Knowledge (XXG)

Core–mantle boundary

Source 📝

790: 31: 353: 208:
as 'G'. In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1,800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was
179:
The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a thermal boundary layer. The boundary is thought to harbor topography, much like Earth's surface, that is supported by solid-state convection within the overlying mantle. Variations
225:
A seismic discontinuity occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the speed of seismic waves (generated by earthquakes or explosions) that travel through Earth. At this depth, primary seismic waves (P waves) decrease
432:
Torsvik, Trond H.; Smethurst, Mark A.; Burke, Kevin; Steinberger, Bernhard (2006). "Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle". Geophysical Journal International. 167 (3): 1447–1460. Bibcode:2006GeoJI.167.1447T.
226:
in velocity while secondary seismic waves (S waves) disappear completely. S waves shear material and cannot transmit through liquids, so it is thought that the unit above the discontinuity is solid, while the unit below is in a liquid or molten form.
209:
named D″. Later it was found that D" is non-spherical. In 1993, Czechowski found that inhomogeneities in D" form structures analogous to continents (i.e. core-continents). They move in time and determine some properties of
160:
do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic
405:
Bullen K., Compressibility-pressure hypothesis and the Earth’s interior. Monthly Notices of the Royal Astronomical Society, Geophysical Supplements, 5, 355–368., 1949
196:("D double-prime" or "D prime prime") and is sometimes included in discussions regarding the core–mantle boundary zone. The D″ name originates from geophysicist 445: 233:, a seismologist who made several important contributions to the study and understanding of the Earth's interior. The CMB has also been referred to as the 352:
WR Peltier (2007). "Mantle Dynamics and the D" Layer: Impacts of the Post Perovskite Phase". In Kei Hirose; John Brodholt; Thome Lay; David Yuen (eds.).
241:
is most commonly used in reference to a decrease in seismic velocity with depth that is sometimes observed at about 100 km below the Earth's oceans.
627: 770: 238: 370: 584: 276: 173: 564: 596: 180:
in the thermal properties of the CMB may affect how the outer core's iron-rich fluids flow, which are ultimately responsible for
250: 819: 793: 717: 172:
studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific
576: 414:
Creager, K.C. and Jordan, T.H. (1986). Asperical structure of the core-mantle boundary. Geophys. Res. Lett. 13, 1497-1500
620: 144:, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in 636: 205: 362: 237:, the Oldham-Gutenberg discontinuity, or the Wiechert-Gutenberg discontinuity. In modern times, however, the term 200:'s designations for the Earth's layers. His system was to label each layer alphabetically, A through G, with the 181: 105: 274:
Lekic, V.; Cottaar, S.; Dziewonski, A. & Romanowicz, B. (2012). "Cluster analysis of global lower mantle".
727: 722: 613: 255: 234: 192:
An approximately 200 km thick layer of the lower mantle directly above the CMB is referred to as the
488:
Schmerr, N. (2012-03-22). "The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary".
423:
Czechowski L. (1993) Geodesy and Physics of the Earth pp 392-395, The Origin of Hotspots and The D” Layer
