Knowledge (XXG)

Crystal engineering

Source đź“ť

275: 63: 351: 267: 206: 106: 97:, who in 1988 defined crystal engineering as "the understanding of intermolecular interactions in the context of crystal packing and the utilization of such understanding in the design of new solids with desired physical and chemical properties." Since many of the bulk properties of molecular materials are dictated by the manner in which the molecules are ordered in the solid state, it is clear that an ability to control this ordering would afford control over these properties. 225:(CSP) is a computational approach to generate energetically feasible crystal structures (with corresponding space group and positional parameters) from a given molecular structure. The CSP exercise is considered most challenging as "experimental" crystal structures are very often kinetic structures and therefore are very difficult to predict. In this regard, many protocols have been proposed and are tested through several blind tests organized by 144: 181:
term (2D) supramolecular engineering a more accurate term. Specifically, supramolecular engineering refers to "(The) design (of) molecular units in such way that a predictable structure is obtained" or as "the design, synthesis and self-assembly of well defined molecular modules into tailor-made supramolecular architectures".
198:, the phenomenon wherein the same chemical compound exists in more than one crystal forms, is relevant commercially because polymorphic forms of drugs may be entitled to independent patent protection. The importance of crystal engineering to the pharmaceutical industry is expected to grow exponentially. 214:
possibilities within a small energy window. As a result, multiple crystal structures can be obtained with the same molecule but in different conformations. The rarest form of polymorphism arises from the differences in the primary synthon and this type of polymorphism is called as synthon polymorphism.
180:
depending on its deposition process) of such architectures lies in the use of solid interfaces to create adsorbed monolayers. Such monolayers may feature spatial crystallinity. However the dynamic and wide range of monolayer morphologies ranging from amorphous to network structures have made of the
233:
Apart from the ability of predicting crystal structures, CSP also gives computed energy landscapes of crystal structures where many structures lie within a narrow energy window. This kind of computed landscapes lend insights into the study on polymorphism, design of new structures and also help to
229:
since 2002. A major advance in the CSP happened in 2007 while a hybrid method based on tailor made force fields and density functional theory (DFT) was introduced. In the first step, this method employs tailor made force fields to decide upon the ranking of the structures followed by a dispersion
201:
Polymorphism arises due to the competition between kinetic and thermodynamic factors during crystallization. While long-range strong intermolecular interactions dictate the formation of kinetic crystals, the close packing of molecules generally drives the thermodynamic outcome. Understanding this
257:
The design of crystal structures with desired properties is the ultimate goal of crystal engineering. Crystal engineering principles have been applied to the design of non-linear optical materials, especially those with second harmonic generation (SHG) properties. Using supramolecular synthons,
213:
In organic molecules, three types of polymorphism are mainly observed. Packing polymorphism arises when molecules pack in different ways to give different structures. Conformational polymorphism, on the other hand is mostly seen in flexible molecules where molecules have multiple conformational
564:
in crystal engineering is that these surface maps are embedded with information about a molecular and its neighbors. The insight into molecular neighbors can be applied to assessment or prediction of molecular properties. An emerging method for topography and
357:
Slip planes associated with layered or columnar architectural features in crystalline materials. Red dotted and black dashed lines represent the direction of the weakest and strongest intermolecular interactions, respectively, which influences the slip plane.
243: 342:
molecules form due to the hydrogen bond donors and acceptors that flank the benzene ring. The weaker interactions between the chains or layers of acetaminophen required less energy to break than the hydrogen bonds. As a result, a
159:
is most often achieved with strong heteromolecular interactions. The main relevance of multi-component crystals is focused upon designing pharmaceutical cocrystals. Pharmaceutical cocrystals are generally composed of one API
1673: 520:
of the sample. Raman spectroscopy is a method that uses light scattering to interact with bonds in a sample. This technique provides information about chemical bonds, intermolecular interactions, and crystallinity.
85:
The term 'crystal engineering' was first used in 1955 by R. Pepinsky but the starting point is often credited to Gerhard Schmidt in connection with photodimerization reactions in crystalline
1726:"Rationalizing Distinct Mechanical Properties of Three Polymorphs of a Drug Adduct by Nanoindentation and Energy Frameworks Analysis: Role of Slip Layer Topology and Weak Interactions" 1662: 1056:
Supramolecular Synthons in Designing Low Molecular Mass Gelling Agents: L-Amino Acid Methyl Ester Cinnamate Salts and their Anti-Solvent-Induced Instant Gelation Chem
917:
Supramolecular Crystal Engineering at the Solid– Liquid Interface from First Principles: Toward Unraveling the Thermodynamics of 2D Self- Assembly, Adv. Mat.
