Knowledge (XXG)

Crystallographic image processing

Source 📝

255:
potential over the whole field of view. The thereby reconstructed crystal potential is corrected for aberration and delocalisation and also not affected by possible transfer gaps since several images with different defocus are processed. CIP on the other side considers only one image and applies corrections on the averaged image amplitudes and phases. The result of the latter is a pseudo-potential map of one projected unit cell. The result can be further improved by crystal tilt compensation and search for the most likely projected symmetry. In conclusion one can say that the exit-wave function reconstruction method has most advantages for determining the (aperiodic) atomic structure of defects and small clusters and CIP is the method of choice if the periodic structure is in focus of the investigation or when defocus series of HREM images cannot be obtained, e.g. due to beam damage of the sample. However, a recent study on the catalyst related material Cs
438:
Medical Research Council (MRC) image processing programs and possess additional functionality such as the "unbending" of the image. As the name suggests, unbending of the image is conceptually equivalent to "flattening out and relaxing to equilibrium positions" one building block thick samples so that all 2D periodic motifs are as similar as possible and all building blocks of the array possess the same crystallographic orientation with respect to a cartesian coordinate system that is fixed to the microscope. (The microscope's optical axis typically serves as the z-axis.) Unbending is often necessary when the 2D array of membrane proteins is
2609: 201:
which is used to determine the defocus value (Δf = -650 Å). The reciprocal lattice is then indexed and amplitudes and phases are extracted. The amplitudes and phases can be used to calculate the averaged image for one unit cell via Fourier synthesis. The pseudo-potential map (p2gg symmetry) for determining 2D atomic co-ordinates was obtained after correction of the phase-shifts imposed by the CTF. The average agreement of atomic co-ordinates determined from the pseudo-potential map and the superimposed model from X-ray diffraction is about 0.2 Å.
344:. Such inferences are deeply rooted in information theory, where one is not trying to model empirical data, but extracts and models the information content of the data. The key difference between geometric inference and all kinds of traditional statistical inferences is that the former merely states the co-existence of a set of definitive (and exact geometrical) constraints and noise, whereby noise is nothing else but an unknown characteristic of the measurement device and data processing operations. From this follows that 250:
the thickness of the crystal under investigation has also a significant influence on the image contrast. These two factors often mix and yield HREM images which cannot be straightforwardly interpreted as a projected structure. If the structure is unknown, so that image simulation techniques cannot be applied beforehand, image interpretation is even more complicated. Nowadays two approaches are available to overcome this problem: one method is the
365:
in the Moorish/Arabic/Islamic tradition. The goals of these researchers are often related to the identification of point and translation symmetries by computational means and the subsequent classifications of patterns into groups. Since their patterns were artificially created, they do not need to obey all of the restrictions that nature typically imposes on long range periodic ordered arrays of atoms or molecules.
3002: 304:, which has been inaccessible by X-ray crystallography. Since CIP on single HREM images works only smoothly for layer-structures with at least one short (3 to 5 Å) crystal axis, the method was extended to work also with data from different crystal orientations (= atomic resolution electron tomography). This approach was used in 1990 to reconstruct the 3D structure of the mineral 193: 22: 3014: 471:
3D crystals or along the layer normal of a membrane forming protein sample ensure the projection of 3D symmetry into 2D. (Along arbitrary high-index zone axes and inclined to the layer normal of membrane forming proteins, there will be no useful projected symmetry in transmission images.) The recovery of 3D structures and their symmetries relies on
121: 63: 437:
Structural biologists achieve resolutions of a few Ängströms (up from a to few nanometers in the past when samples used to be negatively stained) for membrane forming proteins in regular two-dimensional arrays, but prefer the usage of the programs 2dx, EMAN2, and IPLT. These programs are based on the
1472:
X.D. Zou, T.E. Weirich & S. Hovmöller (2001) "Electron Crystallography - Structure determination by combining HREM, crystallographic image processing and electron diffraction." In: Progress in Transmission Electron Microscopy, I. Concepts and Techniques, X.F. Zhang, Z. Zhang Ed., Springer Series
445:
Inorganic crystals are much stiffer than 2D periodic protein membrane arrays so that there is no need for the unbending of images that were taken from suitably thinned parts of these crystals. Consequently, the CRISP program does not possess the unbending image processing feature but offers superior
328:
approximant phase Μ-AlCrFe and the structures of the complex zeolites TNU-9 and IM-5. As mentioned below in the section on crystallographic processing of images that were recorded from 2D periodic arrays with other types of microscopes, the CIP techniques were taken up since 2009 by members of the
2001:
Moeck, P., Toader, M., Abdel-Hafiez, M., Michael Hietschold, M. (2009) "Quantifying and enforcing two-dimensional symmetries in scanning probe microscopy images", in: "Frontiers of Characterization and Metrology for Nanoelectronics", edited by D. G. Seiler, A. C. Diebold, R. McDonald, C. M. Garner,
510:
data organized in 2D arrays of pixels, core features of Crystallographic Image Processing can be utilized independent of the type of microscope with which the images/data were recorded. The CIP technique has, accordingly been applied (on the basis of the 2dx program) to atomic resolution Z-contrast
470:
All individual transmission electron microscopy images are projections from the three-dimensional space of the samples into two dimensions (so that spatial distribution information along the projection direction is unavoidably lost). Projections along prominent (i.e. certain low-index) zone axes of
364:
name and without utilization of its full mathematical framework (e.g. ignorance to the proper choice of the origin of a unit cell and preference for direct space analyses). Frequently, they are working with artificially created 2D periodic patterns, e.g. wallpapers, textiles, or building decoration
249:
of the objective lens alter the image contrast as function of the defocus. Hence atom columns which appear at one defocus value as dark blobs can turn into white blobs at a different defocus and vice versa. In addition to the objective lens defocus (which can easily be changed by the TEM operator),
458:
group types (of which there are 46 in total and which are periodic only in 2D) due to the chiral nature of all (naturally occurring) proteins. Different crystallographic settings of four of these layer group types increase the number of possible layer group symmetries of regular arrays of membrane
254:
method, which requires several HREM images from the same area at different defocus and the other method is crystallographic image processing (CIP) which processes only a single HREM image. Exit-wave function reconstruction provides an amplitude and phase image of the (effective) projected crystal
224:
during the early 1980s and became rapidly a label for the "3D crystal structure from 2D transmission/projection images" approach. Since the late 1990s, analogous and complementary image processing techniques that are directed towards the achieving of goals with are either complementary or entirely
200:
Se recorded with a 300 kV TEM (JEOL 3010 UHR, point resolution 1.7 Å) along the zone axis. In the first step the Fourier transform of the HREM image is calculated (only the amplitudes are shown). The position of the white ring marks the first crossover of the contrast transfer function (CTF)
359:
These kinds of ideas have, however, only been taken up by a tiny minority of researchers within the computational symmetry and scanning probe microscopy / applied crystallography communities. It is fair to say that the members of computational symmetry community are doing crystallographic image
433:
A few computer programs are available which assist to perform the necessary steps of processing. The most popular programs used by materials scientists (electron crystallographers) are CRISP, VEC, and the EDM package. There is also the recently developed crystallographic image processing program
526:
T. E. Weirich, From Fourier series towards crystal structures - a survey of conventional methods for solving the phase problem; in: Electron Crystallography - Novel Approaches for Structure Determination of Nanosized Materials, T. E. Weirich, J. L. LĂĄbĂĄr, X. Zou, (Eds.), Springer 2006, 235 -
291:
heavy-metal oxide could be determined from single HREM images recorded at Scherzer defocus. (Scherzer defocus ensures within the weak-phase object approximation a maximal contribution to the image of elastically scattered electrons that were scattered just once while contributions of doubly
478:
The origin refinement part of CIP relies on the definition of the plane symmetry group types as provided by the International Tables of Crystallography, where all symmetry equivalent positions in the unit cell and their respective site symmetries are listed along with systematic absences in
511:
images of Si-clathrates, as recorded in an aberration-corrected scanning transmission electron microscope. Images of 2D periodic arrays of flat lying molecules on a substrate as recorded with scanning tunneling microscopes were also crystallographic processed utilizing the program CRISP.