138: 775: 699: 694: 141: 95: 84: 758: 497: 454: 318: 281: 814: 681: 665: 197: 161: 529: 380: 169: 149: 581: 763: 655: 521: 513: 470: 366: 334: 309: 214: 210: 134: 65: 43: 650: 505: 462: 326: 289: 285: 201: 600: 588: 392: 165: 689: 443:
Dziewonski, Adam M.; Anderson, Don L. (1981-06-01). "Preliminary reference Earth model".
307:
Lay, Thorne; Hernlund, John; Buffett, Bruce A. (2008). "Core–mantle boundary heat flow".
593: 501: 458: 322: 230: 27:
Discontinuity where the bottom of the planet's mantle meets the outer layer of the core
808: 670: 533: 466: 54: 556: 677: 660: 145: 293: 742: 549: 517: 474: 338: 509: 525: 156:
velocities are much slower in the outer core than in the deep mantle while
330: 131: 30: 17: 605: 157: 153: 29: 609: 148:
velocities at that depth due to the differences between the
557:"Earth's interior: Redefining the Core–Mantle Boundary" 751: 710: 643: 550:
Earth's Core–Mantle Boundary Has Core-Rigidity Zone
355:Post-Perovskite: The Last Mantle Phase Transition 152:of the solid mantle and the molten outer core. 621: 8: 446:Physics of the Earth and Planetary Interiors 217:. Later research supported this hypothesis. 628: 614: 606: 34:Schematic view of the interior of Earth. 266: 388: 378: 130:) of Earth lies between the planet's 7: 577:Mineral phase change at the boundary 229:The discontinuity was discovered by 164:mineralogy of the deep mantle named 594:About.com article on the name of D″ 277:Earth and Planetary Science Letters 239:Gutenberg discontinuity or the "G" 174:Large low-shear-velocity provinces 25: 565:The American Geological Institute 555:Audrey Slesinger (January 2001), 789: 788: 733:D’’ discontinuity (lower mantle) 728:660 discontinuity (upper mantle) 723:410 discontinuity (upper mantle) 115:outer core–inner core boundary 1: 467:10.1016/0031-9201(81)90046-7 582:Superplumes at the boundary 251:Core–mantle differentiation 836: 718:Mohorovičić (crust–mantle) 363:American Geophysical Union 294:10.1016/j.epsl.2012.09.014 784: 106:Mohorovicic discontinuity 771:Gutenberg (upper mantle) 752:Regional discontinuities 280:. 357–358 (1–3): 68–77. 510:10.1126/science.1215433 286:2012E&PSL.357...68L 256:Ultra low velocity zone 235:Gutenberg discontinuity 820:Structure of the Earth 776:Lehmann (upper mantle) 711:Global discontinuities 182:Earth's magnetic field 119: 221:Seismic discontinuity 204:as 'A' and the inner 33: 738:Core–mantle boundary 365:. pp. 217–227. 331:10.1038/ngeo.2007.44 124:core–mantle boundary 111:core–mantle boundary 743:Inner-core boundary 666:Lithospheric mantle 502:2012Sci...335.1480S 496:(6075): 1480–1483. 459:1981PEPI...25..297D 433:doi:10.1111/j.1365- 323:2008NatGe...1...25L 150:acoustic impedances 637:Structure of Earth 599:2008-10-06 at the 587:2006-02-13 at the 170:Seismic tomography 120: 75: lower mantle 802: 801: 764:continental crust 372:978-0-87590-439-9 310:Nature Geoscience 215:mantle convection 44:continental crust 16:(Redirected from 827: 792: 791: 630: 623: 616: 607: 573: 572: 571: 538: 537: 485: 479: 478: 440: 434: 430: 424: 421: 415: 412: 406: 403: 397: 396: 390: 386: 384: 376: 360: 349: 343: 342: 304: 298: 297: 271: 93: 82: 74: 63: 52: 41: 21: 835: 834: 830: 829: 828: 826: 825: 824: 805: 804: 803: 798: 780: 747: 706: 639: 634: 601:Wayback Machine 589:Wayback Machine 569: 567: 554: 546: 541: 487: 486: 482: 442: 441: 437: 431: 427: 422: 418: 413: 409: 404: 400: 387: 377: 373: 358: 351: 350: 346: 306: 305: 301: 273: 272: 268: 264: 247: 223: 190: 166:post-perovskite 137:and its liquid 118: 101: 98: 91: 87: 80: 76: 72: 68: 61: 57: 50: 46: 39: 28: 23: 22: 15: 12: 11: 5: 833: 831: 823: 822: 817: 807: 806: 800: 799: 797: 796: 785: 782: 781: 779: 778: 773: 768: 767: 766: 755: 753: 749: 748: 746: 745: 740: 735: 730: 725: 720: 714: 712: 708: 707: 705: 704: 703: 702: 697: 687: 686: 685: 675: 674: 673: 668: 653: 647: 645: 641: 640: 635: 633: 632: 625: 618: 610: 604: 603: 591: 579: 574: 552: 545: 544:External links 542: 540: 539: 480: 453:(4): 297–356. 