389:
alters the mechanism or degree of molecular movement, thereby changing the mechanical properties of the material. Examples of point imperfections include
805:
Janeta, Mateusz; Szafert, SĹ‚awomir (2017-10-01). "Synthesis, characterization and thermal properties of T8 type amido-POSS with p-halophenyl end-group".
168:). Various properties (such as solubility, bioavailability, permeability) of an API can be modulated through the formation of pharmaceutical cocrystals. 282:
Designing a crystalline material with targeted properties requires an understanding of the material's molecular and crystal features in relation to its
270:
Four mechanical properties of crystalline materials: shear strength, plasticity, elasticity, and brittleness. Information adapted from Saha et al. 2018.
135:. "Supramolecular synthons" are building blocks that are common to many structures and hence can be used to order specific groups in the solid state. 362:
Example of the strongest (hydrogen bonds) and weakest (van der Waals) interactions in acetaminophen structure that influences the crystal structure.
967:
Towards Supramolecular Engineering of Functional Nanomaterials: PreProgramming MultiComponent 2D SelfAssembly at Solid Liquid Interfaces, Adv. Mat.
1724:
Raju, K. Bal; Ranjan, Subham; Vishnu, V. S.; Bhattacharya, Manjima; Bhattacharya, Biswajit; Mukhopadhyay, Anoop K.; Reddy, C. Malla (2018-07-05).
663:
Braga, D.; Desiraju, Gautam R.; Miller, Joel S.; Orpen, A. Guy; Price, Sarah (Sally) L.; et al. (2002), "Innovation in Crystal Engineering",
226: 131:
is at the heart of crystal engineering, and it typically involves an interaction between complementary hydrogen bonding faces or a metal and a
274: 1996: 1552: 1141: 385:, such as point defects, tilt boundaries, or dislocations, create imperfections in crystal architecture and topology. Any disruption to the 883:
Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?
532:
is a standard and widely-accepted method for measuring mechanical properties within the crystal engineering field. The method quantifies
246:
A resorcinol based templating strategy described by Macgillivray and co workers to illustrate the control of photodimerization outcome,
2006: 482: 278:
Designing a material with targeted mechanical properties requires command over complex structures across a range of length scales.
591: 545: 195: 695:; Pilati, Tullio; Liantonio, Rosalba; Meyer, Franck; et al. (2007), "Engineering Functional Materials by Halogen Bonding", 62: 366:
A supramolecular synthon is a pair of molecules that form relatively strong intermolecular interactions in the early phases of
350: 176:
2D architectures (i.e., molecularly thick architectures) is a branch of crystal engineering. The formation (often referred as
2001: 454: 1986: 601: 222: 94: 266: 89:. Since this initial use, the meaning of the term has broadened considerably to include many aspects of solid state 1991: 1249:
Gupta, Poonam; Rather, Sumair A.; Saha, Binoy K.; Panda, Tamas; Karothu, Durga Prasad; Nath, Naba K. (2020-05-06).
612: 1578:"New opportunities in crystal engineering – the role of atomic force microscopy in studies of molecular crystals" 628: 202:
dichotomy between the kinetics and thermodynamics constitutes the focus of research related to the polymorphism.
184: 165: 114: 33:
studies the design and synthesis of solid-state structures with desired properties through deliberate control of
2011: 1022:
Computed Crystal Energy Landscapes for Understanding and Predicting Organic Crystal Structures and Polymorphism
633: 566: 344: 90: 1854:"Computational Techniques for Predicting Mechanical Properties of Organic Crystals: A Systematic Evaluation" 1337:"Computational Techniques for Predicting Mechanical Properties of Organic Crystals: A Systematic Evaluation" 643: 382: 177: 128: 934:
Molecular and Supramolecular Networks on Surfaces: From Two Dimensional Crystal Engineering to Reactivity,
310:
Manipulation of the intermolecular interaction network is a means for controlling bulk properties. During
117:
to achieve the organization of molecules and ions in the solid state. Much of the initial work on purely
586: 561: 549: 283: 164:) with other molecular substances that are considered safe according to the guidelines provided by WHO ( 147:
A five component crystal was designed by Desiraju and co workers by a rational retrosynthetic strategy (
570: 1624: 1823: 704: 557: 537: 450: 335: 331: 315: 291: 287: 34: 446: 394: 38: 1889: 1811: 1773:"Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties of Molecular Crystals" 1753: 1372: 1278: 1112: 442: 1470:"Designer crystals: intermolecular interactions, network structures and supramolecular synthons" 1077:"From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids" 1699:
Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties of Molecular Crystals
1251:"Mechanical Flexibility of Molecular Crystals Achieved by Exchanging Hydrogen Bonding Synthons" 55:
and coordination bonding. These may be understood with key concepts such as the supramolecular
1935: 1927: 1881: 1873: 1792: 1771:
Varughese, Sunil; Kiran, M. S. R. N.; Ramamurty, Upadrasta; Desiraju, Gautam R. (2013-03-04).
