: 1588: 1587: 1582: 1570: 1568: 1567: 1562: 1560: 1559: 1543: 1541: 1540: 1535: 1533: 1532: 1516: 1514: 1513: 1508: 1506: 1505: 1493: 1492: 1422: 1420: 1419: 1414: 1396: 1394: 1393: 1388: 1386: 1378: 1370: 1362: 1345: 1322: 1317: 1316: 1315: 1314: 1287: 1285: 1284: 1279: 1258: 1256: 1255: 1250: 1248: 1247: 1231: 1229: 1228: 1223: 1221: 1220: 1204: 1202: 1201: 1196: 1163: 1161: 1160: 1155: 1131: 1129: 1128: 1123: 1111: 1109: 1108: 1103: 1070: 1068: 1067: 1062: 1060: 1059: 1054: 996: 994: 993: 988: 986: 985: 980: 942: 940: 939: 934: 932: 931: 888: 886: 885: 880: 878: 876: 875: 874: 869: 858: 848: 847: 843: 838: 827: 817: 812: 810: 809: 804: 803: 792: 786: 783: 781: 766: 761: 760: 744: 742: 741: 736: 702: 701: 689: 688: 654: 652: 651: 646: 634: 632: 631: 626: 624: 623: 618: 605: 603: 602: 597: 573: 571: 570: 565: 563: 562: 536: 534: 533: 528: 526: 525: 520: 497: 495: 494: 489: 487: 486: 481: 461: 459: 458: 453: 420: 418: 417: 412: 378: 377: 365: 357: 323: 321: 320: 315: 295: 293: 292: 287: 275: 273: 272: 267: 247: 245: 244: 239: 223: 221: 220: 215: 213: 212: 185: 183: 182: 177: 149: 147: 146: 141: 118: 117: 101: 99: 98: 93: 81: 79: 78: 73: 2966: 2965: 2961: 2960: 2959: 2957: 2956: 2955: 2931: 2930: 2915: 2894: 2888: 2872: 2869: 2868: 2839: 2838: 2834: 2824: 2822: 2818: 2795: 2790: 2789: 2785: 2756: 2755: 2751: 2745: 2732: 2731: 2727: 2722: 2704:Radon transform 2698:Buffon's noodle 2694: 2665: 2664: 2639: 2638: 2613: 2612: 2578: 2558: 2549: 2508: 2497: 2479: 2468: 2428: 2410: 2403: 2402: 2380: 2379: 2357: 2356: 2333: 2328: 2327: 2308: 2307: 2288: 2287: 2240: 2239: 2216: 2205: 2204: 2168: 2136: 2135: 2109: 2108: 2079: 2078: 2055: 2050: 2049: 2030: 2029: 2010: 2009: 1976: 1975: 1924: 1909: 1854: 1853: 1834: 1833: 1814: 1813: 1790: 1779: 1778: 1744: 1734: 1720: 1710: 1692: 1669: 1647: 1646: 1625: 1620: 1619: 1598: 1593: 1592: 1573: 1572: 1551: 1546: 1545: 1524: 1519: 1518: 1497: 1484: 1479: 1478: 1468: 1429: 1399: 1398: 1306: 1295: 1290: 1289: 1264: 1263: 1239: 1234: 1233: 1212: 1207: 1206: 1166: 1165: 1134: 1133: 1114: 1113: 1073: 1072: 1049: 999: 998: 975: 949: 948: 945:Euclidean group 923: 918: 917: 914: 894: 859: 853: 849: 828: 818: 787: 770: 752: 747: 746: 693: 680: 657: 656: 637: 636: 613: 608: 607: 576: 575: 548: 543: 542: 515: 510: 509: 476: 471: 470: 432: 431: 369: 333: 332: 324:in terms of an 306: 305: 278: 277: 258: 257: 230: 229: 204: 199: 198: 168: 167: 109: 104: 103: 84: 83: 58: 57: 50: 44:intersects it. 22:Crofton formula 12: 11: 5: 2964: 2962: 2954: 2953: 2948: 2946:Measure theory 2943: 2933: 2932: 2929: 2928: 2922: 2914: 2913:External links 2911: 2910: 2909: 2892: 2886: 2867: 2866: 2832: 2783: 2749: 2743: 2724: 2723: 2721: 2718: 2717: 2716: 2711: 2700: 2693: 2690: 2689: 2688: 2672: 2652: 2649: 2646: 2626: 2623: 2620: 2597: 2592: 2589: 2584: 2581: 2576: 2571: 2567: 2564: 2561: 2555: 