2011:
Moeck, P. (2011) "Crystallographic Image Processing for Scanning Probe Microscopy" In: “Microscopy: Science Technology, Applications and Education”, Microscopy Book Series No. 4, Vol. 3, pp. 1951-1962, A. MĂ©ndez-Vilas and J. Diaz (editors), Formatex Research Center, 2010,
946:
Gramm, Fabian; Baerlocher, Christian; McCusker, Lynne B.; Warrender, Stewart J.; Wright, Paul A.; Han, Bada; Hong, Suk Bong; Liu, Zheng; Ohsuna, Tetsu; Terasaki, Osamu (2006). "Complex zeolite structure solved by combining powder diffraction and electron microscopy".
241:. In that case the positions of the atom columns appear as black blobs in the image (when the spherical aberration coefficient of the objective lens is positive - as always the case for uncorrected TEMs). Difficulties for interpretation of HREM images arise for other 225:
beyond the scope of the original inception of CIP have been developed independently by members of the computational symmetry/geometry, scanning transmission electron microscopy, scanning probe microscopy communities, and applied crystallography communities.
453:
group out of the 230 possible groups types that exist in three dimensions. The regular arrays of membrane forming proteins that structural biologists deal with are, on the other hand, restricted to possess one out of only 17 (two-sided/black-white)
462:
All 3D space groups and their subperiodic 2D periodic layer groups (including the above-mentioned 46 two-sided groups) project to just 17 plane space group types, which are genuinely 2D periodic and are sometimes referred to as the
295:
In later years the methods became more sophisticated so that also non-Scherzer images could be processed. One of the most impressive applications at that time was the determination of the complete structure of the complex compound
356:. Because many of these approaches use linear approximations, the level of random noise needs to be low to moderate, or in other words, the measuring devices must be very well corrected for all kinds of known systematic errors. 1906:
Henderson, R.; Baldwin, J.M.; Downing, K.H.; Lepault, J.; Zemlin, F. (1986). "Structure of purple membrane from halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution".
274:
structures can also be used for structure determination of inorganic crystals. This idea was picked up by the research group of Sven Hovmöller which proved that the metal framework partial structure of the
2879: 2874: 336:, but have so far failed to utilize the spatial distribution of site symmetries that result from crystallographic origin conventions. In addition, a well known statistician noted in his comments on 1351:"Double-tip effects on scanning tunneling microscopy imaging of 2D periodic objects: Unambiguous detection and limits of their removal by crystallographic averaging in the spatial frequency domain" 1050:, "Computational Symmetry" in: Symmetry 2000, Part I, eds. I. Hargittai and T. C. Laurent, chapter 21, p. 231–245, Portland Press, London, 2002, (Wenner-Gren International Series, vol. 80), 498:
When crystallographic image processing is utilized in scanning probe microscopy, the symmetry groups to be considered are just the 17 plane space group types in their possible 21 settings.
2930: 1236:
Burnham, Kenneth P.; Anderson, David R.; Huyvaert, Kathryn P. (2011). "AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons".
495:, all other plane group symmetries are centrosymmetric so that the origin refinement simplifies to the determination of the correct signs of the amplitudes of the Fourier coefficients. 1181:
Hahn T. (2005) International Tables for Crystallography, Brief Teaching Edition of Volume A, Space-group symmetry. 5th revised edition, Chester: International Union of Crystallography
822:
Downing, Kenneth H.; Meisheng, Hu; Wenk, Hans-Rudolf; O'Keefe, Michael A. (1990). "Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy".
340:
that symmetry groups possess inclusion relations (are not disjoint in other words) so that conclusions about which symmetry is most likely present in an image need to be based on
1137:
Albert, F.; GĂłmis, J.M.; Blasco, J.; Valiente, J.M.; Aleixos, N. (2015). "A new method to analyse mosaics based on Symmetry Group theory applied to Islamic Geometric Patterns".
368:
Computational geometry takes a broader view on this issue and concluded already in 1991 that the problem of testing approximate point symmetries in noisy images is in general
35: 1463:
C. Dieckmann (2012) Symmetry Detection and Approximation, Dissertation zur Erlangung des Doktorgrades, Fachbereich Mathematik und Informatik der Freien UniversitÀt Berlin
1550:
Recent Progress in Mesostructured Materials - Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Shanghai, P.R. China, August 5-7, 2006
779:
Weirich, Thomas E.; Ramlau, Reiner; Simon, Arndt; Hovmöller, Sven; Zou, Xiaodong (1996). "A crystal structure determined with 0.02 Å accuracy by electron microscopy".
251: 238: 1967:
Morgan, D. G.; Ramasse, Q. M.; Browning, N. D. (2009). "Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images".
208:
is traditionally understood as being a set of key steps in the determination of the atomic structure of crystalline matter from high-resolution electron microscopy (
442:
rather than genuinely crystalline. It was estimated that unbending approximately doubles the spatial resolution with which the shape of molecules can be determined
865:
Wenk, H.-R.; Downing, K. H.; Hu, M.; O'Keefe, M. A. (1992). "3D structure determination from electron-microscope images: Electron crystallography of staurolite".
2748: 415:
Imposing constrains of the most likely plane group symmetry on the amplitudes an phases. At this step the image phases are converted into the phases of the
1226:
K. P. Burnham and D R Anderson (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edition. Springer, New York
2935: 2660: 2826: 2118: 1769:
Philippsen, A.; Schenk, A. D.; Stahlberg, H.; Engel, A. (2003). "Iplt--image processing library and toolkit for the electron microscopy community".
