Knowledge (XXG)

Cross-linking immunoprecipitation

Source đź“ť

104:, identifying RNA binding sites that contained the expected Nova-binding motifs. Sequencing of the cDNA library identified many positions close to alternative exons, several of which were found to require Nova1/2 for their brains-specific splicing patterns. In 2008, CLIP was combined with high-throughput sequencing (termed "HITS-CLIP") to generate genome-wide protein-RNA interaction maps for Nova; since then a number of other RNA-binding proteins have been studied with CLIP, including PTBP1, RbFox2 (where it was referred to as "CLIP-seq"), SFRS1, Argonaute, hnRNP C, the Fragile-X mental retardation protein FMRP, Ptbp2 (in the mouse brain), Mbnl2, the nElavl proteins (the neuron-specific Hu proteins), and has been applied to RNA binding proteins from all kingdoms of life, including prokaryotes. CLIP analysis of the RNA-binding protein 193:(photoactivatable ribonucleoside–enhanced cross-linking and immunoprecipitation) is also used for identifying the binding sites of cellular RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs). The method relies on the incorporation of photoreactive ribonucleoside analogs, such as 4-thiouridine (4-SU) and 6-thioguanosine (6-SG) into nascent RNA transcripts by living cells. Irradiation of the cells by UV light of 365 nm induces efficient cross-linking of photoreactive nucleoside-labeled cellular RNAs to interacting RBPs. Immunoprecipitation of the RBP of interest is followed by the isolation of the cross-linked and co-immunoprecipitated RNA. The isolated RNA is converted into a cDNA library and deep sequenced using 254:
the targeted RBP. After ligation of a 3’ RNA adapter, immunoprecipitated material (as well as a paired input sample) are run on denaturing protein gels and transferred to nitrocellulose membranes. A region from the protein size to 75 kDa above is cut from the membrane and treated with Proteinase K to release RNA. After cleanup, RNA is then reverse transcribed to ssDNA, when a second adapter is ligated. By ligating the second adapter to cDNAs, eCLIP can identify truncated cDNAs, similar to iCLIP, and thereby study RNA-protein interaction sites with high resolution. PCR amplification is then used to obtain sufficient material for high-throughput sequencing. eCLIP can also be used to identify miRNA targets and profile RNA modifications such as m6A.
265:
the amount of input material and omitting several purification steps. Additionally, it permits a radiolabel-free visualization of immunoprecipitated RNA by using a highly sensitive biotin-based labeling technique. Along with a bioinformatical platform this method is designed to provide deep insights into RNA–protein interactomes in biomedical science, where the amount of starting material is often limited (i.e. in case of precious clinical samples). Additional iCLIP variants have also been developed that retain the individual nucleotide resolution but differ in one or more steps from the original iCLIP method. These include iCLIP2, irCLIP, iiCLIP, and iCLIP1.5, a few to name.
251:
publication, eCLIP was reported to increase such efficiency by >1000-fold, which not only decreases wasted sequencing of PCR duplicate molecules, but also dramatically decreases experimental failures during the CLIP procedure. Additionally, the amplification in eCLIP is now comparable to RNA-seq, enabling rigorous quantitative normalization against paired input controls (to remove background at ribosomal and other highly abundant RNAs) as well as quantitative comparison across peaks and samples, enabling the ability to detect allele-specific binding or differential RNA binding between conditions.
238:) along with experimental barcodes to the primer used for reverse transcription, thereby barcoding unique cDNAs to minimise any errors or quantitative biases of PCR, and thus improving the quantification of binding events. Enabling amplification of truncated cDNAs led to identification of the sites of RNA-protein interactions at high resolution by analysing the starting position of truncated cDNAs, as well as their precise quantification using UMIs with software called " 242:". These innovations of iCLIP were adopted by later variants of CLIP such as eCLIP and irCLIP. Another modification of iCLIP, miCLIP, identifies methylated RNA sites with use of mutant enzyme or modification-specific antibody. The quantitative nature of iCLIP enabled comparison across samples at the level of full RNAs, or to study competitive binding of multiple RNA-binding proteins or subtle changes in binding of a mutant protein at the level of binding peaks. 59: 300: 223:(individual nucleotide–resolution crosslinking and immunoprecipitation) is a variant of CLIP that enabled amplification of truncated cDNAs, which are produced when reverse transcription stops prematurely at the cross-link site. Other approaches to identify protein-RNA crosslink sites include mutational analysis of read-through cDNAs, such as nucleotide transitions in 143: 181: 287:
to preserve RNA-protein interactions, but these also generate protein-protein cross-links. By employing UV crosslinking that is specific to direct protein-RNA contacts, CLIP avoid protein-protein cross-links and ensures high specificity, while also obtaining positional information on the sites of protein-RNA interactions.
211: 71:
isolated via immunoprecipitation. In order to allow for priming of reverse transcription, RNA adapters are ligated to the 3' ends, and RNA fragments are labelled to enable the analysis of the RNA-protein complexes after they have been separated from free RNA using gel electrophoresis and membrane transfer.
1724:
Ke, Shengdong; Alemu, Endalkachew A.; Mertens, Claudia; Gantman, Emily Conn; Fak, John J.; Mele, Aldo; Haripal, Bhagwattie; Zucker-Scharff, Ilana; Moore, Michael J.; Park, Christopher Y.; Vågbø, Cathrine Broberg; Kusśnierczyk, Anna; Klungland, Arne; Darnell, James E.; Darnell, Robert B. (2015-10-01).
286:
have been demonstrated to be dependent on the reaction conditions of the experiment, such as protein concentrations and ionic conditions, and reassociation of RNA-binding proteins following cell lysis could lead to detection of artificial interactions. Formaldehyde crosslinking methods have been used
281:
RNA-binding proteins are frequently components of multi-protein complexes, and RNAs from various genes are present in cells at a range of abundance, therefore it is common that RNAs bound to co-purified proteins or non-specifically sticking to beads may be isolated when immunoprecipitating a specific
253:
As in other CLIP methods, eCLIP relies on RBP-RNA interactions covalently linked using UV crosslinking of live cells. Cells are then lysed, and RNA is fragmented using limited RNase treatment. A specific RBP (and its bound RNA) is then immunoprecipitated using an antibody that specifically recognizes
201:
However, PAR-CLIP is limited mainly to cultured cells, and nucleoside cytotoxicity is a concern; it has been reported that 4-SU inhibits ribosomal RNA synthesis, induces a nucleolar stress response, and reduces cell proliferation. PAR-CLIP has been employed to determine the transcriptome-wide binding
2157:
Charizanis, K; Lee, KY; Batra, R; Goodwin, M; Zhang, C; Yuan, Y; Shiue, L; Cline, M; Scotti, MM; Xia, G; Kumar, A; Ashizawa, T; Clark, HB; Kimura, T; Takahashi, MP; Fujimura, H; Jinnai, K; Yoshikawa, H; Gomes–Pereira, M; Gourdon, G; Sakai, N; Nishino, S; Foster, TC; Ares, M; Darnell, RB; Swanson, MS
320:
are comparable to CLIP in identifying miRNA targets, raising questions as to its utility relative to existing predictions. Because CLIP methods rely on immunoprecipitation, crosslinked RNA could in some cases affect antibody-epitope interactions. Finally, significant differences have been observed.
