Knowledge (XXG)

D-brane

Source 📝

1820:. In certain cases, the entropy calculation done for zero string coupling remains valid when the strings interact. The challenge for a string theorist is to devise a situation in which a black hole can exist which does not "break" supersymmetry. In recent years, this has been done by building black holes out of D-branes. Calculating the entropies of these hypothetical holes gives results which agree with the expected Bekenstein entropy. Unfortunately, the cases studied so far all involve higher-dimensional spaces – D5-branes in nine-dimensional space, for example. They do not directly apply to the familiar case, the Schwarzschild black holes observed in our own universe. 1312:"daughter" strings). Since endpoints are restricted to lie on D-branes, it is evident that a string may interact with a string, but not with a or a one. The masses of these strings will be influenced by the separation between the branes, as discussed above, so for simplicity's sake, we can imagine the branes squeezed closer and closer together until they lie atop one another. If we regard two overlapping branes as distinct objects, then we still have all the sectors we had before, but without the effects due to the brane separations. 1327:) gauge theory. (The string theory does contain other interactions, but they are only detectable at very high energies.) Gauge theories were not invented starting with bosonic or fermionic strings; they originated from a different area of physics, and have become quite useful in their own right. If nothing else, the relation between D-brane geometry and gauge theory offers a useful pedagogical tool for explaining gauge interactions, even if string theory fails to be the "theory of everything". 916:, which pin the string endpoint. Each coordinate of the string must satisfy one or the other of these conditions. There can also exist strings with mixed boundary conditions, where the two endpoints satisfy NN, DD, ND and DN boundary conditions. If p spatial dimensions satisfy the Neumann boundary condition, then the string endpoint is confined to move within a p-dimensional hyperplane. This hyperplane provides one description of a Dp-brane. 31: 1068:
each other by some angle. The annulus amplitude yields singularities that correspond to the on-shell production of open strings stretched between the two branes. This is true irrespective of the charge of the D-branes. At non-relativistic scattering velocities the open strings may be described by a low-energy effective action that contains two complex scalar fields that are coupled via a term
1039:—we have to find a reason why the extra dimensions are not apparent. One possibility would be that the visible Universe is in fact a very large D-brane extending over three spatial dimensions. Material objects, made of open strings, are bound to the D-brane, and cannot move "at right angles to reality" to explore the Universe outside the brane. This scenario is called a 1163:, but they are really just labels identifying the branes.) A string in either the or the sector has a minimum length: it cannot be shorter than the separation between the branes. All strings have some tension, against which one must pull to lengthen the object; this pull does work on the string, adding to its energy. Because string theories are by nature 1813:) is more difficult. However, a world without interactions is an uninteresting place: most significantly for the black hole problem, gravity is an interaction, and so if the "string coupling" is turned off, no black hole could ever arise. Therefore, calculating black hole entropy requires working in a regime where string interactions exist. 1834:
boundary conditions). This paper, though prescient, was little-noted in its time (a 1985 parody by Siegel, "The Super-g String", contains an almost dead-on description of braneworlds). Dirichlet conditions for all coordinates including Euclidean time (defining what are now known as D-instantons) were introduced by
1784:
The concept of black hole entropy poses some interesting conundra. In an ordinary situation, a system has entropy when a large number of different "microstates" can satisfy the same macroscopic condition. For example, given a box full of gas, many different arrangements of the gas atoms can have the
1178:
Furthermore, affixing a string's endpoint to a brane influences the way the string can move and vibrate. Because particle states "emerge" from the string theory as the different vibrational states the string can experience, the arrangement of D-branes controls the types of particles present in the
1067:
When two D-branes approach each other the interaction is captured by the one loop annulus amplitude of strings between the two branes. The scenario of two parallel branes approaching each other at a constant velocity can be mapped to the problem of two stationary branes that are rotated relative to
1833:
in 1976 as a means of lowering the critical dimension of open string theory from 26 or 10 to 4 (Siegel also cites unpublished work by Halpern, and a 1974 paper by Chodos and Thorn, but a reading of the latter paper shows that it is actually concerned with linear dilation backgrounds, not Dirichlet
1828:
Dirichlet boundary conditions and D-branes had a long "pre-history" before their full significance was recognized. A series of 1975–76 papers by Bardeen, Bars, Hanson and Peccei dealt with an early concrete proposal of interacting particles at the ends of strings (quarks interacting with QCD flux
1796:
String theorists have constructed models in which a black hole is a very long (and hence very massive) string. This model gives rough agreement with the expected entropy of a Schwarzschild black hole, but an exact proof has yet to be found one way or the other. The chief difficulty is that it is
1311:
have more intriguing properties. For starters, it is worthwhile to ask which sectors of strings can interact with one another. One straightforward mechanism for a string interaction is for two strings to join endpoints (or, conversely, for one string to "split down the middle" and make two