1517:
Hovmöller, Sven; Sukharev, Yuri I.; Zharov, Andrei G. (1991). "CRISP — A new system for crystallographic image processing on personal computers".
2925: 2917: 376:. For restricted versions of this problem, there exist polynomial time algorithms that solve the corresponding optimization problems for a few 41: 2978: 2956: 2017: 1478: 388:
The principal steps for solving a structure of an inorganic crystal from HREM images by CIP are as follows (for a detailed discussion see ).
2971: 2821: 2487: 2352: 2201: 143: 73: 1217:
K. Kanatani, (1996) Statistical Optimization for Geometric Computation: Theory and Practice, Dover Books on Mathematics, Mineola, New York
84: 1306:
Yanxi Liu; Collins, R.T.; Tsin, Y. (2004). "A computational model for periodic pattern perception based on frieze and wallpaper groups".
2961: 2859: 2555: 1069:, C. S. Kaplan, and L. V. Gool (2009) "Foundations and Trends in Computer Graphics and Vision" vol. 5, Nos. 1–2, p. 1–195, open access: 350:"geometric models we must take into account the fact that the noise is identical (but unknown) and has the same characteristic for both" 1624:
Xue-Ming, Li; Fang-Hua, Li; Hai-Fu, Fan (2009). "A revised version of the program VEC (Visual computing in electron crystallography)".
2208: 537:
Thust, A.; Overwijk, M.H.F.; Coene, W.M.J.; Lentzen, M. (1996). "Numerical correction of lens aberrations in phase-retrieval HRTEM".
2983: 2841: 2811: 2740: 1951: 1565: 179: 161: 102: 49: 467:
groups. (Although quite popular, this is a misnomer because wallpapers are not restricted to possess these symmetries by nature.)
2693: 213: 1720:
Gipson, Bryant; Zeng, Xiangyan; Zhang, Zi Yan; Stahlberg, Henning (2007). "2dx—User-friendly image processing for 2D crystals".
2966: 2889: 2763: 2362: 1839: 2723: 998:
Sun, Junliang; He, Zhanbing; Hovmöller, Sven; Zou, Xiaodong; Gramm, Fabian; Baerlocher, Christian; McCusker, Lynne B. (2010).
2801: 399:
Determining the defocus value and compensating for the contrast changes imposed by the objective lens (done in Fourier space)
2816: 2806: 2111: 2588: 2054:
free for academic usages, particularly useful for the analysis of incommensurately modulated structures (for Windows PCs)
2940: 2213: 2191: 2618: 2492: 139: 135: 2246: 2141: 1581:
Wan, Z.; Liu, Y.; Fu, Z.; Li, Y.; Cheng, T.; Li, F.; Fan, H. (2003). "Visual computing in electron crystallography".
2608: 3018: 2849: 2146: 246: 2864: 2793: 2251: 2241: 2377: 502:
Crystallographic processing of images that were recorded from 2D periodic arrays with other types of microscopes
3040: 3006: 2730: 2626: 2499: 2462: 2256: 2236: 2104: 2092: 2414: 739:"Structure projection retrieval by image processing of HREM images taken under non-optimum defocus conditions" 638:
Klug, A. (1979). "Image Analysis and Reconstruction in the Electron Microscopy of Biological Macromolecules".
564:
Allen, L.J.; McBride, W.; O'Leary, N.L.; Oxley, M.P. (2004). "Exit wave reconstruction at atomic resolution".
329:
scanning transmission electron microscopy, scanning probe microscopy and applied crystallography communities.
449:
The latter feature is particularly important for electron crystallographers as their samples may possess any
2854: 2698: 2643: 2392: 2357: 1548:: Software for determining 3D pore structures of ordered mesoporous materials by electron crystallography". 2550: 1392:"Removal of multiple-tip artifacts from scanning tunneling microscope images by crystallographic averaging" 2367: 2472: 2907: 2703: 2665: 2424: 2158: 599:
Barthel, Juri; Weirich, Thomas E.; Cox, Gerhard; Hibst, Hartmut; Thust, Andreas (2010). "Structure of Cs
233:
Many beam HREM images of extremely thin samples are only directly interpretable in terms of a projected
77:
that states a Knowledge (XXG) editor's personal feelings or presents an original argument about a topic.
2069: 1127:(2014) "Computational Symmetry", Computer Vision, A Reference Guide, Ikeuchi, K. (ed.), Springer, 2014 698:
Hovmöller, Sven; Sjögren, Agneta; Farrants, George; Sundberg, Margareta; Marinder, Bengt-Olov (1984).
2631: 2504: 2340: 2231: 1633: 1590: 1014: 956: 831: 788: 738: 711: 612: 377: 221: 196:
Crystallographic Image Processing (CIP) of a high-resolution electron microscopy (HREM) image of α-Ti
1871:
Gil, Debora; Carazo, Jose Maria; Marabini, Roberto (2006). "On the nature of 2D crystal unbending".
699: 2648: 2636: 2511: 2477: 2457: 2078:
open source, free for non-commercial purposes - a ready to go version of EDM is implemented on the
472: 2897: 2708: 2653: 2196: 2021: 1649: 1606: 1413: 1372: 1331: 1288: 1253: 1164: 1107: 1051: 1030: 999: 980: 847: 804: 270:
suggested in 1979 that a technique that was originally developed for structure determination of
130:
may contain an excessive amount of intricate detail that may interest only a particular audience
2079: 2042:, the classical standard for structural biology, free for academic usages (Fortran source code) 405:
Extracting amplitudes and phase values at the refined lattice positions (done in Fourier space)
216:) that is run in the parallel illumination mode. The term was created in the research group of 2831: 2670: 2598: 2578: 2298: 2168: 2013: 1984: 1947: 1888: 1821: 1786: 1737: 1684: 1561: 1474: 1323: 1084: 972: 928: 882: 761: 680: 659:"Three-dimensional structure determination by electron microscopy of two-dimensional crystals" 581: 423: 393: 234: 2002:
D. Herr, R. P. Khosla, and E. M. Secula, American Institute of Physics, 978-0-7354-0712-1/09.
2869: 2675: 2593: 2583: 2382: 2315: 2286: 2279: 1976: 1939: 1916: 1880: 1813: 1778: 1729: 1676: 1641: 1598: 1553: 1544:
Zhang, H.; Yu, T.; Oleynikov, P.; Zhao, D.Y.; Hovmöller, S.; Zou, X.D. (2007). "Crisp and e
1526: 1499: 1444: 1403: 1362: 1315: 1280: 1245: 1200: 1154: 1146: 1099: 1070: 1022: 964: 920: 874: 839: 796: 753: 719: 670: 620: 573: 546: 416: 271: 1490:
Hovmöller, Sven (1992). "CRISP: Crystallographic image processing on a personal computer".