2552: 2544: 2539: 2536: 2529: 2523: 2520: 2517: 2512: 2501: 2494: 2488: 2483: 2472: 2465: 2459: 2455: 2451: 2448: 2445: 2442: 2438: 2434: 2431: 2425: 2421: 2418: 2414: 2390: 2387: 2367: 2364: 2342: 2337: 2315: 2295: 2275: 2271: 2267: 2264: 2261: 2258: 2254: 2250: 2247: 2225: 2220: 2215: 2212: 2201: 2182: 2175: 2167:has perimeter 2155: 2143: 2121: 2118: 2092: 2089: 2086: 2064: 2059: 2037: 2017: 1997: 1994: 1989:width of  1986: 1983: 1960: 1957: 1952:width of  1949: 1946: 1943: 1939: 1935: 1932: 1928: 1921: 1917: 1913: 1906: 1903: 1900: 1892: 1889: 1886: 1882: 1878: 1870: 1867: 1864: 1861: 1841: 1821: 1799: 1794: 1789: 1786: 1775: 1756: 1751: 1747: 1743: 1740: 1737: 1732: 1727: 1723: 1719: 1716: 1713: 1707: 1704: 1699: 1695: 1686: 1682: 1676: 1672: 1663: 1660: 1657: 1654: 1632: 1628: 1605: 1601: 1580: 1558: 1554: 1544:nested inside 1531: 1527: 1504: 1500: 1496: 1491: 1487: 1475: 1467: 1464: 1428: 1425: 1412: 1409: 1406: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1354: 1351: 1348: 1344: 1340: 1337: 1334: 1331: 1328: 1325: 1321: 1313: 1309: 1305: 1302: 1298: 1277: 1274: 1271: 1246: 1242: 1219: 1215: 1194: 1191: 1188: 1185: 1182: 1179: 1176: 1173: 1153: 1150: 1147: 1144: 1141: 1121: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1058: 1053: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 984: 979: 974: 971: 968: 965: 962: 959: 956: 930: 926: 913: 910: 893: 890: 872: 868: 865: 862: 856: 852: 846: 841: 837: 834: 831: 825: 821: 815: 808: 802: 799: 796: 791: 780: 776: 773: 769: 764: 759: 755: 734: 731: 728: 724: 721: 717: 714: 711: 708: 705: 700: 696: 692: 687: 683: 679: 676: 673: 670: 667: 664: 644: 622: 617: 595: 592: 589: 586: 583: 561: 558: 555: 551: 539:tangent bundle 524: 519: 485: 480: 463: 462: 451: 448: 445: 442: 439: 422: 421: 410: 407: 404: 400: 397: 393: 390: 387: 384: 381: 376: 372: 368: 363: 360: 355: 352: 349: 346: 343: 340: 313: 285: 265: 237: 211: 207: 175: 139: 136: 133: 130: 127: 124: 121: 116: 112: 91: 71: 68: 65: 49: 46: 26:Morgan Crofton 24:, named after 13: 10: 9: 6: 4: 3: 2: 2963: 2952: 2949: 2947: 2944: 2942: 2939: 2938: 2936: 2926: 2923: 2920: 2917: 2916: 2912: 2906: 2902: 2898: 2893: 2889: 2887:0-8218-3919-5 2883: 2879: 2875: 2871: 2870: 2863: 2859: 2855: 2851: 2847: 2843: 2836: 2833: 2817: 2813: 2809: 2805: 2801: 2794: 2787: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2753: 2750: 2746: 2744:0-201-13500-0 2740: 2736: 2729: 2726: 2719: 2715: 2712: 2709: 2705: 2701: 2699: 2696: 2695: 2691: 2686: 2670: 2650: 2647: 2644: 2624: 2621: 2618: 2590: 2587: 2569: 2565: 2562: 2559: 2542: 2537: 2534: 2521: 2518: 2515: 2486: 2463: 2446: 2440: 2429: 2419: 2388: 2385: 2365: 2362: 2340: 2313: 2293: 2262: 2256: 2245: 2223: 2213: 2210: 2202: 2199: 2195: 2191: 2187: 2183: 2180: 2176: 2173: 2166: 2163: 2159: 2156: 2141: 2119: 2116: 2106: 2090: 2087: 2084: 2062: 2035: 