1745: 1644: 1605: 1597: 1558: 1548: 1516: 1450: 1411: 1364: 1356: 1317: 1270: 1228: 1220: 1178: 1137: 1131: 1104: 1096: 822: 618: 574: 498: 434: 430: 426: 422: 386: 205: 161: 118: 72: 1853: 1336: 1919: 1865: 1831: 1784: 1737: 1636: 1589: 1508: 1477: 1442: 1403: 1348: 1309: 1262: 1212: 1170: 1088: 814: 712: 692: 674: 553: 509: 486: 105: 67: 1075:
Saha, Subhankar; Mishra, Manish Kumar; Reddy, C. Malla; Desiraju, Gautam R. (2018-11-20).
596: 529: 470: 438: 402: 371: 367: 311: 1827: 1431:"Supramolecular Synthons: Validation and Ranking of Intermolecular Interaction Energies" 1076: 708: 513: 458: 398: 390: 299: 143: 41: 1912:"Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces" 1869: 1640: 1352: 1298:"Establishing a Hierarchy of Halogen Bonding by Engineering Crystals without Disorder" 990:(Ed. W. M. Hosseini), Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 87-95. 1980: 1757: 1282: 818: 638: 623: 517: 319: 86: 48: 1893: 1376: 1116: 1725: 1391: 1250: 665: 606: 122: 52: 17: 841:
Halogen Bonding Based Recognition Processes:  A World Parallel to Hydrogen Bonding
1835: 1663:"Analysis of crystal polymorphism by Raman Spectroscopy for Medicine Development" 1092: 465:
of a material. Ultimately, these methods elaborate on the growth and assembly of
478: 474: 466: 462: 410: 406: 339: 295: 1544:
Advanced electrical and electronics materials : processes and applications
1772: 541: 1931: 1877: 1749: 1648: 1601: 1562: 1520: 1454: 1430: 1415: 1360: 1321: 1297: 1274: 1224: 1200: 1182: 1100: 826: 209:
The pathways to kinetically favoured and thermodynamically favoured crystals.
1741: 1407: 1392:"Building upon Supramolecular Synthons: Some Aspects of Crystal Engineering" 1266: 242: 156: 1939: 1885: 1796: 1788: 1609: 1368: 1232: 1108: 1971: 1542: 437:
creating a unique pattern after X-rays are diffracted through the crystal
1512: 1496: 1174: 1158: 533: 490: 370:; these molecule pairs are the basic structural motif found in a crystal 109:
Br···O halogen bonds observed in crystal structure of 3D silsesquioxanes.
1810:
Mishra, Manish Kumar; Ramamurty, Upadrasta; Desiraju, Gautam R. (2016).
286:. Four mechanical properties are of interest for crystalline materials: 121:
systems focused on the use of hydrogen bonds, although coordination and
1593: 1577: 1296:
Aakeröy, Christer B.; Chopade, Prashant D.; Desper, John (2013-09-04).
1201:"Hydrogen Bridges in Crystal Engineering: Interactions without Borders" 716: 506: 502: 494: 56: 1446: 1313: 1216: 862:
Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis
1923: 1911: 1481: 1469: 678: 132: 516:
of the crystalline material, which can be used to determine percent
1961: 1697:
S. Varughese, M. S. R. N. Kiran, U. Ramamurty and G. R. Desiraju,
900:
Engineering atomic and molecular nanostructures at surfaces, Nature
1910:
McKinnon, Joshua J.; Jayatilaka, Dylan; Spackman, Mark A. (2007).
1576:
Chow, Ernest H. H.; Bučar, Dejan-Krešimir; Jones, William (2012).
230:
corrected DFT method to calculate the lattice energies precisely.
556:
at a specific isosurface that aid in visualizing and quantifying
1956: 1966: 1497:"Lattice imperfections in organic solids. Part 1.—Anthracene" 1133:
Elements of Structures and Defects of Crystalline Materials
338:
form the slip plane. For example, long chains or layers of
429:
of a material by quantifying distances between atoms. The
1625:"The measurement of the crystallinity of polymers by DSC" 954:
Design of molecular materials: supramolecular engineering
839:
P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati,
577:
that depict interaction energies as pillars or beams.