2758: 2753: 2718: 2538: 2437: 2372: 2335: 2330: 2181: 2127: 464: 439: 1637: 1594: 1018: 960: 835: 792: 715: 616: 2568: 2533: 2521: 2516: 2482: 2452: 2442: 2401: 2345: 2269: 2223: 1557: 3034: 2713: 2526: 2325: 1920: 1653: 1645: 1530: 1503: 1449: 1432: 1168: 757: 675: 658: 550: 1804:
Crowther, R.A.; Henderson, R.; Smith, J.M. (1996). "MRC Image Processing Programs".
1610: 1417: 1376: 1292: 1111: 1034: 2419: 2409: 2303: 2186: 2060:
open source, structural biology (for Mac PCs, Linux, and a Windows PC demo version)
1680: 1335: 1257: 1066: 984: 851: 808: 577: 325: 2066:, open source, structural biology including single particle reconstruction (Linux) 1934:
Braun, Thomas; Engel, Andreas (2005). "Two‐dimensional Electron Crystallography".
624: 332:
Contemporary robotics and computer vision researchers also deal with the topic of
2048:
commercial, but superior for inorganic electron crystallography (for Windows PCs)
1602: 1271:
Kanatani, Kenichi (1998). "Geometric Information Criterion for Model Selection".
506:
Because digitized 2D periodic images are in the information theoretical approach
408:
Determining the origin of the projected unit cell and determining the projected (
2902: 2573: 2447: 2274: 603:
analysed by focal-series reconstruction and crystallographic image processing".
455: 450: 409: 373: 1667:
Kilaas, R.; Marks, L.D.; Own, C.S. (2005). "EDM 1.0: Electron direct methods".
1319: 1150: 2467: 2153: 1884: 1782: 1733: 1408: 1284: 1249: 924: 878: 305: 267: 192: 1552:. Studies in Surface Science and Catalysis. Vol. 165. pp. 109–112. 2176: 1980: 1943: 1124: 1062: 1047: 1000:"Structure determination of the zeolite IM-5 using electron crystallography" 426:
with corrected (structure factor) amplitudes and phases (done in real space)
142:
any relevant information, and removing excessive detail that may be against
1988: 1892: 1817: 1790: 1741: 1688: 1391: 1367: 1350: 1327: 1026: 976: 932: 765: 737:
Zou, Xiaodong; Sundberg, Margareta; Larine, Maxim; Hovmöller, Sven (1996).
585: 434:
EMIA, but so far there do not seem to be reports by users of this program.
1825: 901: 886: 684: 2773: 2543: 2291: 2075: 1073:, also published as a book by Now Publishers Inc., Boston and Delft, 2010 217: 968: 292:
elastically scattered electrons to the image are optimally suppressed.)
237:
if they have been recorded under special conditions, i.e. the so-called
2783: 1191:
Kanatani, K. (1997). "Comments on "Symmetry as a Continuous Feature"".
1159: 475:
techniques, which use sets of transmission electron microscopy images.
396:(= power spectrum consisting of a 2D periodic array of complex numbers) 369: 242: 2063: 1755: 1390:
Straton, Jack C.; Moon, Bill; Bilyeu, Taylor T.; Moeck, Peter (2015).
1349:
Straton, Jack C.; Bilyeu, Taylor T.; Moon, Bill; Moeck, Peter (2014).
1204: 1103: 843: 800: 723: 900:
Zou, X. D.; Mo, Z. M.; Hovmöller, S.; Li, X. Z.; Kuo, K. H. (2003).
2025: 429:
Determining 2D (projected) atomic co-ordinates (done in real space)
2778: 2096: 191: 229:
HREM image contrasts and crystal potential reconstruction methods
259:
shows the advantages when both methods are linked in one study.
209: 2100: 2072:
open source, mainly for structural biology (for Mac PCs, Linux)
2051: 384:
Crystallographic image processing of high-resolution TEM images
2045: 1308:
IEEE Transactions on Pattern Analysis and Machine Intelligence
1193:
IEEE Transactions on Pattern Analysis and Machine Intelligence
1092:
IEEE Transactions on Pattern Analysis and Machine Intelligence
1052:
https://www.cs.cmu.edu/~yanxi/images/computationalSymmetry.pdf
114: 56: 15: 1702: 74:
personal reflection, personal essay, or argumentative essay
2039: 1853: 324:
and more recently to determine the structures of the huge
2880:
Zeitschrift fĂŒr Kristallographie – New Crystal Structures
1071:
http://vision.cse.psu.edu/publications/pdfs/liuCSinCV.pdf
402:
Indexing and refining the lattice (done in Fourier space)
212:) images obtained in a transmission electron microscope ( 2875:
Zeitschrift fĂŒr Kristallographie – Crystalline Materials
1583:
Zeitschrift fĂŒr Kristallographie - Crystalline Materials
2057: 1473:
in Surface Science. Vol. 38, Springer 2001, 191 – 222.
80: 2768: 1433:"Testing approximate symmetry in the plane is NP-hard" 657:
Amos, L.A.; Henderson, Richard; Unwin, P.N.T. (1982).
446:
performance in the so-called phase origin refinement.