70:
cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity (on the order of Angstroms apart). The cross-linked cells are then lysed, RNA is fragmented, and the protein of interest is
290:
Since UV crosslinking creates a covalent bond, the crosslinked RNA fragments retain a short peptide after Proteinase K digestion, which can be exploited to identify the crosslink site. Reverse transcription most often truncates at the crosslink sites, creating truncated cDNAs that are exploited by
264:
sCLIP (simple CLIP) is a technique that requires lower amounts of input RNA and omits radio-labeling of the immunoprecipitated RNA. The method is based on linear amplification of the immunoprecipitated RNA and thereby improves the complexity of the sequencing-library despite significantly reducing
307:
All CLIP library generation protocols require moderate quantities of cells or tissue (50–100 mg), require numerous enzymatic steps, and customised computational analyses. Certain steps are difficult to optimize and frequently have low efficiencies. For example, overdigestion with RNase can
308:
decrease the number of identified binding sites and thus needs to be optimised. Crosslinking efficiency also varies between proteins, and nucleotide bias of crosslinking has been reported, for example by comparing cross-linking sites and motifs enriched when protein-RNA complexes are studied
250:
eCLIP (enhanced CrossLinking and ImmunoPrecipitation followed by high-throughput sequencing) is also used to map RBP binding sites on RNAs transcriptome-wide. eCLIP was designed to improve upon iCLIP by increasing the efficiency in converting purified RNA fragments into cDNA library. At its
49:
on a transcriptome-wide scale, thereby increasing our understanding of post-transcriptional regulatory networks. CLIP can be used either with antibodies against endogenous proteins, or with common peptide tags (including FLAG, V5, HA, and others) or affinity purification, which enables the
167:
to identify binding sites of RNA-binding proteins. HITS-CLIP also introduced the addition of dinucleotide barcodes to primers, providing the ability to sequence and then deconvolute multiple experiments simultaneously. With analysis of cross-linking induced mutation sites (CIMS) at
1166:
Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas (2010-04-02).
1646:
Van Nostrand, Eric L.; Freese, Peter; Pratt, Gabriel A.; Wang, Xiaofeng; Wei, Xintao; Xiao, Rui; Blue, Steven M.; Chen, Jia-Yu; Cody, Neal A. L.; Dominguez, Daniel; Olson, Sara; Sundararaman, Balaji; Zhan, Lijun; Bazile, Cassandra; Bouvrette, Louis Philip Benoit (July 2020).
1461:
Tollervey, James R.; Curk, Tomaž; Rogelj, Boris; Briese, Michael; Cereda, Matteo; Kayikci, Melis; König, Julian; Hortobágyi, Tibor; Nishimura, Agnes L.; Zupunski, Vera; Patani, Rickie; Chandran, Siddharthan; Rot, Gregor; Zupan, Blaž; Shaw, Christopher E. (April 2011).
1576:
Hallegger, Martina; Chakrabarti, Anob M.; Lee, Flora C. Y.; Lee, Bo Lim; Amalietti, Aram G.; Odeh, Hana M.; Copley, Katie E.; Rubien, Jack D.; Portz, Bede; Kuret, Klara; Huppertz, Ina; Rau, Frédérique; Patani, Rickie; Fawzi, Nicolas L.; Shorter, James (2021-09-02).
75:
digestion is then performed in order to remove protein from the crosslinked RNA, which leaves a few amino acids at the crosslink site. This often leads to truncation of cDNAs at the crosslinked nucleotide, which is exploited in variants such as
80:
to increase the resolution of the method. cDNA is then synthesized via RT-PCR followed by high-throughput sequencing followed by mapping the reads back to the transcriptome and other computational analyses to study the interaction sites.
197:
technology. Cross-linking the 4-SU and 6-SG analogs results in thymidine to cytidine, and guanosine to adenosine transitions respectively. As a result, PAR-CLIP can identify binding site locations with high accuracy.
1343:
Hussain, Shobbir; Sajini, Abdulrahim A.; Blanco, Sandra; Dietmann, Sabine; Lombard, Patrick; Sugimoto, Yoichiro; Paramor, Maike; Gleeson, Joseph G.; Odom, Duncan T.; Ule, Jernej; Frye, Michaela (2013-07-25).
2453:
Hafner, M; Landthaler, M; Burger, L; Khorshid, M; Hausser, J; Berninger, P; Rothballer, A; Ascano, M; Jungkamp, AC; Munschauer, M; Ulrich, A; Wardle, GS; Dewell, S; Zavolan, M; Tuschl, T (2010b).
2410:
Hafner, M; Landthaler, M; Burger, L; Khorshid, M; Hausser, J; Berninger, P; Rothballer, A; Ascano, M; Jungkamp, AC; Munschauer, M; Ulrich, A; Wardle, GS; Dewell, S; Zavolan, M; Tuschl, T (2010).
1519:
Zarnack, Kathi; König, Julian; Tajnik, Mojca; Martincorena, Iñigo; Eustermann, Sebastian; Stévant, Isabelle; Reyes, Alejandro; Anders, Simon; Luscombe, Nicholas M.; Ule, Jernej (2013-01-31).
342: 2578:
Ke, S; Alemu, EA; Mertens, C; Gantman, EC; Fak, JJ; Mele, A; Haripal, B; Zucker-Scharff, I; Moore, MJ; Park, CY; Vågbø, CB; Kusnierczyk, A; Klungland, A; Darnell, JE; Darnell, RB (2015).
2373:
Fecko, CJ; Munson, KM; Saunders, A; Sun, G; Begley, TP; Lis, JT; Webb, WW (2007). "Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking".
333:
studies enrichment of full RNAs after immunoprecipitation of specific protein followed by microarray analysis, but without using cross-linking, it does not identify RNA binding sites
1871:
Knörlein, Anna; Sarnowski, Chris P.; de Vries, Tebbe; Stoltz, Moritz; Götze, Michael; Aebersold, Ruedi; Allain, Frédéric H.-T.; Leitner, Alexander; Hall, Jonathan (2022-05-17).
268:
As a modification of CLIP, methylated RNA sites were identified with the use of mutant enzyme or modification-specific antibody with the methods termed miCLIP or m6A-CLIP.
946:
Hale, Caryn R.; Sawicka, Kirsty; Mora, Kevin; Fak, John J.; Kang, Jin Joo; Cutrim, Paula; Cialowicz, Katarzyna; Carroll, Thomas S.; Darnell, Robert B. (2021-12-23).
2535:
Ince-Dunn, G; Okano, HJ; Jensen, KB; Park, WY; Zhong, R; Ule, J; Mele, A; Fak, JJ; Yang, CW; Zhang, C; Yoo, J; Herre, M; Okano, H; Noebels, JL; Darnell, RB (2012).
3447:"sCLIP—an integrated platform to study RNA–protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs" 2252:
Darnell, JC; Van Driesche, SJ; Zhang, C; Hung, KY; Mele, A; Fraser, CE; Stone, EF; Chen, C; Fak, JJ; Chi, SW; Licatalosi, DD; Richter, JD; Darnell, RB (2011).
202:
sites of several known RBPs and microRNA-containing ribonucleoprotein complexes at high resolution. This includes the miRNA targeting AGO and TNRC6 proteins.
2707:
König, J; McGlincy, NJ; Ule, J (2012). "Analysis of Protein-RNA Interactions with Single-Nucleotide Resolution Using iCLIP and Next-Generation Sequencing".
739:
König, Julian; Zarnack, Kathi; Rot, Gregor; Curk, Tomaz; Kayikci, Melis; Zupan, Blaz; Turner, Daniel J.; Luscombe, Nicholas M.; Ule, Jernej (July 2010).
321:
Therefore, raw CLIP results require further computational analyses to thoroughly investigate RNA-protein binding site interactions within the cell.
561:
Hafner, Markus; Katsantoni, Maria; Köster, Tino; Marks, James; Mukherjee, Joyita; Staiger, Dorothee; Ule, Jernej; Zavolan, Mihaela (2021-03-04).
2951:"Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis" 3228:"Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping" 2812:
Licatalosi, DD; Mele, A; Fak, JJ; Ule, J; Kayikci, M; Chi, SW; Clark, TA; Schweitzer, AC; Blume, JE; Wang, X; Darnell, JC; Darnell, RB (2008).
466:: dCLIP is a Perl program for discovering differential binding regions in two comparative CLIP-Seq (HITS-CLIP, PAR-CLIP or iCLIP) experiments. 316:, though methods are being developed to minimise such bias for enriched motif discovery. Computationally predicted miRNA targets derived from 2908:"Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses" 3152:
Ule, J; Jensen, K; Ruggiu, M; Mele, A; Ule, A; Darnell, RB (Nov 14, 2003). "CLIP identified Nova-regulated RNA networks in the brain".