2015: 1992: 1981: 1955: 1944: 1941: 1933: 1915: 1904: 1898: 1890: 1887: 1884: 1876: 1868: 1862: 1859: 1839: 1819: 1797: 1787: 1784: 1776: 1773: 1749: 1745: 1738: 1735: 1725: 1721: 1714: 1711: 1705: 1697: 1693: 1684: 1674: 1670: 1661: 1655: 1652: 1630: 1626: 1603: 1599: 1578: 1556: 1552: 1529: 1525: 1502: 1498: 1494: 1489: 1485: 1476: 1473: 1472: 1471: 1465: 1463: 1460: 1458: 1454: 1450: 1445: 1442: 1439: 1434: 1426: 1424: 1410: 1407: 1404: 1379: 1371: 1363: 1355: 1352: 1349: 1346: 1335: 1329: 1326: 1323: 1311: 1307: 1303: 1300: 1296: 1275: 1272: 1269: 1260: 1244: 1240: 1217: 1213: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1148: 1145: 1142: 1119: 1096: 1093: 1090: 1087: 1084: 1078: 1071:defines some 1056: 1046: 1040: 1037: 1034: 1031: 1025: 1019: 1016: 1013: 1010: 1007: 982: 972: 966: 963: 960: 957: 946: 928: 924: 911: 909: 906: 904: 899: 891: 889: 870: 866: 863: 860: 854: 850: 839: 835: 832: 829: 813: 800: 797: 794: 774: 771: 767: 762: 757: 753: 732: 729: 726: 722: 719: 712: 709: 706: 698: 694: 690: 685: 681: 677: 671: 665: 662: 642: 620: 593: 590: 587: 584: 581: 559: 556: 553: 549: 540: 522: 506: 503: 501: 483: 468: 467:rigid motions 449: 446: 443: 440: 437: 430: 429: 428: 427: 408: 405: 402: 398: 395: 388: 385: 382: 374: 370: 366: 361: 358: 353: 347: 341: 338: 331: 330: 329: 327: 311: 304:of the curve 303: 299: 283: 263: 255: 251: 235: 227: 209: 205: 196: 192: 189: 173: 161: 156: 137: 134: 128: 125: 122: 114: 110: 89: 69: 66: 63: 54: 47: 45: 43: 39: 35: 31: 27: 23: 19: 2896: 2877: 2845: 2841: 2835: 2823:. Retrieved 2816:the original 2803: 2799: 2786: 2762: 2758: 2752: 2734: 2728: 2707: 2378:, then over 2197: 2193: 2189: 2171: 2164: 1469: 1466:Applications 1461: 1446: 1443: 1438:almost every 1430: 1261: 1112:: rotate by 915: 907: 895: 892:Proof sketch 507: 504: 499: 464: 423: 253: 249: 225: 194: 165: 29: 21: 15: 2186:convex hull 1427:Other forms 903:unit circle 191:plane curve 188:rectifiable 18:mathematics 2935:Categories 2720:References 2306:(that is, 2154:is a disk. 1449:Riemannian 302:arc length 2812:0002-9920 2765:: 65–77, 2580:Γ 2551:Γ 2543:π 2519:− 2417:∂ 2389:φ 2214:⊂ 2103:, by the 1942:⋅ 1931:∂ 1788:⊂ 1739:⁡ 1715:⁡ 1457:geodesics 1372:⋅ 1327:∩ 1304:∈ 1297:∫ 1193:φ 1187:∧ 1178:∧ 1120:φ 1085:φ 1047:× 1041:π 1026:∈ 1008:φ 973:× 967:π 864:− 855:π 820:Γ 798:− 775:⋅ 723:φ 707:φ 699:γ 691:∬ 666:⁡ 588:∧ 585:φ 557:− 444:∧ 441:φ 399:φ 383:φ 375:γ 367:∬ 348:γ 342:⁡ 312:γ 296:from the 264:φ 236:γ 210:γ 174:γ 123:φ 115:γ 90:γ 64:φ 48:Statement 2905:QA641.S3 2876:(2005). 2862:24484682 2692:See also 2401:, we get 2160:: Every 898:additive 326:integral 166:Suppose 38:expected 2848:: 1–5, 2779:0071801 2077:. When 1517:, with 1164:. Then 943:be the 537:is the 2903:  2884:  2860:  2825:7 June 2810:  2777:  2741:  2238:, let 1974:where 1812:, let 339:length 298:origin 197:, let 20:, the 2858:S2CID 2819:(PDF) 2796:(PDF) 1433:cover 745:where 186:is a 2882:ISBN 2827:2022 2808:ISSN 2739:ISBN 2702:The 2184:The 2177:The 1736:area 1712:area 1645:, is 916:Let 663:area 424:The 248:and 42:line 2901:LCC 2850:doi 2767:doi 541:of 469:of 16:In 2937:: 2856:, 2846:25 2844:, 2804:67 2802:. 