392:
Selecting the area of interest and calculation of the
700:"Accurate atomic positions from electron microscopy" 2949: 2916: 2888: 2840: 2792: 2739: 2686: 2617: 2400: 2391: 2314: 2222: 2167: 2134: 263:Brief history of crystallographic image processing 902:"Three-dimensional reconstruction of the Îœ-AlCr 479:reciprocal space. Besides plane symmetry groups 2112: 8: 1083:Zabrodsky, H.; Peleg, S.; Avnir, D. (1995). 663:Progress in Biophysics and Molecular Biology 50:Learn how and when to remove these messages 2946: 2397: 2219: 2164: 2119: 2105: 2097: 1448: 1407: 1366: 1158: 674: 180:Learn how and when to remove this message 162:Learn how and when to remove this message 103:Learn how and when to remove this message 1396:Advanced Structural and Chemical Imaging 1273:International Journal of Computer Vision 422:Calculating the pseudo-potential map by 1139:Computer Vision and Image Understanding 519: 206:Crystallographic image processing (CIP) 7: 3013: 2353:Phase transformation crystallography 2860:Journal of Chemical Crystallography 1238:Behavioral Ecology and Sociobiology 1085:"Symmetry as a continuous feature" 906:phase by electron crystallography" 338:"Symmetry as a continuous feature" 144:Knowledge (XXG)'s inclusion policy 14: 252:exit-wave function reconstruction 31:This article has multiple issues. 3012: 3001: 3000: 2607: 1007:Zeitschrift fĂŒr Kristallographie 913:Acta Crystallographica Section A 867:Acta Crystallographica Section A 119: 61: 20: 1355:Crystal Research and Technology 39:or discuss these issues on the 2802:Bilbao Crystallographic Server 1969:Journal of Electron Microscopy 1681:10.1016/j.ultramic.2004.10.004 578:10.1016/j.ultramic.2004.01.012 1: 2040:MRC Image Processing programs 1873:Journal of Structural Biology 1806:Journal of Structural Biology 1771:Journal of Structural Biology 1722:Journal of Structural Biology 1558:10.1016/S0167-2991(07)80277-1 1431:Iwanowski, Sebastian (1991). 625:10.1016/j.actamat.2010.03.016 459:forming proteins to just 21. 372:and later on that it is also 1921:10.1016/0304-3991(86)90203-2 1603:10.1524/zkri.218.4.308.20739 1531:10.1016/0739-6260(91)90130-R 1519:Micron and Microscopica Acta 1504:10.1016/0304-3991(92)90102-P 1450:10.1016/0304-3975(91)90389-J 1437:Theoretical Computer Science 758:10.1016/0304-3991(95)00090-9 676:10.1016/0079-6107(83)90017-2 551:10.1016/0304-3991(96)00022-8 2850:Crystal Growth & Design 2142:Timeline of crystallography 1840:"Image Processing Software" 3057: 2661:Nuclear magnetic resonance 1646:10.1088/1674-1056/18/6/056 1320:10.1109/TPAMI.2004.1262332 1151:10.1016/j.cviu.2014.09.002 2996: 2865:Journal of Crystal Growth 2605: 1885:10.1016/j.jsb.2006.07.012 1783:10.1016/j.jsb.2003.09.032 1734:10.1016/j.jsb.2006.07.020 1409:10.1186/s40679-015-0014-6 1250:10.1007/s00265-010-1029-6 925:10.1107/S0108767303018051 879:10.1107/s0108767392000850 2731:Single particle analysis 2589:Hermann–Mauguin notation 2093:Electron Crystallography 334:"computational symmetry" 2855:Crystallography Reviews 2699:Isomorphous replacement 2493:Lomer–Cottrell junction 1944:10.1038/npg.els.0003044 1285:10.1023/A:1007948927139 2368:Spinodal decomposition 1818:10.1006/jsbi.1996.0003 1368:10.1002/crat.201300240 1027:10.1524/zkri.2010.1204 342:"geometric inferences" 202: 83:by rewriting it in an 2908:Gregori Aminoff Prize 2704:Molecular replacement 2091:see also the Wiki on 1981:10.1093/jmicro/dfp007 195: 2214:Structure prediction 222:Stockholm University 2478:Cottrell atmosphere 2458:Partial dislocation 2202:Restriction theorem 1756:"EMAN2 - EMAN Wiki" 1638:2009ChPhB..18.2459L 1595:2003ZK....218..308W 1019:2010ZK....225...77S 969:10.1038/nature05200 961:2006Natur.444...79G 836:1990Natur.348..525D 793:1996Natur.382..144W 716:1984Natur.311..238H 617:2010AcMat..58.3764B 473:electron tomography 360:processing under a 247:transfer properties 245:values because the 2898:Carl Hermann Medal 2709:Molecular dynamics 2556:Defects in diamond 2551:Stone–Wales defect 2197:Reciprocal lattice 2159:Biocrystallography 380:symmetries in 2D. 346:"in comparing two" 203: 85:encyclopedic style 72:is written like a 3028: 3027: 2992: 2991: 2599:Thermal ellipsoid 2564: 2563: 2473:Frank–Read source 2433: 2432: 2299:Aperiodic crystal 2265: 2264: 2147:Crystallographers 2018:978-84-614-6191-2 1626:Chinese Physics B 1479:978-3-540-67681-2 1205:10.1109/34.584101 1104:10.1109/34.476508 1098:(12): 1154–1166. 830:(6301): 525–528. 787:(6587): 144–146. 710:(5983): 238–241. 611:(10): 3764–3772. 424:Fourier synthesis 417:structure factors 394:Fourier transform 235:crystal structure 190: 189: 182: 172: 171: 164: 113: 112: 105: 54: 3048: 3016: 3015: 3004: 3003: 2947: 2870:Kristallografija 2724:Gerchberg–Saxton 2619:Characterisation 2611: 2594:Structure factor 2398: 2383:Ostwald ripening 2220: 2165: 2121: 2114: 2107: 2098: 2028: 2009: 2003: 1999: 1993: 1992: 1964: 1958: 1957: 1931: 1925: 1924: 1903: 1897: 1896: 1868: 1862: 1861: 1850: 1844: 1843: 1836: 1830: 1829: 1801: 1795: 1794: 1766: 1760: 1759: 1752: 1746: 1745: 1717: 1711: 1710: 1699: 1693: 1692: 1664: 1658: 1657: 1632:(6): 2459–2463. 1621: 1615: 1614: 1578: 1572: 1571: 1541: 1535: 1534: 1525:(1–2): 141–142. 1514: 1508: 1507: 1498:(1–3): 121–135. 