435: 425: 416: 407: 398: 371: 344: 299: 265: 263: 260: 259: 258: 253: 246: 243: 231:Beno Gutenberg 222: 219: 189: 186: 117: 116: 113: 108: 102: 100: 99: 90: 88: 79: 77: 71: 69: 60: 58: 49: 47: 38: 35: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 832: 821: 818: 816: 813: 812: 810: 795: 787: 786: 783: 777: 774: 772: 769: 765: 762: 761: 760: 757: 756: 754: 750: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 715: 713: 709: 701: 698: 696: 693: 692: 691: 688: 683: 679: 676: 672: 671:Asthenosphere 669: 667: 664: 663: 662: 659: 658: 657: 654: 652: 649: 648: 646: 642: 638: 631: 626: 624: 619: 617: 612: 611: 608: 602: 598: 595: 592: 590: 586: 583: 580: 578: 575: 566: 562: 558: 553: 551: 548: 547: 543: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 484: 481: 476: 472: 468: 464: 460: 456: 452: 448: 447: 439: 436: 429: 426: 420: 417: 411: 408: 402: 399: 394: 382: 374: 368: 364: 357: 356: 348: 345: 340: 336: 332: 328: 324: 320: 316: 312: 311: 303: 300: 295: 291: 287: 283: 279: 278: 270: 267: 261: 257: 254: 252: 249: 248: 244: 242: 240: 236: 232: 227: 220: 218: 216: 212: 207: 203: 199: 195: 187: 185: 183: 177: 175: 171: 167: 163: 159: 155: 151: 147: 143: 140: 136: 133: 129: 125: 114: 112: 109: 107: 104: 103: 97: 89: 86: 78: 70: 67: 59: 56: 55:oceanic crust 48: 45: 37: 36: 32: 19: 737: 732: 678:Lower mantle 661:Upper mantle 568:, retrieved 560: 493: 489: 483: 450: 444: 438: 428: 419: 410: 401: 354: 347: 317:(1): 25–32. 314: 308: 302: 275: 269: 228: 224: 198:Keith Bullen 193: 191: 178: 146:seismic wave 127: 123: 121: 110: 64: upper 389:|work= 139:iron–nickel 815:Geophysics 809:Categories 700:Inner core 695:Outer core 682:Mesosphere 570:2011-03-24 262:References 162:perovskite 142:outer core 96:inner core 85:outer core 534:206538202 518:0036-8075 475:0031-9201 391:ignored ( 381:cite book 339:1752-0894 194:D″ region 188:D″ region 176:(LLSVP). 794:Category 597:Archived 585:Archived 561:Geotimes 526:22442480 245:See also 211:hotspots 132:silicate 498:Bibcode 490:Science 455:Bibcode 319:Bibcode 282:Bibcode 158:S-waves 18:D" 759:Conrad 656:Mantle 644:Shells 532:  524:  516:  473:  369:  337:  154:P-wave 135:mantle 94:  92:  83:  81:  73:  66:mantle 62:  53:  51:  42:  40:  680:(aka 651:Crust 530:S2CID 359:(PDF) 202:crust 690:Core 522:PMID 514:ISSN 471:ISSN 393:help 367:ISBN 335:ISSN 213:and 206:core 122:The 506:doi 494:335 463:doi 327:doi 290:doi 128:CMB 811:: 563:, 559:, 528:. 520:. 512:. 504:. 492:. 469:. 461:. 451:25 449:. 385:: 383:}} 379:{{ 361:. 333:. 325:. 313:. 288:. 184:. 168:. 684:) 629:e 622:t 615:v 536:. 508:: 500:: 477:. 465:: 457:: 395:) 375:. 341:. 329:: 321:: 315:1 296:. 292:: 284:: 126:( 20:)

Index

D"

continental crust
oceanic crust
mantle
outer core
inner core
Mohorovicic discontinuity
silicate
mantle
iron–nickel
outer core
seismic wave
acoustic impedances
P-wave
S-waves
perovskite
post-perovskite
Seismic tomography
Large low-shear-velocity provinces
Earth's magnetic field
Keith Bullen
crust
core
hotspots
mantle convection
Beno Gutenberg
Gutenberg discontinuity
Gutenberg discontinuity or the "G"
Core–mantle differentiation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.