2724: 1404:
Linder, Bastian; Grozhik, Anya V.; Olarerin-George, Anthony O.; Meydan, Cem; Mason, Christopher E.; Jaffrey, Samie R. (August 2015).
3197:
Ule, J; Jensen, K; Mele, A; Darnell, RB (2005). "CLIP: a method for identifying protein-RNA interactions sites in living cells".
2623:"m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover" 363:: a database for exploring miRNA-lncRNA, miRNA-mRNA, miRNA-sncRNA, miRNA-circRNA, protein-lncRNA, protein-RNA interactions and 2537:"Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability" 3543: 283: 2621:
Ke, S; Pandya-Jones, A; Saito, Y; Fak, JJ; Vågbø, CB; Geula, S; Hanna, JH; Black, DL; Darnell, JE; Darnell, RB (2017).
235: 2494:"Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo" 2779:"Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs" 2114:
Burger, K; Mühl, B; Kellner, M; Rohrmoser, M; Gruber-Eber, A; Windhager, L; Friedel, CC; Dölken, L; Eick, D (2013).
1346:"NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs" 194: 164: 3271:"starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data" 2865:"Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain" 2160:"Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy" 1080:
Wolf, Joshua J.; Dowell, Robin D.; Mahony, Shaun; Rabani, Michal; Gifford, David K.; Fink, Gerald R. (June 2010).
3226:
Xue, Y; Zhou, Y; Wu, T; Zhu, T; Ju, X; Kwon, YS; Zhang, C; Yeo, G; Black, DL; Sun, H; Fu, XD; Zhang, Y (2009).
1521:"Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements" 113: 3123:
Uhl, M; Houwaart, T; Corrado, G; Wright, PR; Backofen, R (2017). "Computational analysis of CLIP-seq data".
291:
iCLIP, while read-through cDNAs often contain mutations at the crosslink site (see HITS-CLIP and PAR-CLIP).
1082:"Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast" 227:, or rare errors introduced by reverse transcriptase when it reads through the crosslink sites in standard 1950:"Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP" 948:"FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons" 360: 121: 3314:"An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells" 1948:
Kuret, Klara; Amalietti, Aram Gustav; Jones, D. Marc; Capitanchik, Charlotte; Ule, Jernej (2022-09-09).
2492:
Holmqvist, E; Wright, PR; Li, L; Bischler, T; Barquist, L; Reinhardt, R; Backofen, R; Vogel, J (2016).
487:
Ule, Jernej; Jensen, Kirk B.; Ruggiu, Matteo; Mele, Aldo; Ule, Aljaz; Darnell, Robert B. (2003-11-14).
2664:
König, J; Zarnack, K; Rot, G; Curk, T; Kayikci, M; Zupan, B; Turner, DJ; Luscombe, NM; Ule, J (2010).
1794:
Chakrabarti, Anob M.; Haberman, Nejc; Praznik, Arne; Luscombe, Nicholas M.; Ule, Jernej (2018-07-20).
256:
eCLIP datasets have been produced for over 150 RBPs with validated commercially available antibodies.
3492:"Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)" 3161: 2825: 2214: 1884: 1873:"Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes" 1660: 500: 126: 160: 90: 38: 3037:"Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions" 2073:"Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis" 3185: 2398: 2340:"CLIP (Cross-Linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein" 1841: 592: 532: 2992:
Sanford, JR; Wang, X; Mort, M; Fanduyn, N; Cooper, DN; Mooney, SD; Edenberg, HJ; Liu, Y (2009).
2580:"A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation" 2412:"Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP" 1727:"A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation" 1169:"Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP" 2666:"iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution" 741:"iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution" 3521: 3476: 3433: 3386: 3357:"Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data" 3343: 3300: 3257: 3214: 3177: 3140: 3111: 3068: 3023: 2980: 2937: 2894: 2851: 2765: 2720: 2695: 2652: 2609: 2566: 2523: 2480: 2455:"PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins" 2441: 2390: 2361: 2326: 2283: 2240: 2189: 2145: 2102: 2059: 1989: 1971: 1918: 1900: 1833: 1815: 1764: 1746: 1694: 1676: 1616: 1598: 1558: 1540: 1501: 1483: 1443: 1425: 1383: 1365: 1322: 1293:"Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data" 1206: 1188: 1119: 1101: 987: 969: 916: 898: 778: 760: 701: 693: 649: 631: 584: 524: 516: 27: 1811: 112:-mRNA and protein-RNA interaction maps in the mouse brain and subsequently in budding yeast ( 3511: 3503: 3466: 3458: 3423: 3415: 3398:
Zisoulis, DG; Lovci, MT; Wilbert, ML; Hutt, KR; Liang, TY; Pasquinelli, AE; Yeo, GW (2010).
3376: 3368: 3333: 3325: 3290: 3282: 3247: 3239: 3206: 3169: 3132: 3101: 3093: 3058: 3048: 3013: 3005: 2970: 2962: 2927: 2919: 2884: 2876: 2841: 2833: 2798: 2790: 2755: 2747: 2712: 2685: 2677: 2642: 2634: 2599: 2591: 2556: 2548: 2513: 2505: 2470: 2462: 2431: 2423: 2382: 2351: 2316: 2308: 2273: 2265: 2230: 2222: 2179: 2171: 2135: 2127: 2092: 2084: 2049: 2039: 1979: 1961: 1908: 1892: 1823: 1807: 1754: 1738: 1684: 1668: 1606: 1590: 1548: 1532: 1491: 1475: 1433: 1417: 1373: 1357: 1312: 1304: 1196: 1180: 1109: 1093: 977: 959: 906: 890: 768: 752: 683: 639: 623: 574: 508: 169: 94: 3165: 2863:
Licatalosi, DD; Yano, M; Fak, JJ; Mele, A; Grabinski, SE; Zhang, C; Darnell, RB (2012).
2829: 2777:
Leung, AK; Young, AG; Bhutkar, A; Zheng, GX; Bosson, AD; Nielsen, CB; Sharp, PA (2011).
2218: 1888: 1664: 504: 58: 50:
possibility of profiling model organisms or RBPs otherwise lacking suitable antibodies.
3516: 3491: 3471: 3446: 3428: 3399: 3381: 3356: 3338: 3313: 3295: 3270: 3252: 3227: 3106: 3081: 3063: 3036: 3018: 2993: 2975: 2950: 2932: 2907: 2889: 2864: 2846: 2813: 2803: 2778: 2760: 2735: 2690: 2665: 2647: 2622: 2604: 2579: 2561: 2536: 2518: 2493: 2475: 2436: 2411: 2321: 2296: 2278: 2253: 2235: 2202: 2184: 2159: 2140: 2115: 2097: 2072: 2054: 2027: 1984: 1949: 1913: 1872: 1828: 1795: 1759: 1726: 1689: 1648: 1611: 1578: 1553: 1520: 1496: 1463: 1438: 1405: 1378: 1345: 1317: 1292: 1201: 1168: 1114: 1081: 982: 947: 911: 878: 773: 740: 644: 611: 282:
protein. The data specificity obtained using early immunoprecipitation methods such as
2994:"Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts" 2071:
Bohnsack, MT; Martin, R; Granneman, S; Ruprecht, M; Schleiff, E; Tollervey, D (2009).
3537: 3035:
Sugimoto, Y; König, J; Hussain, S; Zupan, B; Curk, T; Frye, M; Ule, J (Aug 3, 2012).