1487: 1481: 1470: 1464: 1461: 1455: 1454: 1452: 1428: 1422: 1421: 1411: 1387: 1381: 1380: 1370: 1346: 1340: 1339: 1303: 1297: 1296: 1268: 1262: 1261: 1233: 1227: 1224: 1218: 1215: 1209: 1208: 1188: 1182: 1179: 1173: 1172: 1162: 1134: 1128: 1122: 1116: 1115: 1089: 1080: 1074: 1060: 1054: 1045: 1039: 1038: 1004: 995: 989: 988: 943: 937: 936: 910: 897: 891: 890: 862: 856: 855: 844:10.1038/348525a0 819: 813: 812: 801:10.1038/382144a0 776: 770: 769: 752:(1–2): 103–121. 743: 734: 728: 727: 724:10.1038/311238a0 695: 689: 688: 678: 654: 648: 647: 635: 629: 628: 596: 590: 589: 561: 555: 554: 545:(1–4): 249–264. 534: 528: 524: 272:membrane protein 239:Scherzer defocus 185: 178: 167: 160: 156: 153: 147: 123: 122: 115: 108: 101: 97: 94: 88: 65: 64: 57: 46: 24: 23: 16: 3056: 3055: 3051: 3050: 3049: 3047: 3046: 3045: 3041:Crystallography 3031: 3030: 3029: 3024: 2988: 2945: 2912: 2884: 2836: 2788: 2759:CrystalExplorer 2735: 2719:Phase retrieval 2682: 2613: 2612: 2603: 2560: 2539:Schottky defect 2438:Perfect crystal 2429: 2425:Abnormal growth 2387: 2373:Supersaturation 2336:Miscibility gap 2317: 2310: 2261: 2218: 2182:Bravais lattice 2163: 2130: 2128:Crystallography 2125: 2089: 2087:Further reading 2036: 2031: 2010: 2006: 2000: 1996: 1966: 1965: 1961: 1954: 1933: 1932: 1928: 1909:Ultramicroscopy 1905: 1904: 1900: 1870: 1869: 1865: 1852: 1851: 1847: 1838: 1837: 1833: 1803: 1802: 1798: 1768: 1767: 1763: 1754: 1753: 1749: 1719: 1718: 1714: 1701: 1700: 1696: 1669:Ultramicroscopy 1666: 1665: 1661: 1623: 1622: 1618: 1580: 1579: 1575: 1568: 1543: 1542: 1538: 1516: 1515: 1511: 1492:Ultramicroscopy 1489: 1488: 1484: 1471: 1467: 1462: 1458: 1430: 1429: 1425: 1389: 1388: 1384: 1348: 1347: 1343: 1305: 1304: 1300: 1270: 1269: 1265: 1235: 1234: 1230: 1225: 1221: 1216: 1212: 1190: 1189: 1185: 1180: 1176: 1136: 1135: 1131: 1123: 1119: 1087: 1082: 1081: 1077: 1061: 1057: 1046: 1042: 1002: 997: 996: 992: 955:(7115): 79–81. 945: 944: 940: 908: 899: 898: 894: 864: 863: 859: 821: 820: 816: 778: 777: 773: 746:Ultramicroscopy 741: 736: 735: 731: 697: 696: 692: 656: 655: 651: 640:Chemica Scripta 637: 636: 632: 605:Acta Materialia 602: 598: 597: 593: 572:(1–2): 91–104. 566:Ultramicroscopy 563: 562: 558: 539:Ultramicroscopy 536: 535: 531: 525: 521: 517: 504: 440:paracrystalline 386: 323: 319: 315: 311: 303: 299: 290: 286: 282: 278: 265: 258: 231: 199: 186: 175: 174: 173: 168: 157: 151: 148: 134:Please help by 133: 124: 120: 109: 98: 92: 89: 81:help improve it 78: 66: 62: 25: 21: 12: 11: 5: 3054: 3052: 3044: 3043: 3033: 3032: 3026: 3025: 3023: 3022: 3010: 2997: 2994: 2993: 2990: 2989: 2987: 2986: 2981: 2976: 2975: 2974: 2969: 2964: 2953: 2951: 2944: 2943: 2938: 2933: 2928: 2922: 2920: 2914: 2913: 2911: 2910: 2905: 2900: 2894: 2892: 2886: 2885: 2883: 2882: 2877: 2872: 2867: 2862: 2857: 2852: 2846: 2844: 2838: 2837: 2835: 2834: 2829: 2824: 2819: 2814: 2809: 2804: 2798: 2796: 2790: 2789: 2787: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2745: 2743: 2737: 2736: 2734: 2733: 2728: 2727: 2726: 2716: 2711: 2706: 2701: 2696: 2694:Direct methods 2690: 2688: 2684: 2683: 2681: 2680: 2679: 2678: 2673: 2663: 2658: 2657: 2656: 2651: 2641: 2640: 2639: 2634: 2623: 2621: 2615: 2614: 2606: 2604: 2602: 2601: 2596: 2591: 2586: 2581: 2579:Ewald's sphere 2576: 2571: 2565: 2562: 2561: 2559: 2558: 2553: 2548: 2547: 2546: 2541: 2531: 2530: 2529: 2524: 2522:Frenkel defect 2519: 2517:Bjerrum defect 2509: 2508: 2507: 2497: 2496: 2495: 2490: 2485: 2483:Peierls stress 2480: 2475: 2470: 2465: 2460: 2455: 2453:Burgers vector 2445: 2443:Stacking fault 2440: 2434: 2431: 2430: 2428: 2427: 2422: 2417: 2412: 2406: 2404: 2402:Grain boundary 2395: 2389: 2388: 2386: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2349: 2348: 2346:Liquid crystal 2343: 2338: 2333: 2322: 2320: 2312: 2311: 2309: 2308: 2307: 2306: 2296: 2295: 2294: 2284: 2283: 2282: 2277: 2266: 2263: 2262: 2260: 2259: 2254: 2249: 2244: 2239: 2234: 2228: 2226: 2217: 2216: 2211: 2209:Periodic table 2206: 2205: 2204: 2199: 2194: 2189: 2184: 2173: 2171: 2162: 2161: 2156: 2151: 2150: 2149: 2138: 2136: 2132: 2131: 2126: 2124: 2123: 2116: 2109: 2101: 2088: 2085: 2084: 2083: 2073: 2067: 2061: 2055: 2049: 2043: 2035: 2034:External links 2032: 2030: 2029: 2004: 1994: 1975:(3): 223–244. 1959: 1952: 1926: 1915:(2): 147–178. 1898: 1879:(3): 546–555. 1863: 1845: 1831: 1796: 1761: 1747: 1712: 1694: 1675:(3): 233–237. 1659: 1616: 1589:(4): 308–315. 1573: 1566: 1536: 1509: 1482: 1465: 1456: 1443:(2): 227–262. 1423: 1382: 1361:(9): 663–680. 1341: 1314:(3): 354–371. 1298: 1279:(3): 171–189. 1263: 1228: 1219: 1210: 1199:(3): 246–247. 1183: 1174: 1129: 1117: 1075: 1055: 1040: 1013:(2–3): 77–85. 990: 938: 919:(6): 526–539. 892: 873:(5): 700–716. 857: 814: 771: 729: 690: 669:(3): 183–231. 