1335:
Wang, Chenguang; Sun, Changquan Calvin (April 2019).
334:
form the molecular layers or columns and the weakest
318:
form according to an electrostatic hierarchy. Strong
47:
The main engineering strategies currently in use are
44:, bridging solid-state and supramolecular chemistry. 1816:
Current Opinion in Solid State and Materials Science
1054:
P. Sahoo, D. K. Kumar, S. R. Raghavan, P. Dastidar.
1043:
Supramolecular gelling agents: can they be designed?
751:
Crystal Engineering - New Concept in Crystallography
187:
enable visualization of two dimensional assemblies.
473:, which can be used to rationalize the movement of 322:are the primary director for crystal organization. 27:
Designing solid structures with tailored properties
1157:Aakeröy, Christer B.; Seddon, Kenneth R. (1993). 982:D. Braga, F. Grepioni, L. Maini and M. Polito in 965:A. Ciesielski, C.A. Palma, M. Bonini, P. Samori, 793:Crystal Engineering: The design of Organic Solids 93:. A useful modern definition is that provided by 1812:"Mechanical property design of molecular solids" 999:M. A. Neumann, F. J. J. Leusen and J. Kendrick, 1852:Wang, Chenguang; Sun, Changquan Calvin (2019). 1001:A Major Advance in Crystal Structure Prediction 984:Crystal Polymorphism and Multiple Crystal Forms 489:in order to quantify the associated changes in 915:C.A. Palma, M. Bonini, T. Breiner, P. Samori, 262:Mechanical properties of crystalline materials 125:provide additional control in crystal design. 8: 1429:Dunitz, J. D.; Gavezzotti, A. (2012-12-05). 932:J. A. A. W. Elemans, S.B. Lei S. De Feyter, 1159:"The hydrogen bond and crystal engineering" 405:. Examples of line imperfections include 349: 273: 265: 258:supramolecular gels have been designed. 241: 204: 142: 104: 66:An example of crystal engineering using 61: 1777:Angewandte Chemie International Edition 1495:Williams, J. O.; Thomas, J. M. (1967). 655: 1536: 1534: 1532: 1530: 1244: 1242: 1194: 1192: 1070: 1068: 1066: 1064: 898:J. V. Barth, G. Constantini, K. Kern, 1905: 1903: 1847: 1845: 1719: 1717: 1715: 185:scanning probe microscopic techniques 7: 772:Photodimerization in the solid state 730:Crystal Engineering: A Holistic View 697:J. Polym. Sci., Part A: Polym. Chem. 234:design crystallization experiments. 1623:Kong, Y.; Hay, J. N. (2002-06-01). 881:O. Almarsson and M. J. Zaworotko, 807:Journal of Organometallic Chemistry 70:reported by Wuest and coworkers in 421:Crystallographic methods, such as 139:Design of multi-component crystals 25: 1870:10.1021/acs.molpharmaceut.9b00082 1353:10.1021/acs.molpharmaceut.9b00082 483:differential scanning calorimetry 433:technique relies on a particular 101:Non-covalent control of structure 59:and the secondary building unit. 1967:Acta Crystallographica Section B 1547:. Gupta, Nishu. Hoboken: Wiley. 1390:Mukherjee, Arijit (2015-06-03). 819:10.1016/j.jorganchem.2017.05.044 477:in response to an applied load. 162:Active Pharmaceutical Ingredient 1679:from the original on 2022-03-03 525:Assessing mechanical properties 457:, can be used to visualize the 441:. Microscopic methods, such as 1130:Fang, Tsang-Tse (2018-01-25). 1045:Chem. Soc. Rev. 2008, 37, 2699 592:crystal nets (periodic graphs) 113:Crystal engineering relies on 1: 1972:Cambridge Structural Database 1641:10.1016/S0032-3861(02)00235-5 1205:Accounts of Chemical Research 1081:Accounts of Chemical Research 1058:. Asian J. 2011, 6, 1038–1047 455:scanning tunneling microscopy 393:, substitutional impurities, 155:The intentional synthesis of 1997:Chemical product engineering 1836:10.1016/j.cossms.2016.05.011 1468:Desiraju, Gautam R. (1997). 