2386: 2254:"FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism" 1464:"Characterizing the RNA targets and position-dependent splicing regulation by TDP-43" 596: 3189: 2402: 1845: 536: 172:, crosslink sites can be differentiated from other sources of sequence variation. 3548: 1406:"Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome" 72: 1579:"TDP-43 condensation properties specify its RNA-binding and regulatory repertoire" 3243: 2552: 2175: 2088: 1796:"Data Science Issues in Studying Protein–RNA Interactions with CLIP Technologies" 1361: 688: 671: 89:
CLIP was originally undertaken to study interactions between the neuron-specific
3210: 3136: 2454: 1097: 627: 101: 2716: 2427: 2269: 1966: 1896: 1594: 1536: 1184: 579: 562: 2116:"4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response" 1672: 317: 299: 156: 34: 3053: 2814:"HITS-CLIP yields genome-wide insights into brain alternative RNA processing" 1975: 1904: 1819: 1750: 1680: 1602: 1544: 1487: 1429: 1369: 1192: 1105: 973: 902: 764: 697: 635: 588: 520: 3173: 2949:
Moore, JJ; Zhang, C; Gantman, EC; Mele, A; Darnell, JC; Darnell, RB (2014).
2509: 512: 418: 377: 228: 151: 105: 3525: 3480: 3437: 3390: 3347: 3304: 3261: 3218: 3181: 3144: 3115: 3072: 3027: 2984: 2966: 2941: 2898: 2880: 2855: 2794: 2769: 2699: 2656: 2638: 2613: 2595: 2570: 2527: 2484: 2445: 2394: 2365: 2356: 2339: 2330: 2287: 2244: 2193: 2149: 2106: 2063: 1993: 1922: 1837: 1768: 1742: 1698: 1620: 1562: 1505: 1447: 1387: 1326: 1210: 1123: 991: 920: 782: 705: 653: 528: 488: 3286: 3009: 3462: 3097: 450: 424: 336: 330: 224: 189: 109: 2923: 2837: 2226: 2044: 1649:"A large-scale binding and functional map of human RNA-binding proteins" 1226: 1224: 1222: 1220: 964: 3507: 1421: 672:"Advances in CLIP Technologies for Studies of Protein-RNA Interactions" 46: 3419: 3329: 2681: 2297:"HITS-CLIP: panoramic views of protein-RNA regulation in living cells" 2131: 1247: 1245: 1243: 1241: 1239: 894: 756: 142: 3372: 2736:"Protein-RNA interactions: new genomic technologies and perspectives" 1308: 877:
Chi, Sung Wook; Hannon, Gregory J.; Darnell, Robert B. (2012-02-12).
437: 2751: 2312: 1479: 860: 858: 180: 3312:
Yeo, GW; Coufal, NG; Liang, TY; Peng, GE; Fu, XD; Gage, FH (2009).
2005: 2003: 460:: a pipeline to analyze short RNA reads from HITS-CLIP experiments. 239: 3400:"Comprehensive discovery of endogenous Argonaute binding sites in 794: 792: 463: 430: 383: 364: 298: 219: 209: 179: 141: 97: 77: 57: 2466: 1711: 845: 843: 234:
iCLIP also added a random sequence (unique molecular identifier,
231:
methods, termed Crosslink induced mutation site (CIMS) analysis.
210: 2028:"Predicting effective microRNA target sites in mammalian mRNAs" 1935: 401: 610:
Ule, Jernej; Hwang, Hun-Way; Darnell, Robert B. (2018-08-01).
457: 42: 3269:
Yang, JH; Li, JH; Shao, P; Zhou, H; Chen, YQ; Qu, LH (2011).
1063: 1061: 3445:
Kargapolova, Y; Levin, M; Lackner, K; Danckwardt, S (2017).
3082:"Experimental strategies for microRNA target identification" 2203:"Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps" 933: 612:"The Future of Cross-Linking and Immunoprecipitation (CLIP)" 393: 1262: 1260: 31: 1278: 489:"CLIP identifies Nova-regulated RNA networks in the brain" 339:, method for finding interactions with DNA rather than RNA 1633: 1230: 1040: 1016: 1136: 1028: 1251: 1148: 834: 108:
led to identification of microRNA targets by decoding
1052: 1004: 864: 717: 715: 2009: 1858: 879:"An alternative mode of microRNA target recognition" 798: 2734:König, J; Zarnack, K; Luscombe, NM; Ule, J (2012). 2026:Agarwal, V; Bell, GW; Nam, J-W; Bartel, DP (2015). 849: 822: 1291:Zhang, Chaolin; Darnell, Robert B (1 June 2011). 434:data and PICTAR microRNA target site predictions. 2201:Chi, SW; Zang, JB; Mele, A; Darnell, RB (2009). 3490:Van Nostrand, E; Pratt, G; Shishkin, A (2016). 349:method for finding a consensus binding sequence 3080:Thomson, DW; Bracken, CP; Goodall, GJ (2011). 1067: 8: 1266: 810: 670:Lee, Flora C. Y.; Ule, Jernej (2018-02-01). 440:: A computational approach for identifying 1781: 616:Cold Spring Harbor Perspectives in Biology 3515: 3470: 3427: 3380: 3337: 3294: 3251: 3105: 3062: 3052: 3017: 2974: 2931: 2888: 2845: 2802: 2759: 2689: 2646: 2603: 2560: 2517: 2474: 2435: 2355: 2320: 2277: 2234: 2183: 2139: 2096: 2053: 2043: 1983: 1965: 1912: 1827: 1758: 1688: 1610: 1552: 1495: 1437: 1377: 1316: 1200: 1113: 981: 963: 910: 883:Nature Structural & Molecular Biology 772: 745:Nature Structural & Molecular Biology 687: 643: 578: 1812:10.1146/annurev-biodatasci-080917-013525 1800:Annual Review of Biomedical Data Science 1634:Van Nostrand, Pratt & Shishkin 2016 721: 476: 1399: 1397: 1338: 1336: 1161: 1159: 1157: 20:Cross-linking and immunoprecipitation 7: 2709:Tag-Based Next Generation Sequencing 734: 732: 730: 665: 663: 556: 554: 552: 550: 548: 546: 482: 480: 1053:Thomson, Bracken & Goodall 2011 14: 2459:Journal of Visualized Experiments 396:, PicTar, RNA22, miRanda and PITA 2387:10.1111/j.1751-1097.2007.00179.x 563:"CLIP and complementary methods" 16:Method used in molecular biology 2375:Photochemistry and Photobiology 3355:Zhang, C; Darnell, RB (2011). 567:Nature Reviews Methods Primers 1: 3281:(Database issue): D202–D209. 3244:10.1016/j.molcel.2009.12.003 2906:Mili, S; Steitz, JA (2004). 