649: 630: 600: 591: 556: 529: 518: 516: 513: 503: 500: 431: 430: 427: 420: 413: 406: 403: 400: 397: 385: 382: 321: 317: 313: 309: 301: 297: 288: 284: 280: 276: 264: 261: 256: 230: 227: 218:Sven Hovmöller 197: 188: 187: 170: 169: 127: 125: 118: 111: 110: 69: 67: 60: 55: 29: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 3053: 3042: 3039: 3038: 3036: 3021: 3020: 3011: 3009: 3008: 2999: 2998: 2995: 2985: 2982: 2980: 2977: 2973: 2970: 2968: 2965: 2963: 2960: 2959: 2958: 2955: 2954: 2952: 2948: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2923: 2921: 2919: 2915: 2909: 2906: 2904: 2901: 2899: 2896: 2895: 2893: 2891: 2887: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2847: 2845: 2843: 2839: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2799: 2797: 2795: 2791: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2746: 2744: 2742: 2738: 2732: 2729: 2725: 2722: 2721: 2720: 2717: 2715: 2714:Patterson map 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2691: 2689: 2685: 2677: 2674: 2672: 2669: 2668: 2667: 2664: 2662: 2659: 2655: 2652: 2650: 2647: 2646: 2645: 2642: 2638: 2635: 2633: 2630: 2629: 2628: 2625: 2624: 2622: 2620: 2616: 2610: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2584:Friedel's law 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2566: 2557: 2554: 2552: 2549: 2545: 2542: 2540: 2537: 2536: 2535: 2532: 2528: 2527:Wigner effect 2525: 2523: 2520: 2518: 2515: 2514: 2513: 2512:Interstitials 2510: 2506: 2503: 2502: 2501: 2498: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2450: 2449: 2446: 2444: 2441: 2439: 2436: 2435: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2407: 2405: 2403: 2399: 2396: 2394: 2390: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2358:Precipitation 2356: 2354: 2351: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2328: 2327: 2326:Phase diagram 2324: 2323: 2321: 2319: 2313: 2305: 2302: 2301: 2300: 2297: 2293: 2290: 2289: 2288: 2285: 2281: 2278: 2276: 2273: 2272: 2271: 2268: 2267: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2229: 2227: 2225: 2221: 2215: 2212: 2210: 2207: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2179: 2178: 2175: 2174: 2172: 2170: 2166: 2160: 2157: 2155: 2152: 2148: 2145: 2144: 2143: 2140: 2139: 2137: 2133: 2129: 2122: 2117: 2115: 2110: 2108: 2103: 2102: 2099: 2095: 2094: 2086: 2082:Linux live CD 2081: 2077: 2074: 2071: 2068: 2065: 2062: 2059: 2056: 2053: 2050: 2047: 2044: 2041: 2038: 2037: 2033: 2027: 2023: 2019: 2015: 2008: 2005: 1998: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1960: 1955: 1953:9780470016176 1949: 1945: 1941: 1937: 1930: 1927: 1922: 1918: 1914: 1910: 1902: 1899: 1894: 1890: 1886: 1882: 1878: 1874: 1867: 1864: 1859: 1855: 1849: 1846: 1841: 1835: 1832: 1827: 1823: 1819: 1815: 1811: 1807: 1800: 1797: 1792: 1788: 1784: 1780: 1777:(1–2): 4–12. 1776: 1772: 1765: 1762: 1757: 1751: 1748: 1743: 1739: 1735: 1731: 1727: 1723: 1716: 1713: 1708: 1704: 1698: 1695: 1690: 1686: 1682: 1678: 1674: 1670: 1663: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1617: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1577: 1574: 1569: 1567:9780444521781 1563: 1559: 1555: 1551: 1547: 1540: 1537: 1532: 1528: 1524: 1520: 1513: 1510: 1505: 1501: 1497: 1493: 1486: 1483: 1480: 1476: 1469: 1466: 1460: 1457: 1451: 1446: 1442: 1438: 1434: 1427: 1424: 1419: 1415: 1410: 1405: 1401: 1397: 1393: 1386: 1383: 1378: 1374: 1369: 1364: 1360: 1356: 1352: 1345: 1342: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1302: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1267: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1232: 1229: 1223: 1220: 1214: 1211: 1206: 1202: 1198: 1194: 1187: 1184: 1178: 1175: 1170: 1166: 1161: 1156: 1152: 1148: 1144: 1140: 1133: 1130: 1126: 1121: 1118: 1113: 1109: 1105: 1101: 1097: 1093: 1086: 1079: 1076: 1072: 1068: 1064: 1059: 1056: 1053: 1049: 1044: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1001: 994: 991: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 942: 939: 934: 930: 926: 922: 918: 914: 907: 905: 896: 893: 888: 884: 880: 876: 872: 868: 861: 858: 853: 849: 845: 841: 837: 833: 829: 825: 818: 815: 810: 806: 802: 798: 794: 790: 786: 782: 775: 772: 767: 763: 759: 755: 751: 747: 740: 733: 730: 725: 721: 717: 713: 709: 705: 701: 694: 691: 686: 682: 677: 672: 668: 664: 660: 653: 650: 645: 641: 634: 631: 626: 622: 618: 614: 610: 606: 595: 592: 587: 583: 579: 575: 571: 567: 560: 557: 552: 548: 544: 540: 533: 530: 523: 520: 514: 512: 509: 501: 499: 496: 494: 490: 486: 482: 476: 474: 468: 466: 460: 457: 452: 447: 443: 441: 435: 428: 425: 421: 418: 414: 411: 407: 404: 401: 398: 395: 391: 390: 389: 383: 381: 379: 375: 371: 366: 363: 357: 355: 351: 347: 343: 339: 335: 330: 327: 307: 293: 273: 269: 262: 260: 253: 248: 244: 240: 236: 228: 226: 223: 219: 215: 211: 207: 194: 184: 181: 166: 163: 155: 145: 141: 137: 131: 128:This article 126: 117: 116: 107: 104: 96: 86: 82: 76: 75: 70:This article 68: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 3017: 3005: 2950:Associations 2918:Organisation 2410:Disclination 2341:Polymorphism 2304:Quasicrystal 2247:Orthorhombic 2187:Miller index 2135:Key concepts 2090: 2064:EMAN Vers. 2 2007: 1997: 1972: 1968: 1962: 1935: 1929: 1912: 1908: 1901: 1876: 1872: 1866: 1857: 1848: 1834: 1809: 1805: 1799: 1774: 1770: 1764: 1750: 1728:(1): 64–72. 1725: 1721: 1715: 1707:analitex.com 1706: 1697: 1672: 1668: 1662: 1629: 1625: 1619: 1586: 1582: 1576: 1549: 1545: 1539: 1522: 1518: 1512: 1495: 1491: 1485: 1468: 1459: 1440: 1436: 1426: 1399: 1395: 1385: 1358: 1354: 1344: 1311: 1307: 1301: 1276: 1272: 1266: 1241: 1237: 1231: 1222: 1213: 1196: 1192: 1186: 1177: 1142: 1138: 1132: 1120: 1095: 1091: 1078: 1058: 1043: 1010: 1006: 993: 952: 948: 941: 916: 912: 903: 895: 870: 866: 860: 827: 823: 817: 784: 780: 774: 749: 745: 732: 707: 703: 693: 666: 662: 652: 643: 639: 633: 608: 604: 594: 569: 565: 559: 542: 538: 532: 522: 507: 505: 497: 492: 488: 484: 480: 477: 469: 461: 448: 444: 436: 432: 387: 367: 361: 358: 353: 349: 345: 341: 337: 333: 331: 326:quasicrystal 294: 266: 232: 205: 204: 176: 158: 149: 136:spinning off 129: 99: 90: 71: 47: 40: 34: 33:Please help 30: 2903:Ewald Prize 2671:Diffraction 2649:Diffraction 2632:Diffraction 2574:Bragg plane 2569:Bragg's law 2448:Dislocation 2363:Segregation 2275:Crystallite 2192:Point group 1858:ccpem.ac.uk 1812:(1): 9–16. 