2798:. 2775:MR 2773:, 2761:, 1459:. 1259:. 905:. 502:. 2907:. 2890:. 2852:: 2829:. 2769:: 2763:9 2708:k 2687:. 2671:n 2651:3 2648:= 2645:n 2625:2 2622:= 2619:n 2596:) 2591:2 2588:n 2583:( 2575:) 2570:2 2566:1 2563:+ 2560:n 2554:( 2538:2 2535:= 2528:| 2522:1 2516:n 2511:R 2500:| 2493:| 2487:n 2482:R 2471:| 2464:= 2458:] 2454:| 2450:) 2447:S 2444:( 2441:T 2437:| 2433:[ 2430:E 2424:| 2420:S 2413:| 2386:d 2366:p 2363:d 2341:n 2336:R 2314:T 2294:S 2274:] 2270:| 2266:) 2263:S 2260:( 2257:T 2253:| 2249:[ 2246:E 2224:n 2219:R 2211:S 2198:C 2194:C 2190:C 2174:. 2172:w 2169:π 2165:w 2142:S 2120:2 2117:1 2091:2 2088:= 2085:n 2063:n 2058:R 2036:S 2016:S 1996:] 1993:S 1985:[ 1982:E 1959:] 1956:S 1948:[ 1945:E 1938:| 1934:S 1927:| 1920:| 1916:S 1912:| 1905:= 1902:) 1899:S 1891:P 1888:, 1885:l 1881:| 1877:P 1869:l 1866:( 1863:r 1860:P 1840:P 1820:l 1798:n 1793:R 1785:S 1774:. 1755:) 1750:2 1746:S 1742:( 1731:) 1726:1 1722:S 1718:( 1706:= 1703:) 1698:2 1694:S 1685:l 1681:| 1675:1 1671:S 1662:l 1659:( 1656:r 1653:P 1631:2 1627:S 1604:1 1600:S 1579:l 1557:2 1553:S 1530:1 1526:S 1503:2 1499:S 1495:, 1490:1 1486:S 1411:D 1408:, 1405:C 1384:| 1380:D 1376:| 1368:| 1364:C 1360:| 1356:4 1353:= 1350:T 1347:d 1343:| 1339:) 1336:D 1333:( 1330:T 1324:C 1320:| 1312:2 1308:E 1301:T 1276:D 1273:, 1270:C 1245:2 1241:E 1218:2 1214:E 1190:d 1184:y 1181:d 1175:x 1172:d 1152:) 1149:y 1146:, 1143:x 1140:( 1100:) 1097:y 1094:, 1091:x 1088:, 1082:( 1079:T 1057:2 1052:R 1044:) 1038:2 1035:, 1032:0 1029:[ 1023:) 1020:y 1017:, 1014:x 1011:, 1005:( 983:2 978:R 970:) 964:2 961:, 958:0 955:[ 929:2 925:E 871:2 867:1 861:n 851:2 845:) 840:2 836:1 833:+ 830:n 824:( 814:= 807:| 801:1 795:n 790:R 779:| 772:2 768:1 763:= 758:n 754:C 733:. 730:p 727:d 720:d 716:) 713:p 710:, 704:( 695:n 686:n 682:C 678:= 675:) 672:S 669:( 643:S 621:n 616:R 594:p 591:d 582:d 560:1 554:n 550:S 523:n 518:R 484:2 479:R 450:p 447:d 438:d 409:. 406:p 403:d 396:d 392:) 389:p 386:, 380:( 371:n 362:4 359:1 354:= 351:) 345:( 284:p 254:ℓ 250:ℓ 226:ℓ 224:( 206:n 195:ℓ 162:. 150:. 138:2 135:= 132:) 129:p 126:, 120:( 111:n 70:p 67:,

Index

mathematics
Morgan Crofton
integral geometry
expected
line


Monte-Carlo simulation
rectifiable
plane curve
origin
arc length
integral
differential form
rigid motions
tangent bundle
additive
unit circle
Euclidean group
cover
almost every
Riemannian
Finsler manifolds
geodesics
bounding volume hierarchy
isoperimetric inequality
Barbier's theorem
curve of constant width
isoperimetric inequality
convex hull

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.