2553:10.1016/j.neuron.2012.07.009 2344:Cold Spring Harbor Protocols 2176:10.1016/j.neuron.2012.05.029 2089:10.1016/j.molcel.2009.09.039 1362:10.1016/j.celrep.2013.06.029 689:10.1016/j.molcel.2018.01.005 442:microRNA-target interactions 3211:10.1016/j.ymeth.2005.07.018 3137:10.1016/j.ymeth.2017.02.006 1098:10.1534/genetics.110.113944 628:10.1101/cshperspect.a032243 404:: a database for exploring 3565: 2717:10.1002/9783527644582.ch10 2428:10.1016/j.cell.2010.03.009 2270:10.1016/j.cell.2011.06.013 1967:10.1186/s13059-022-02755-2 1897:10.1038/s41467-022-30284-w 1595:10.1016/j.cell.2021.07.018 1537:10.1016/j.cell.2012.12.023 1185:10.1016/j.cell.2010.03.009 580:10.1038/s43586-021-00018-1 272:Advantages and limitations 195:high-throughput sequencing 165:high-throughput sequencing 129:and tissue culture cells. 2301:Wiley Interdiscip Rev RNA 1673:10.1038/s41586-020-2077-3 3054:10.1186/gb-2012-13-8-r67 1267:Zhang & Darnell 2011 114:Saccharomyces cerevisiae 85:History and applications 3174:10.1126/science.1090095 2740:Nature Reviews Genetics 2627:Genes & Development 2584:Genes & Development 2510:10.15252/embj.201593360 1731:Genes & Development 1712:Kargapolova et al. 2017 513:10.1126/science.1090095 62:Basic Principle of CLIP 3402:Caenorhabditis elegans 3086:Nucleic Acids Research 2967:10.1038/nprot.2014.012 2881:10.1101/gad.191338.112 2795:10.1038/nsmb0911-1084a 2639:10.1101/gad.301036.117 2596:10.1101/gad.269415.115 2357:10.1101/pdb.prot072132 1782:Mili & Steitz 2004 1743:10.1101/gad.269415.115 1017:Charizanis et al. 2012 1005:Licatalosi et al. 2012 799:Licatalosi et al. 2008 444:using high-throughput 398:microRNA target sites. 304: 215: 185: 170:high sequencing depths 147: 122:Caenorhabditis elegans 63: 26:) is a method used in 3010:10.1101/gr.082503.108 1877:Nature Communications 1589:(18): 4680–4696.e22. 1041:Holmqvist et al. 2016 1029:Ince-Dunn et al. 2012 402:BIMSB doRiNA database 302: 213: 183: 145: 66:CLIP begins with the 61: 41:in order to identify 3361:Nature Biotechnology 2338:Darnell, RB (2012). 2295:Darnell, RB (2010). 1936:Bohnsack et al. 2009 1297:Nature Biotechnology 1231:Sugimoto et al. 2012 1137:Zisoulis et al. 2010 312:in living cells and 127:embryonic stem cells 3544:Genetics techniques 3408:Nat Struct Mol Biol 3318:Nat Struct Mol Biol 3287:10.1093/nar/gkq1056 3166:2003Sci...302.1212U 3160:(5648): 1212–1215. 2924:10.1261/rna.7151404 2838:10.1038/nature07488 2830:2008Natur.456..464L 2783:Nat Struct Mol Biol 2670:Nat Struct Mol Biol 2227:10.1038/nature08170 2219:2009Natur.460..479C 2045:10.7554/eLife.05005 2010:Agarwal et al. 2015 1889:2022NatCo..13.2719K 1665:2020Natur.583..711V 1468:Nature Neuroscience 965:10.7554/eLife.71892 934:Darnell et al. 2011 835:Sanford et al. 2009 505:2003Sci...302.1212U 499:(5648): 1212–1215. 161:immunoprecipitation 91:RNA-binding protein 39:immunoprecipitation 3508:10.1038/nmeth.3810 3463:10.1093/nar/gkx152 3098:10.1093/nar/gkr330 1422:10.1038/nmeth.3453 1279:Burger et al. 2013 412:interactions from 305: 260:Other CLIP methods 216: 186: 148: 64: 3457:(10): 6074–6086. 3451:Nucleic Acids Res 3420:10.1038/nsmb.1745 3330:10.1038/nsmb.1545 3275:Nucleic Acids Res 3092:(16): 6845–6853. 2875:(14): 1626–1642. 2824:(7221): 464–469. 2682:10.1038/nsmb.1838 2213:(7254): 479–486. 2132:10.4161/rna.26214 2126:(10): 1623–1630. 1737:(19): 2037–2053. 1659:(7818): 711–719. 1252:König et al. 2012 1149:Leung et al. 2011 895:10.1038/nsmb.2230 865:Moore et al. 2014 757:10.1038/nsmb.1838 361:starBase database 100:and NOVA2 in the 45:binding sites of 28:molecular biology 24:CLIP, or CLIP-seq 3556: 3529: 3519: 3484: 3474: 3441: 3431: 3394: 3384: 3373:10.1038/nbt.1873 3351: 3341: 3308: 3298: 3265: 3255: 3222: 3193: 3148: 3119: 3109: 3076: 3066: 3056: 3031: 3021: 2988: 2978: 2955:Nature Protocols 2945: 2935: 2902: 2892: 2859: 2849: 2808: 2806: 2773: 2763: 2730: 2703: 2693: 2660: 2650: 2633:(10): 990–1006. 2617: 2607: 2574: 2564: 2547:(6): 1067–1080. 2531: 2521: 2488: 2478: 2449: 2439: 2406: 2381:(6): 1394–1404. 2369: 2359: 2334: 2324: 2291: 2281: 2248: 2238: 2197: 2187: 2153: 2143: 2110: 2100: 2067: 2057: 2047: 2013: 2007: 1998: 1997: 1987: 1969: 1945: 1939: 1933: 1927: 1926: 1916: 1868: 1862: 1856: 1850: 1849: 1831: 1791: 1785: 1779: 1773: 1772: 1762: 1721: 1715: 1709: 1703: 1702: 1692: 1643: 1637: 1631: 1625: 1624: 1614: 1573: 1567: 1566: 1556: 1516: 1510: 1509: 1499: 1458: 1452: 1451: 1441: 1401: 1392: 1391: 1381: 1340: 1331: 1330: 1320: 1309:10.1038/nbt.1873 1288: 1282: 1276: 1270: 1264: 1255: 1249: 1234: 1228: 1215: 1214: 1204: 1163: 1152: 1146: 1140: 1134: 1128: 1127: 1117: 1077: 1071: 1068:Yang et al. 2011 1065: 1056: 1050: 1044: 1038: 1032: 1026: 1020: 1014: 1008: 1002: 996: 995: 985: 967: 943: 937: 931: 925: 924: 914: 874: 868: 862: 853: 847: 838: 832: 826: 820: 814: 808: 802: 796: 787: 786: 776: 736: 725: 719: 710: 709: 691: 667: 658: 657: 647: 607: 601: 600: 582: 558: 541: 540: 484: 95:splicing factors 3564: 3563: 3559: 3558: 3557: 3555: 3554: 3553: 3534: 3533: 3532: 3489: 3444: 3397: 3354: 3311: 3268: 3238:(6): 996–1006. 3225: 3196: 3151: 3122: 3079: 3034: 2998:Genome Research 2991: 2948: 2905: 2862: 2811: 2776: 2752:10.1038/nrg3141 2733: 2727: 2711:. p. 153. 2706: 2663: 2620: 2590:(19): 2037–53. 2577: 2534: 2504:(9): 991–1011. 2491: 2452: 2409: 2372: 2350:(11): 1146–60. 2337: 2313:10.1002/wrna.31 2294: 2251: 2200: 2156: 2113: 2070: 2025: 2021: 2016: 2008: 2001: 1947: 1946: 1942: 1934: 1930: 1870: 1869: 1865: 1859:Ule et al. 2005 1857: 1853: 1793: 1792: 1788: 1780: 1776: 1723: 1722: 1718: 1710: 1706: 1645: 1644: 1640: 1632: 1628: 1575: 1574: 1570: 1518: 1517: 1513: 1480:10.1038/nn.2778 1460: 1459: 1455: 1403: 1402: 1395: 1342: 1341: 1334: 1290: 1289: 1285: 1277: 1273: 1265: 1258: 1250: 1237: 1229: 1218: 1165: 1164: 1155: 1147: 1143: 1135: 1131: 1079: 1078: 1074: 1066: 1059: 1051: 1047: 1039: 1035: 1027: 1023: 1015: 1011: 1003: 999: 945: 944: 940: 932: 928: 876: 875: 871: 863: 856: 850:Chi et al. 2009 848: 841: 833: 829: 823:Yeo et al. 2009 821: 817: 811:Xue et al. 2009 809: 805: 797: 790: 738: 737: 728: 720: 713: 669: 668: 661: 609: 608: 604: 560: 559: 544: 486: 485: 478: 474: 469: 410:microRNA-target 356: 354:Further reading 327: 325:Similar methods 297: 279: 274: 262: 255: 252: 248: 208: 178: 140: 135: 87: 56: 17: 12: 11: 5: 3562: 3560: 3552: 3551: 3546: 3536: 3535: 3531: 3530: 3502:(6): 508–514. 