1160:10251/51095 410:plane group 374:NP-complete 152:August 2016 93:August 2016 2687:Algorithms 2676:Scattering 2654:Scattering 2637:Scattering 2505:Slip bands 2468:Cross slip 2318:transition 2252:Tetragonal 2242:Monoclinic 2154:Metallurgy 2026:2011.13102 646:: 245–256. 515:References 412:) symmetry 348:(or more) 306:staurolite 268:Aaron Klug 140:relocating 36:improve it 2794:Databases 2257:Triclinic 2237:Hexagonal 2177:Unit cell 2169:Structure 1654:250873737 1244:: 23–35. 1169:207060370 1145:: 54–70. 1067:H. Hel-Or 465:wallpaper 362:different 42:talk page 3035:Category 3007:Category 2842:Journals 2774:OctaDist 2769:JANA2020 2741:Software 2627:Electron 2544:F-center 2331:Eutectic 2292:Fiveling 2287:Twinning 2280:Equiaxed 1989:19297343 1893:16997575 1791:14643205 1742:17055742 1689:15639355 1611:96860861 1418:51783244 1377:94543563 1328:15376882 1293:19248991 1112:13894016 1035:98380733 977:17080087 933:14581752 766:22666921 586:15219694 354:"models" 3019:Commons 2967:Germany 2644:Neutron 2534:Vacancy 2393:Defects 2378:GP-zone 2224:Systems 1826:8742717 1634:Bibcode 1591:Bibcode 1336:2394019 1258:3354490 1015:Bibcode 985:4396820 957:Bibcode 887:1445681 852:4340756 832:Bibcode 809:4327149 789:Bibcode 712:Bibcode 685:6289376 613:Bibcode 370:NP-hard 243:defocus 79:Please 2962:France 2957:Europe 2890:Awards 2420:Growth 2270:Growth 2016:  1987:  1950:  1891:  1854:"Home" 1824:  1789:  1740:  1703:"Home" 1687:  1652:  1609:  1564:  1477:  1416:  1375:  1334:  1326:  1291:  1256:  1167:  1125:Y. Liu 1110:  1063:Y. Liu 1048:Y. Liu 1033:  983:  975:  949:Nature 931:  885:  850:  824:Nature 807:  781:Nature 764:  704:Nature 683:  584:  352:(all) 2984:Japan 2931:IOBCr 2784:SHELX 2779:Olex2 2666:X-ray 2316:Phase 2232:Cubic 2080:elmiX 2046:CRISP 2022:arXiv 1650:S2CID 1607:S2CID 1414:S2CID 1373:S2CID 1332:S2CID 1289:S2CID 1254:S2CID 1165:S2CID 1108:S2CID 1088:(PDF) 1031:S2CID 1003:(PDF) 981:S2CID 909:(PDF) 848:S2CID 805:S2CID 742:(PDF) 456:layer 451:space 378:point 2926:IUCr 2827:ICDD 2822:ICSD 2807:CCDC 2754:Coot 2749:CCP4 2500:Slip 2463:Kink 2058:IPLT 2014:ISBN 1985:PMID 1948:ISBN 1889:PMID 1822:PMID 1787:PMID 1738:PMID 1685:PMID 1562:ISBN 1475:ISBN 1324:PMID 973:PMID 929:PMID 883:PMID 762:PMID 681:PMID 582:PMID 527:257. 508:just 493:p31m 491:and 489:p3m1 285:12+x 281:16−x 210:HREM 2941:DMG 2936:RAS 2832:PDB 2817:COD 2812:CIF 2764:DSR 2488:GND 2415:CSL 2076:EDM 2070:2dx 2052:VEC 1977:doi 1940:doi 1936:eLS 1917:doi 1881:doi 1877:156 1814:doi 1810:116 1779:doi 1775:144 1730:doi 1726:157 1677:doi 1673:102 1642:doi 1599:doi 1587:218 1554:doi 1546:Map 1527:doi 1500:doi 1445:doi 1404:doi 1363:doi 1316:doi 1281:doi 1246:doi 1201:doi 1155:hdl 1147:doi 1143:130 1100:doi 1023:doi 1011:225 965:doi 953:444 921:doi 875:doi 840:doi 828:348 797:doi 785:382 754:doi 720:doi 708:311 671:doi 621:doi 601:0.5 574:doi 570:100 547:doi 308:HFe 277:8−x 257:0.5 220:at 214:TEM 138:or 3037:: 2979:US 2972:UK 2020:, 1983:. 1973:58 1971:. 1946:. 1938:. 1913:19 1911:. 1887:. 1875:. 1856:. 1820:. 1808:. 1785:. 1773:. 1736:. 1724:. 1705:. 1683:. 1671:. 1648:. 1640:. 1630:18 1628:. 1605:. 1597:. 1585:. 1560:. 1523:22 1521:. 1496:41 1494:. 1441:80 1439:. 1435:. 1412:. 1402:. 1398:. 1394:. 1371:. 1359:49 1357:. 1353:. 1330:. 1322:. 1312:26 1310:. 1287:. 1277:26 1275:. 1252:. 1242:65 1240:. 1197:19 1195:. 1163:. 1153:. 1141:. 1106:. 1096:17 1094:. 1090:. 1065:, 1029:. 1021:. 1009:. 1005:. 979:. 971:. 963:. 951:. 927:. 917:59 915:. 911:. 904:Fe 881:. 871:48 869:. 846:. 838:. 826:. 803:. 795:. 783:. 760:. 750:62 748:. 744:. 718:. 706:. 702:. 679:. 667:39 665:. 661:. 644:14 642:. 619:. 609:58 607:. 580:. 568:. 543:64 541:. 487:, 485:p3 483:, 481:p1 316:Si 312:Al 300:Se 298:11 296:Ti 289:80 279:Nb 45:. 2120:e 2113:t 2106:v 2024:: 1991:. 1979:: 1956:. 1942:: 1923:. 1919:: 1895:. 1883:: 1860:. 1842:. 1828:. 1816:: 1793:. 1781:: 1758:. 1744:. 1732:: 1709:. 1691:. 1679:: 1656:. 1644:: 1636:: 1613:. 1601:: 1593:: 1570:. 1556:: 1533:. 1529:: 1506:. 1502:: 1453:. 1447:: 1420:. 1406:: 1400:1 1379:. 1365:: 1338:. 1318:: 1295:. 1283:: 1260:. 1248:: 1207:. 1203:: 1171:. 1157:: 1149:: 1114:. 1102:: 1037:. 1025:: 1017:: 987:. 967:: 959:: 935:. 923:: 889:. 877:: 854:. 842:: 834:: 811:. 799:: 791:: 768:. 756:: 726:. 722:: 714:: 687:. 673:: 627:. 623:: 615:: 588:. 576:: 553:. 549:: 419:. 322:4 320:O 318:4 314:9 310:2 302:4 287:O 283:W 275:K 198:2 183:) 177:( 165:) 159:( 154:) 150:( 146:. 132:. 106:) 100:( 95:) 91:( 87:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages
personal reflection, personal essay, or argumentative essay
help improve it
encyclopedic style
Learn how and when to remove this message
spinning off
relocating
Knowledge (XXG)'s inclusion policy
Learn how and when to remove this message
Learn how and when to remove this message

HREM
TEM
Sven Hovmöller
Stockholm University
crystal structure
Scherzer defocus
defocus
transfer properties
exit-wave function reconstruction
Aaron Klug
membrane protein
staurolite
quasicrystal
NP-hard
NP-complete
point
Fourier transform

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