1199:Desiraju, Gautam R. (2002). 1093:10.1021/acs.accounts.8b00425 602:Laser-heated pedestal growth 425:, are used to elucidate the 223:Crystal structure prediction 218:Crystal structure prediction 1730:Crystal Growth & Design 1435:Crystal Growth & Design 1396:Crystal Growth & Design 1302:Crystal Growth & Design 1255:Crystal Growth & Design 795:, Elsevier, 1989, Amsterdam 613:Crystal Growth & Design 558:intermolecular interactions 548:of a crystalline material. 417:Assessing Crystal Structure 336:intermolecular interactions 332:intermolecular interactions 316:intermolecular interactions 306:Intermolecular interactions 35:intermolecular interactions 2028: 1957:Crystal Growth and Design 629:Molecular design software 330:Typically, the strongest 166:World Health Organization 2007:Supramolecular chemistry 634:Supramolecular chemistry 560:. An advantage to using 378:Defects or imperfections 91:supramolecular chemistry 1916:Chemical Communications 1858:Molecular Pharmaceutics 1742:10.1021/acs.cgd.8b00261 1582:Chemical Communications 1474:Chemical Communications 1408:10.1021/acs.cgd.5b00242 1341:Molecular Pharmaceutics 1267:10.1021/acs.cgd.9b01530 644:Molecular self-assembly 395:interstitial impurities 253:, 2000, 122, 7817-7818. 178:molecular self-assembly 129:Molecular self-assembly 1789:10.1002/anie.201205002 1670:Jasco Application Note 952:J. Simon, P. Bassoul, 573:, which are models of 363: 279: 271: 254: 210: 152: 110: 77: 2002:Solid-state chemistry 1703:Angew. Chem. Int. Ed. 1541:Gupta, K. M. (2015). 1005:Angew. Chem. Int. Ed. 937:Angew. Chem. Int. Ed. 866:Angew. Chem. Int. Ed. 734:Angew. Chem. Int. Ed. 587:Coordination polymers 552:are visual models of 512:are dependent on the 353: 284:mechanical properties 277: 269: 245: 208: 146: 108: 65: 1513:10.1039/TF9676301720 1175:10.1039/CS9932200397 461:, imperfections, or 326:Crystal architecture 1987:Crystal engineering 1828:2016COSSM..20..361M 709:2007JPoSA..45....1M 151:, 2016, 3, 96–101). 115:noncovalent bonding 31:Crystal engineering 18:Crystal Engineering 1594:10.1039/c2cc32678g 1501:Trans. Faraday Soc 770:G. M. J. Schmidt, 717:10.1002/pola.21725 562:Hirshfeld surfaces 550:Hirshfeld surfaces 499:Gibb's free energy 411:screw dislocations 403:Schottky’s defects 364: 280: 272: 255: 211: 153: 111: 78: 76:, 2007, 4306–4322. 1992:Materials science 1918:(37): 3814–3816. 1783:(10): 2701–2712. 1635:(14): 3873–3878. 1588:(74): 9210–9226. 1554:978-1-118-99858-8 1476:(16): 1475–1482. 1447:10.1021/cg301293r 1441:(12): 5873–5877. 1314:10.1021/cg400988m 1217:10.1021/ar010054t 1143:978-0-12-814269-1 1087:(11): 2957–2967. 860:G. R. Desiraju, 693:Resnati, Giuseppe 619:CrystEngCommunity 571:energy frameworks 510:phase transitions 487:phase transitions 481:methods, such as 435:crystal structure 431:X-ray diffraction 427:crystal structure 423:X-ray diffraction 399:Frenkel’s defects 387:crystal structure 172:In two dimensions 73:J. Am. Chem. Soc. 39:interdisciplinary 16:(Redirected from 2019: 1944: 1943: 1924:10.1039/b704980c 1907: 1898: 1897: 1864:(4): 1732–1741. 1849: 1840: 1839: 1807: 1801: 1800: 1768: 1762: 1761: 1736:(7): 3927–3937. 