3496:Nature Methods 3486: 3485: 3442: 3414:(2): 173–179. 3395: 3367:(7): 607–614. 3352: 3324:(2): 130–137. 3309: 3266: 3232:Molecular Cell 3223: 3205:(4): 376–386. 3194: 3149: 3120: 3077: 3041:Genome Biology 3032: 3004:(3): 381–394. 2989: 2961:(2): 263–293. 2946: 2918:(11): 1692–4. 2903: 2860: 2809: 2774: 2731: 2726:978-3527644582 2725: 2704: 2676:(7): 909–915. 2661: 2618: 2575: 2532: 2489: 2450: 2422:(1): 129–141. 2407: 2370: 2335: 2307:(2): 266–286. 2292: 2264:(2): 247–261. 2249: 2198: 2170:(3): 437–450. 2154: 2111: 2083:(4): 583–592. 2077:Molecular Cell 2068: 2022: 2020: 2017: 2015: 2014: 1999: 1954:Genome Biology 1940: 1928: 1863: 1851: 1806:(1): 235–261. 1786: 1774: 1716: 1704: 1638: 1626: 1568: 1531:(3): 453–466. 1511: 1474:(4): 452–458. 1453: 1416:(8): 767–772. 1410:Nature Methods 1393: 1356:(2): 255–261. 1332: 1303:(7): 607–614. 1283: 1271: 1256: 1235: 1216: 1179:(1): 129–141. 1153: 1141: 1129: 1092:(2): 513–522. 1072: 1057: 1045: 1033: 1021: 1009: 997: 938: 926: 889:(3): 321–327. 869: 854: 839: 827: 815: 803: 788: 751:(7): 909–915. 726: 711: 682:(3): 354–369. 676:Molecular Cell 659: 622:(8): a032243. 602: 542: 475: 473: 470: 468: 467: 461: 455: 435: 399: 367:networks from 357: 355: 352: 351: 350: 340: 334: 326: 323: 296: 293: 278: 275: 273: 270: 261: 258: 247: 244: 207: 204: 177: 174: 139: 136: 134: 131: 86: 83: 55: 52: 30:that combines 15: 13: 10: 9: 6: 4: 3: 2: 3561: 3550: 3547: 3545: 3542: 3541: 3539: 3527: 3523: 3518: 3513: 3509: 3505: 3501: 3497: 3493: 3488: 3487: 3482: 3478: 3473: 3468: 3464: 3460: 3456: 3452: 3448: 3443: 3439: 3435: 3430: 3425: 3421: 3417: 3413: 3409: 3405: 3403: 3396: 3392: 3388: 3383: 3378: 3374: 3370: 3366: 3362: 3358: 3353: 3349: 3345: 3340: 3335: 3331: 3327: 3323: 3319: 3315: 3310: 3306: 3302: 3297: 3292: 3288: 3284: 3280: 3276: 3272: 3267: 3263: 3259: 3254: 3249: 3245: 3241: 3237: 3233: 3229: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3195: 3191: 3187: 3183: 3179: 3175: 3171: 3167: 3163: 3159: 3155: 3150: 3146: 3142: 3138: 3134: 3130: 3126: 3121: 3117: 3113: 3108: 3103: 3099: 3095: 3091: 3087: 3083: 3078: 3074: 3070: 3065: 3060: 3055: 3050: 3046: 3042: 3038: 3033: 3029: 3025: 3020: 3015: 3011: 3007: 3003: 2999: 2995: 2990: 2986: 2982: 2977: 2972: 2968: 2964: 2960: 2956: 2952: 2947: 2943: 2939: 2934: 2929: 2925: 2921: 2917: 2913: 2909: 2904: 2900: 2896: 2891: 2886: 2882: 2878: 2874: 2870: 2866: 2861: 2857: 2853: 2848: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2810: 2805: 2800: 2796: 2792: 2788: 2784: 2780: 2775: 2771: 2767: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2732: 2728: 2722: 2718: 2714: 2710: 2705: 2701: 2697: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2662: 2658: 2654: 2649: 2644: 2640: 2636: 2632: 2628: 2624: 2619: 2615: 2611: 2606: 2601: 2597: 2593: 2589: 2585: 2581: 2576: 2572: 2568: 2563: 2558: 2554: 2550: 2546: 2542: 2538: 2533: 2529: 2525: 2520: 2515: 2511: 2507: 2503: 2499: 2495: 2490: 2486: 2482: 2477: 2472: 2468: 2464: 2461:(41): e2034. 2460: 2456: 2451: 2447: 2443: 2438: 2433: 2429: 2425: 2421: 2417: 2413: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2371: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2336: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2293: 2289: 2285: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2250: 2246: 2242: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2199: 2195: 2191: 2186: 2181: 2177: 2173: 2169: 2165: 2161: 2155: 2151: 2147: 2142: 2137: 2133: 2129: 2125: 2121: 2117: 2112: 2108: 2104: 2099: 2094: 2090: 2086: 2082: 2078: 2074: 2069: 2065: 2061: 2056: 2051: 2046: 2041: 2037: 2033: 2029: 2024: 2023: 2018: 2011: 2006: 2004: 2000: 1995: 1991: 1986: 1981: 1977: 1973: 1968: 1963: 1959: 1955: 1951: 1944: 1941: 1937: 1932: 1929: 1924: 1920: 1915: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1867: 1864: 1860: 1855: 1852: 1847: 1843: 1839: 1835: 1830: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1790: 1787: 1783: 1778: 1775: 1770: 1766: 1761: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1720: 1717: 1713: 1708: 1705: 1700: 1696: 1691: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1642: 1639: 1635: 1630: 1627: 1622: 1618: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1572: 1569: 1564: 1560: 1555: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1512: 1507: 1503: 1498: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1457: 1454: 1449: 1445: 1440: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1400: 1398: 1394: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1339: 1337: 1333: 1328: 1324: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1284: 1280: 1275: 1272: 1268: 1263: 1261: 1257: 1253: 1248: 1246: 1244: 1242: 1240: 1236: 1232: 1227: 1225: 1223: 1221: 1217: 1212: 1208: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1162: 1160: 1158: 1154: 1150: 1145: 1142: 1138: 1133: 1130: 1125: 1121: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1073: 1069: 1064: 1062: 1058: 1054: 1049: 1046: 1042: 1037: 1034: 1030: 1025: 1022: 1018: 1013: 1010: 1006: 1001: 998: 993: 989: 984: 979: 975: 971: 966: 961: 957: 953: 949: 942: 939: 935: 930: 927: 922: 918: 913: 908: 904: 900: 896: 892: 888: 884: 880: 873: 870: 866: 861: 859: 855: 851: 846: 844: 840: 836: 831: 828: 824: 819: 816: 812: 807: 804: 800: 795: 793: 789: 784: 780: 775: 770: 766: 762: 758: 754: 750: 746: 742: 735: 733: 731: 727: 723: 718: 716: 712: 707: 703: 699: 695: 690: 685: 681: 677: 673: 666: 664: 660: 655: 651: 646: 641: 637: 633: 629: 625: 621: 617: 613: 606: 603: 598: 594: 590: 586: 581: 576: 572: 568: 564: 557: 555: 553: 551: 549: 547: 543: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 483: 481: 477: 471: 465: 462: 459: 456: 453: 452: 447: 443: 439: 436: 433: 432: 427: 426: 421: 420: 415: 411: 407: 403: 400: 397: 395: 390: 386: 385: 380: 379: 374: 370: 366: 362: 359: 358: 353: 348: 344: 341: 338: 335: 332: 329: 328: 324: 322: 319: 315: 311: 301: 294: 292: 288: 285: 276: 271: 269: 266: 259: 257: 245: 243: 241: 237: 232: 230: 226: 222: 221: 212: 205: 203: 199: 196: 192: 191: 182: 175: 173: 171: 166: 162: 158: 157:cross-linking 154: 153: 144: 137: 132: 130: 128: 124: 123: 119: 115: 111: 107: 103: 99: 96: 92: 84: 82: 79: 74: 69: 60: 53: 51: 48: 44: 40: 36: 33: 29: 25: 21: 3499: 3495: 3454: 3450: 3411: 3407: 3401: 3364: 3360: 3321: 3317: 3278: 3274: 3235: 3231: 3202: 3198: 3157: 3153: 3128: 3124: 3089: 3085: 3044: 3040: 3001: 2997: 2958: 2954: 2915: 2911: 2872: 2868: 2821: 2817: 2786: 2782: 2746:(2): 77–83. 2743: 2739: 2708: 2673: 2669: 2630: 2626: 2587: 2583: 2544: 2540: 2501: 2497: 2467:10.3791/2034 2458: 2419: 2415: 2378: 2374: 2347: 2343: 2304: 2300: 2261: 2257: 2210: 2206: 2167: 2163: 2123: 2119: 2080: 2076: 2035: 2031: 1957: 1953: 1943: 1931: 1880: 1876: 1866: 1854: 1803: 1799: 1789: 1777: 1734: 1730: 1719: 1707: 1656: 1652: 1641: 1629: 1586: 1582: 1571: 1528: 1524: 1514: 1471: 1467: 1456: 1413: 1409: 1353: 1350:Cell Reports 1349: 1300: 1296: 1286: 1274: 1176: 1172: 1144: 1132: 1089: 1085: 1075: 1048: 1036: 1024: 1012: 1000: 955: 951: 941: 929: 886: 882: 872: 830: 818: 806: 748: 744: 722:Darnell 2010 679: 675: 619: 615: 605: 570: 566: 496: 492: 449: 445: 441: 429: 423: 417: 413: 409: 405: 392: 391:) data, and 388: 382: 376: 372: 368: 346: 313: 309: 306: 303:CLIP Summary 289: 280: 267: 263: 249: 233: 218: 217: 200: 188: 187: 155:combines UV 150: 149: 120: 117: 88: 73:Proteinase K 67: 65: 35:crosslinking 23: 19: 18: 2789:(9): 1084. 1883:(1): 2719. 573:(1): 1–23. 454:sequencing. 406:protein-RNA 295:Limitations 102:mouse brain 3538:Categories 3047:(8): R67. 2038:: e05005. 1960:(1): 191. 958:: e71892. 472:References 438:miRTarCLIP 394:TargetScan 318:TargetScan 277:Advantages 3131:: 60–72. 2869:Genes Dev 1976:1474-760X 1905:2041-1723 1820:2574-3414 1751:1549-5477 1681:1476-4687 1603:1097-4172 1545:1097-4172 1488:1546-1726 1430:1548-7105 1370:2211-1247 1193:1097-4172 1106:1943-2631 974:2050-084X 903:1545-9985 765:1545-9985 698:1097-4164 636:1943-0264 597:233834798 589:2662-8449 521:1095-9203 419:HITS-CLIP 378:HITS-CLIP 229:HITS-CLIP 152:HITS-CLIP 146:HITS-CLIP 138:HITS-CLIP 106:Argonaute 3526:27018577 3481:28334977 3438:20062054 3391:21633356 3348:19136955 3305:21037263 3262:20064465 3219:16314267 3190:23420615 3182:14615540 3145:28254606 3116:21652644 3073:22863408 3028:19116412 2985:24407355 2942:15388877 2899:22802532 2856:18978773 2770:22251872 2700:20601959 2657:28637692 2614:26404942 2571:22998874 2528:27044921 2485:20644507 2446:20371350 2403:23801945 2395:18028214 2366:23118367 2331:21935890 2288:21784246 2245:19536157 2194:22884328 2158:(2012). 2150:24025460 2120:RNA Biol 2107:19941819 2064:26267216 1994:36085079 1923:35581222 1846:90760475 1838:37123514 1769:26404942 1699:32728246 1621:34380047 1563:23374342 1506:21358640 1448:26121403 1388:23871666 1327:21633356 1211:20371350 1124:20382833 1086:Genetics 992:34939924 921:22343717 783:20601959 706:29395060 654:30068528 537:23420615 529:14615540 451:PAR-CLIP 425:PAR-CLIP 414:CLIP-Seq 373:CLIP-Seq 369:PAR-CLIP 347:in vitro 337:ChIP-Seq 331:RIP-Chip 314:in vitro 225:PAR-CLIP 190:PAR-CLIP 184:PAR-CLIP 176:PAR-CLIP 110:microRNA 54:Workflow 47:proteins 3517:4887338 3472:5449641 3429:2834287 3382:3400429 3339:2735254 3296:3013664 3253:2807993 3199:Methods 3162:Bibcode 3154:Science 3125:Methods 3107:3167600 3064:4053741 3019:2661799 2976:4156013 2933:1370654 2890:3404389 2847:2597294 2826:Bibcode 2804:3078052 2761:4962561 2691:3000544 2648:5495127 2605:4604345 2562:3517991 2519:5207318 2476:3156069 2437:2861495 2322:3222227 2279:3232425 2236:2733940 2215:Bibcode 2185:3418517 2141:3866244 2098:2806949 2055:4532895 2019:Sources 1985:9461102 1914:9114321 1885:Bibcode 1829:7614488 1760:4604345 1690:7410833 1661:Bibcode 1612:8445024 1554:3629564 1497:3108889 1439:4487409 1379:3730056 1318:3400429 1202:2861495 1115:2881133 983:8820740 912:3541676 774:3000544 645:6071486 501:Bibcode 493:Science 310:in vivo 133:Methods 68:in vivo 3524:  3514:  3479:  3469:  3436:  3426:  3389:  3379:  3346:  3336:  3303:  3293:  3260:  3250:  3217:  3188:  3180:  3143:  3114:  3104:  3071:  3061:  3026:  3016:  2983:  2973:  2940:  2930:  2897:  2887:  2854:  2844:  2818:Nature 2801:  2768:  2758:  2723:  2698:  2688:  2655:  2645:  2612:  2602:  2569:  2559:  2541:Neuron 2526:  2516:  2498:EMBO J 2483:  2473:  2444:  2434:  2401:  2393:  2364:  2329:  2319:  2286:  2276:  2243:  2233:  2207:Nature 2192:  2182:  2164:Neuron 2148:  2138:  2105:  2095:  2062:  2052:  1992:  1982:  1974:  1921:  1911:  1903:  1844:  1836:  1826:  1818:  1767:  1757:  1749:  1697:  1687:  1679:  1653:Nature 1619:  1609:  1601:  1561:  1551:  1543:  1504:  1494:  1486:  1446:  1436:  1428:  1386:  1376:  1368:  1325:  1315:  1209:  1199:  1191:  1122:  1112:  1104:  990:  980:  972:  919:  909:  901:  781:  771:  763:  704:  696:  652:  642:  634:  595:  587:  535:  527:  519:  240:iCount 3186:S2CID 2399:S2CID 2032:eLife 