1721: 1710: 1695: 1689: 1688: 1686: 1684: 1678: 1667: 1659: 1653: 1652: 1620: 1614: 1613: 1573: 1567: 1566: 1538: 1525: 1524: 1492: 1486: 1485: 1482:10.1039/a607149j 1465: 1459: 1458: 1426: 1420: 1419: 1402:(6): 3076–3085. 1387: 1381: 1380: 1347:(4): 1732–1741. 1332: 1326: 1325: 1308:(9): 4145–4150. 1293: 1287: 1286: 1261:(5): 2847–2852. 1246: 1237: 1236: 1196: 1187: 1186: 1154: 1148: 1147: 1127: 1121: 1120: 1072: 1059: 1052: 1046: 1039: 1033: 1018: 1012: 997: 991: 980: 974: 963: 957: 950: 944: 930: 924: 913: 907: 896: 890: 879: 873: 858: 852: 837: 831: 830: 802: 796: 791:G. R. Desiraju, 789: 783: 776:Pure Appl. Chem. 768: 762: 755:Physical Review 747: 741: 728:G. R. Desiraju, 726: 720: 719: 691:Metrangolo, P.; 688: 682: 681: 679:10.1039/b207466b 660: 554:electron density 68:hydrogen bonding 21: 2027: 2026: 2022: 2021: 2020: 2018: 2017: 2016: 2012:Crystallography 1977: 1976: 1953: 1948: 1947: 1909: 1908: 1901: 1851: 1850: 1843: 1809: 1808: 1804: 1770: 1769: 1765: 1723: 1722: 1713: 1696: 1692: 1682: 1680: 1676: 1665: 1661: 1660: 1656: 1622: 1621: 1617: 1575: 1574: 1570: 1555: 1540: 1539: 1528: 1494: 1493: 1489: 1467: 1466: 1462: 1428: 1427: 1423: 1389: 1388: 1384: 1334: 1333: 1329: 1295: 1294: 1290: 1248: 1247: 1240: 1198: 1197: 1190: 1156: 1155: 1151: 1144: 1129: 1128: 1124: 1074: 1073: 1062: 1053: 1049: 1040: 1036: 1026:Acc. Chem. Res. 1019: 1015: 998: 994: 981: 977: 964: 960: 956:, 2000 WileyVCH 951: 947: 931: 927: 914: 910: 897: 893: 889:2004, 1889-1896 880: 876: 859: 855: 845:Acc. Chem. Res. 838: 834: 804: 803: 799: 790: 786: 769: 765: 748: 744: 727: 723: 690: 689: 685: 673:(83): 500–509, 662: 661: 657: 652: 597:Crystallography 583: 575:crystal packing 569:analysis using 530:Nanoindentation 527: 471:crystallization 419: 383:Lattice defects 380: 368:crystallization 328: 312:crystallization 308: 264: 240: 238:Property design 220: 193: 174: 141: 103: 95:Gautam Desiraju 83: 81:History of term 53:halogen bonding 28: 23: 22: 15: 12: 11: 5: 2025: 2023: 2015: 2014: 2009: 2004: 1999: 1994: 1989: 1979: 1978: 1975: 1974: 1969: 1964: 1959: 1952: 1951:External links 1949: 1946: 1945: 1899: 1841: 1822:(6): 361–370. 1802: 1763: 1711: 1690: 1654: 1615: 1568: 1553: 1526: 1487: 1460: 1421: 1382: 1327: 1288: 1238: 1211:(7): 565–573. 1188: 1169:(6): 397–407. 1163:Chem. Soc. Rev 1149: 1142: 1122: 1060: 1047: 1034: 1013: 992: 975: 958: 945: 925: 908: 891: 874: 853: 832: 797: 784: 763: 742: 721: 683: 654: 653: 651: 648: 647: 646: 641: 636: 631: 626: 621: 616: 609: 604: 599: 594: 589: 582: 579: 526: 523: 514:lattice energy 459:microstructure 418: 415: 379: 376: 327: 324: 320:hydrogen bonds 307: 304: 300:shear strength 263: 260: 239: 236: 219: 216: 192: 189: 173: 170: 140: 137: 102: 99: 87:cinnamic acids 82: 79: 42:academic field 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2024: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1984: 1982: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1954: 1950: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1906: 1904: 1900: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1848: 1846: 1842: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1806: 1803: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1767: 1764: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1720: 1718: 1716: 1712: 1708: 1704: 1700: 1694: 1691: 1675: 1671: 1664: 1658: 1655: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1619: 1616: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1569: 1564: 1560: 1556: 1550: 1546: 1545: 1537: 1535: 1533: 1531: 1527: 1522: 1518: 1514: 1510: 1507:: 1720–1729. 