1842:S2CID 952:eLife 593:S2CID 533:S2CID 464:dCLIP 458:clipz 431:iCLIP 389:CLASH 384:iCLIP 365:ceRNA 345:, an 343:SELEX 246:eCLIP 220:iCLIP 214:iCLIP 206:iCLIP 163:with 98:NOVA1 78:iCLIP 37:with 3522:PMID 3477:PMID 3434:PMID 3387:PMID 3344:PMID 3301:PMID 3258:PMID 3215:PMID 3178:PMID 3141:PMID 3112:PMID 3069:PMID 3024:PMID 2981:PMID 2938:PMID 2895:PMID 2852:PMID 2766:PMID 2721:ISBN 2696:PMID 2653:PMID 2610:PMID 2567:PMID 2524:PMID 2481:PMID 2442:PMID 2416:Cell 2391:PMID 2362:PMID 2348:2012 2327:PMID 2284:PMID 2258:Cell 2241:PMID 2190:PMID 2146:PMID 2103:PMID 2060:PMID 1990:PMID 1972:ISSN 1919:PMID 1901:ISSN 1834:PMID 1816:ISSN 1765:PMID 1747:ISSN 1695:PMID 1677:ISSN 1617:PMID 1599:ISSN 1583:Cell 1559:PMID 1541:ISSN 1525:Cell 1502:PMID 1484:ISSN 1444:PMID 1426:ISSN 1384:PMID 1366:ISSN 1323:PMID 1207:PMID 1189:ISSN 1173:Cell 1120:PMID 1102:ISSN 988:PMID 970:ISSN 917:PMID 899:ISSN 779:PMID 761:ISSN 702:PMID 694:ISSN 650:PMID 632:ISSN 585:ISSN 525:PMID 517:ISSN 448:and 446:CLIP 408:and 159:and 93:and 3549:RNA 3512:PMC 3504:doi 3467:PMC 3459:doi 3424:PMC 3416:doi 3377:PMC 3369:doi 3334:PMC 3326:doi 3291:PMC 3283:doi 3248:PMC 3240:doi 3207:doi 3170:doi 3158:302 3133:doi 3129:118 3102:PMC 3094:doi 3059:PMC 3049:doi 3014:PMC 3006:doi 2971:PMC 2963:doi 2928:PMC 2920:doi 2912:RNA 2885:PMC 2877:doi 2842:PMC 2834:doi 2822:456 2799:PMC 2791:doi 2756:PMC 2748:doi 2713:doi 2686:PMC 2678:doi 2643:PMC 2635:doi 2600:PMC 2592:doi 2557:PMC 2549:doi 2514:PMC 2506:doi 2471:PMC 2463:doi 2432:PMC 2424:doi 2420:141 2383:doi 2352:doi 2317:PMC 2309:doi 2274:PMC 2266:doi 2262:146 2231:PMC 2223:doi 2211:460 2180:PMC 2172:doi 2136:PMC 2128:doi 2093:PMC 2085:doi 2050:PMC 2040:doi 1980:PMC 1962:doi 1909:PMC 1893:doi 1824:PMC 1808:doi 1755:PMC 1739:doi 1685:PMC 1669:doi 1657:583 1607:PMC 1591:doi 1587:184 1549:PMC 1533:doi 1529:152 1492:PMC 1476:doi 1434:PMC 1418:doi 1374:PMC 1358:doi 1313:PMC 1305:doi 1197:PMC 1181:doi 1177:141 1110:PMC 1094:doi 1090:185 978:PMC 960:doi 907:PMC 891:doi 769:PMC 753:doi 684:doi 640:PMC 624:doi 575:doi 509:doi 497:302 284:RIP 236:UMI 43:RNA 3540:: 3520:. 3510:. 3500:13 3498:. 3494:. 3475:. 3465:. 3455:45 3453:. 3449:. 3432:. 3422:. 3412:17 3410:. 3406:. 3385:. 3375:. 3365:29 3363:. 3359:. 3342:. 3332:. 3322:16 3320:. 3316:. 3299:. 3289:. 3279:39 3277:. 3273:. 3256:. 3246:. 3236:36 3234:. 3230:. 3213:. 3203:37 3201:. 3184:. 3176:. 3168:. 3156:. 3139:. 3127:. 3110:. 3100:. 3090:39 3088:. 3084:. 3067:. 3057:. 3045:13 3043:. 3039:. 3022:. 3012:. 3002:19 3000:. 2996:. 2979:. 2969:. 2957:. 2953:. 2936:. 2926:. 2916:10 2914:. 2910:. 2893:. 2883:. 2873:26 2871:. 2867:. 2850:. 2840:. 2832:. 2820:. 2816:. 2797:. 2787:19 2785:. 2781:. 2764:. 2754:. 2744:13 2742:. 2738:. 2719:. 2694:. 2684:. 2674:17 2672:. 2668:. 2651:. 2641:. 2631:31 2629:. 2625:. 2608:. 2598:. 2588:29 2586:. 2582:. 2565:. 2555:. 2545:75 2543:. 2539:. 2522:. 2512:. 2502:35 2500:. 2496:. 2479:. 2469:. 2457:. 2440:. 2430:. 2418:. 2414:. 2397:. 2389:. 2379:83 2377:. 2360:. 2346:. 2342:. 2325:. 2315:. 2303:. 2299:. 2282:. 2272:. 2260:. 2256:. 2239:. 2229:. 2221:. 2209:. 2205:. 2188:. 2178:. 2168:75 2166:. 2162:. 2144:. 2134:. 2124:10 2122:. 2118:. 2101:. 2091:. 2081:36 2079:. 2075:. 2058:. 2048:. 2034:. 2030:. 2002:^ 1988:. 1978:. 1970:. 1958:23 1956:. 1952:. 1917:. 1907:. 1899:. 1891:. 1881:13 1879:. 1875:. 1840:. 1832:. 1822:. 1814:. 1802:. 1798:. 1763:. 1753:. 1745:. 1735:29 1733:. 1729:. 1693:. 1683:. 1675:. 1667:. 1655:. 1651:. 1615:. 1605:. 1597:. 1585:. 1581:. 1557:. 1547:. 1539:. 1527:. 1523:. 1500:. 1490:. 1482:. 1472:14 1470:. 1466:. 1442:. 1432:. 1424:. 1414:12 1412:. 1408:. 1396:^ 1382:. 1372:. 1364:. 1352:. 1348:. 1335:^ 1321:. 1311:. 1301:29 1299:. 1295:. 1259:^ 1238:^ 1219:^ 1205:. 1195:. 1187:. 1175:. 1171:. 1156:^ 1118:. 1108:. 1100:. 1088:. 1084:. 1060:^ 986:. 976:. 968:. 956:10 954:. 950:. 915:. 905:. 897:. 887:19 885:. 881:. 857:^ 842:^ 791:^ 777:. 767:. 759:. 749:17 747:. 743:. 729:^ 714:^ 700:. 692:. 680:69 678:. 674:. 662:^ 648:. 638:. 630:. 620:10 618:. 614:. 591:. 583:. 569:. 565:. 545:^ 531:. 523:. 515:. 507:. 495:. 491:. 479:^ 428:, 422:, 416:, 387:, 381:, 375:, 125:, 32:UV 3528:. 3506:: 3483:. 3461:: 3440:. 3418:: 3404:" 3393:. 3371:: 3350:. 3328:: 3307:. 3285:: 3264:. 3242:: 3221:. 3209:: 3192:. 3172:: 3164:: 3147:. 3135:: 3118:. 3096:: 3075:. 3051:: 3030:. 3008:: 2987:. 2965:: 2959:9 2944:. 2922:: 2901:. 2879:: 2858:. 2836:: 2828:: 2807:. 2793:: 2772:. 2750:: 2729:. 2715:: 2702:. 2680:: 2659:. 2637:: 2616:. 2594:: 2573:. 2551:: 2530:. 2508:: 2487:. 2465:: 2448:. 2426:: 2405:. 2385:: 2368:. 2354:: 2333:. 2311:: 2305:1 2290:. 2268:: 2247:. 2225:: 2217:: 2196:. 2174:: 2152:. 2130:: 2109:. 2087:: 2066:. 2042:: 2036:4 2012:. 1996:. 1964:: 1938:. 1925:. 1895:: 1887:: 1861:. 1848:. 1810:: 1804:1 1784:. 1771:. 1741:: 1714:. 1701:. 1671:: 1663:: 1636:. 1623:. 1593:: 1565:. 1535:: 1508:. 1478:: 1450:. 1420:: 1390:. 1360:: 1354:4 1329:. 1307:: 1281:. 1269:. 1254:. 1233:. 1213:. 1183:: 1151:. 1139:. 1126:. 1096:: 1070:. 1055:. 1043:. 1031:. 1019:. 1007:. 994:. 962:: 936:. 923:. 893:: 867:. 852:. 837:. 825:. 813:. 801:. 785:. 755:: 724:. 708:. 686:: 656:. 626:: 599:. 577:: 571:1 539:. 511:: 503:: 371:( 118:, 116:) 22:(

Index

molecular biology
UV
crosslinking
immunoprecipitation
RNA
proteins

Proteinase K
iCLIP
RNA-binding protein
splicing factors
NOVA1
mouse brain
Argonaute
microRNA
Saccharomyces cerevisiae
Caenorhabditis elegans
embryonic stem cells

HITS-CLIP
cross-linking
immunoprecipitation
high-throughput sequencing
high sequencing depths

PAR-CLIP
high-throughput sequencing

iCLIP
PAR-CLIP

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