1506: 1502: 1498: 1491: 1488: 1483: 1479: 1475: 1471: 1464: 1461: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1425: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1386: 1383: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1243: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1195: 1193: 1189: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1150: 1145: 1139: 1135: 1134: 1126: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1069: 1067: 1065: 1061: 1057: 1051: 1048: 1044: 1041:P. Dastidar, 1038: 1035: 1031: 1027: 1023: 1020:S. L. Price, 1017: 1014: 1010: 1006: 1002: 996: 993: 989: 985: 979: 976: 972: 968: 962: 959: 955: 949: 946: 942: 938: 935: 929: 926: 922: 918: 912: 909: 905: 901: 895: 892: 888: 887:Chem. Commun. 884: 878: 875: 871: 867: 863: 857: 854: 850: 846: 842: 836: 833: 828: 824: 820: 816: 812: 808: 801: 798: 794: 788: 785: 781: 777: 773: 767: 764: 760: 756: 752: 749:R. Pepinsky, 746: 743: 739: 735: 731: 725: 722: 718: 714: 710: 706: 702: 698: 694: 687: 684: 680: 676: 672: 668: 667: 659: 656: 649: 645: 642: 640: 639:Self-assembly 637: 635: 632: 630: 627: 625: 624:Hydrogen bond 622: 620: 617: 615: 614: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 584: 580: 578: 576: 572: 568: 563: 559: 555: 551: 547: 543: 539: 535: 531: 524: 522: 519: 518:crystallinity 515: 511: 508: 504: 500: 496: 492: 488: 485:, use induce 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 428: 424: 416: 414: 412: 408: 404: 400: 396: 392: 388: 384: 377: 375: 373: 369: 361: 356: 352: 348: 346: 341: 340:acetaminophen 337: 333: 325: 323: 321: 317: 313: 305: 303: 301: 297: 293: 289: 285: 276: 268: 261: 259: 252: 249: 244: 237: 235: 231: 228: 224: 217: 215: 207: 203: 199: 197: 190: 188: 186: 182: 179: 171: 169: 167: 163: 158: 150: 145: 138: 136: 134: 130: 126: 124: 123:halogen bonds 120: 116: 107: 100: 98: 96: 92: 88: 80: 75: 74: 69: 64: 60: 58: 54: 50: 45: 43: 40: 37:. It is an 36: 32: 19: 1962:CrystEngComm 1915: 1861: 1857: 1819: 1815: 1805: 1780: 1776: 1766: 1733: 1729: 1709:, 2701-2712. 1706: 1702: 1698: 1693: 1681:. Retrieved 1669: 1657: 1632: 1628: 1618: 1585: 1581: 1571: 1543: 1504: 1500: 1490: 1473: 1463: 1438: 1434: 1424: 1399: 1395: 1385: 1344: 1340: 1330: 1305: 1301: 1291: 1258: 1254: 1208: 1204: 1166: 1162: 1152: 1136:. Elsevier. 1132: 1125: 1084: 1080: 1055: 1050: 1042: 1037: 1029: 1025: 1021: 1016: 1011:, 2427-2430. 1008: 1004: 1000: 995: 987: 983: 978: 973:, 3506–3520. 970: 966: 961: 953: 948: 940: 936: 933: 928: 920: 916: 911: 903: 899: 894: 886: 882: 877: 872:, 2311-2327. 869: 865: 861: 856: 848: 844: 840: 835: 810: 806: 800: 792: 787: 779: 775: 771: 766: 758: 754: 750: 745: 740:, 8342–8356. 737: 733: 729: 724: 700: 696: 686: 670: 666:CrystEngComm 664: 658: 611: 607:CrystEngComm 546:polymorphism 528: 479:Calorimetric 475:crystallites 467:crystallites 463:dislocations 420: 381: 365: 359: 354: 347:is formed. 329: 309: 281: 256: 250: 247: 232: 221: 212: 200: 196:Polymorphism 194: 191:Polymorphism 183: 175: 154: 148: 127: 112: 84: 71: 46: 30: 29: 1683:23 February 943:, 7298–7332 923:, 1383–1386 813:: 173–183. 703:(1): 1–14, 296:brittleness 1981:Categories 1032:, 117–126. 906:, 671–679. 851:, 386-395. 650:References 567:slip plane 542:anisotropy 540:, packing 538:elasticity 345:slip plane 292:elasticity 288:plasticity 251:Chem. Soc. 157:cocrystals 1932:1359-7345 1878:1543-8384 1758:102536532 1750:1528-7483 1649:0032-3861 1602:1359-7345 1563:904405330 1521:0014-7672 1455:1528-7483 1416:1528-7483 1361:1543-8384 1322:1528-7483 1283:216290100 1275:1528-7483 1225:0001-4842 1183:0306-0012 1101:0001-4842 827:0022-328X 451:field ion 391:vacancies 49:hydrogen- 1940:18217656 1894:73502360 1886:30835128 1797:23315913 1674:Archived 1610:22822481 1377:73502360 1369:30835128 1233:12118996 1117:53028955 1109:30351918 969:, 2010, 939:, 2009, 919:, 2009, 902:, 2005, 778:, 1971, 757:, 1955, 581:See also 534:hardness 491:enthalpy 447:electron 1824:Bibcode 1629:Polymer 705:Bibcode 503:melting 495:entropy 469:during 443:optical 439:lattice 372:lattice 119:organic 57:synthon 1938:  1930:  1892:  1884:  1876:  1795:  1756:  1748:  1705:2013, 1647:  1608:  1600:  1561:  1551:  1519:  1453:  1414:  1375:  1367:  1359:  1320:  1281:  1273:  1231:  1223:  1181:  1140:  1115:  1107:  1099:  1028:2009, 1007:2008, 868:1995, 847:2005, 825:  782:, 647. 761:, 971. 736:2007, 544:, and 507:fusion 501:. The 497:, and 453:, and 401:, and 298:, and 248:J. Am. 133:ligand 1890:S2CID 1754:S2CID 1677:(PDF) 1666:(PDF) 1373:S2CID 1279:S2CID 1113:S2CID 149:IUCrJ 1936:PMID 1928:ISSN 1882:PMID 1874:ISSN 1793:PMID 1746:ISSN 1685:2021 1645:ISSN 1606:PMID 1598:ISSN 1559:OCLC 1549:ISBN 1517:ISSN 1451:ISSN 1412:ISSN 1365:PMID 1357:ISSN 1318:ISSN 1271:ISSN 1229:PMID 1221:ISSN 1179:ISSN 1138:ISBN 1105:PMID 1097:ISSN 988:Vol. 823:ISSN 505:and 409:and 407:edge 227:CCDC 51:and 1920:doi 1866:doi 1832:doi 1785:doi 1738:doi 1637:doi 1590:doi 1509:doi 1478:doi 1443:doi 1404:doi 1349:doi 1310:doi 1263:doi 1213:doi 1171:doi 1089:doi 904:437 815:doi 811:847 759:100 713:doi 675:doi 302:). 1983:: 1934:. 1926:. 1914:. 1902:^ 1888:. 1880:. 1872:. 1862:16 1860:. 1856:. 1844:^ 1830:. 1820:20 1818:. 1814:. 1791:. 1781:52 1779:. 1775:. 1752:. 1744:. 1734:18 1732:. 1728:. 1714:^ 1707:52 1701:, 1672:. 1668:. 1643:. 1633:43 1631:. 1627:. 1604:. 1596:. 1586:48 1584:. 1580:. 1557:. 1529:^ 1515:. 1505:63 1503:. 1499:. 1472:. 1449:. 1439:12 1437:. 1433:. 1410:. 1400:15 1398:. 1394:. 1371:. 1363:. 1355:. 1345:16 1343:. 1339:. 1316:. 1306:13 1304:. 1300:. 1277:. 1269:. 1259:20 1257:. 1253:. 1241:^ 1227:. 1219:. 1209:35 1207:. 1203:. 1191:^ 1177:. 1167:22 1165:. 1161:. 1111:. 1103:. 1095:. 1085:51 1083:. 1079:. 1063:^ 1030:42 1024:, 1009:47 1003:, 986:, 971:22 941:48 921:21 885:, 870:34 864:, 849:38 843:, 821:. 809:. 780:27 774:, 753:, 738:46 732:, 711:, 701:45 699:, 669:, 536:, 493:, 449:, 445:, 413:. 397:, 374:. 360:B. 355:A. 314:, 294:, 290:, 1942:. 1922:: 1896:. 1868:: 1838:. 1834:: 1826:: 1799:. 1787:: 1760:. 1740:: 1687:. 1651:. 1639:: 1612:. 1592:: 1565:. 1523:. 1511:: 1484:. 1480:: 1457:. 1445:: 1418:. 1406:: 1379:. 1351:: 1324:. 1312:: 1285:. 1265:: 1235:. 1215:: 1185:. 1173:: 1146:. 1119:. 1091:: 829:. 817:: 715:: 707:: 677:: 671:4 160:( 20:)

Index

Crystal Engineering
intermolecular interactions
interdisciplinary
academic field
hydrogen-
halogen bonding
synthon

hydrogen bonding
J. Am. Chem. Soc.
cinnamic acids
supramolecular chemistry
Gautam Desiraju

noncovalent bonding
organic
halogen bonds
Molecular self-assembly
ligand

cocrystals
Active Pharmaceutical Ingredient
World Health Organization
molecular self-assembly
scanning probe microscopic techniques
Polymorphism

Crystal structure prediction
CCDC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