1158:
objects: each one carries an "arrow" defining a direction along its length.) The open strings permissible in this situation then fall into two categories, or "sectors": those originating on brane 1 and terminating on brane 2, and those originating on brane 2 and terminating on brane 1.
1257:
of the brane, corresponding to the different ways the symmetry of empty space can be broken. Placing a D-brane in a universe breaks the symmetry among locations, because it defines a particular place, assigning a special meaning to a particular location along each of the
1488: 1153:
The arrangement of D-branes constricts the types of string states which can exist in a system. For example, if we have two parallel D2-branes, we can easily imagine strings stretching from brane 1 to brane 2 or vice versa. (In most theories, strings are
1222:
In this sense, then, one can say that string theory "predicts" electromagnetism: D-branes are a necessary part of the theory if we permit open strings to exist, and all D-branes carry an electromagnetic field on their volume.
1865:
of any open string theory. The Dai et al. paper also notes that the locus of the Dirichlet boundary conditions is dynamical, and coins the term Dirichlet-brane (D-brane) for the resulting object (this paper also coins
1656: 1226:
Other particle states originate from strings beginning and ending on the same D-brane. Some correspond to massless particles like the photon; also in this group are a set of massless scalar particles. If a
1744: 1368: 1347:, dropping an amount of hot gas into a black hole. Since the gas cannot escape from the hole's gravitational pull, its entropy would seem to have vanished from the universe. In order to maintain the 939:
D-branes are nearly coincident, the spectrum of strings stretching between them becomes very rich. One set of modes produce a non-abelian gauge theory on the world-volume. Another set of modes is an
1829:
tubes), with dynamical boundary conditions for string endpoints where the Dirichlet conditions were dynamical rather than static. Mixed Dirichlet/Neumann boundary conditions were first considered by
919:
Although rigid in the limit of zero coupling, the spectrum of open strings ending on a D-brane contains modes associated with its fluctuations, implying that D-branes are dynamical objects. When
1243:(particles which do not have polarizations like the photons making up light). Intriguingly, there are just as many massless scalars as there are directions perpendicular to the brane; the 1861:
interchanges the usual Neumann boundary conditions with Dirichlet boundary conditions. This result implies that such boundary conditions must necessarily appear in regions of the
1159:
Symbolically, we say we have the and the sectors. In addition, a string may begin and end on the same brane, giving and sectors. (The numbers inside the brackets are called
1103: 844:
A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in
1019:. Tachyon condensation is still very poorly understood. This is due to the lack of an exact string field theory that would describe the off-shell evolution of the tachyon. 1775: 963: 2812: 1901: 908:
The equations of motion of string theory require that the endpoints of an open string (a string with endpoints) satisfy one of two types of boundary conditions: The
1565: 1143: 1123: 965:
dimensional matrix for each transverse dimension of the brane. If these matrices commute, they may be diagonalized, and the eigenvalues define the position of the
1842:. String compactifications studied by Harvey and Minahan, Ishibashi and Onogi, and Pradisi and Sagnotti in 1987–1989 also employed Dirichlet boundary conditions. 2414: 1574:
Using this expression for the Hawking temperature, and assuming that a zero-mass black hole has zero entropy, one can use thermodynamic arguments to derive the "
1538: 1510: 983: 937: 1059:
strings. Because closed strings do not have to be attached to D-branes, gravitational effects could depend upon the extra dimensions orthogonal to the brane.
243: 1805:
studied in introductory thermodynamics: the easiest situation to model is when the gas atoms do not have interactions among themselves. Developing the
1583: 1673: 803: 2266: 2307: 1359:
discovered that a hole should emit energy with the characteristic spectrum of thermal radiation. The characteristic temperature of this
2407: 177: 2779: 2386: 2285: 985:
D-branes in space. More generally, the branes are described by non-commutative geometry, which allows exotic behavior such as the
1870:
for another object that arises under string T-duality). A 1989 paper by Leigh showed that D-brane dynamics are governed by the
3009: 2744: 182: 3371: 1838:
in 1977 as a means of introducing point-like structure into string theory, in an attempt to construct a string theory of the
549: 1299:
for convenience. Open strings in this system exist in one of many sectors: the strings beginning and ending on some brane
2951: 2457: 2400: 1874:. D-instantons were extensively studied by Green in the early 1990s, and were shown by Polchinski in 1994 to produce the 913: 889: 2721: 3396: 2452: 1351:, one must postulate that the black hole gained whatever entropy the infalling gas originally had. Attempting to apply 1348: 833: 574: 2976: 1483:{\displaystyle T_{\rm {H}}={\frac {\hbar c^{3}}{8\pi GMk_{B}}}\;\quad (\approx {1.227\times 10^{23}\;kg \over M}\;K),} 796: 2602: 2155:
Bars, I. (1976). "A quantum string theory of hadrons and its relation to quantum chromodynamics in two dimensions".
2897: 2549: 2277: 909: 1254: 3236: 3191: 1854: 1835: 1303:
give that brane a Maxwell field and some massless scalar fields on its volume. The strings stretching from brane
877: 777: 409: 369: 3416: 3336: 3151: 3085: 2447: 1846: 869: 772: 594: 514: 329: 3296: 2918: 2892: 2633: 1885: 1871: 474: 251: 3556: 3366: 3080: 2923: 2764: 2522: 2464: 1816:
Extending the simpler case of non-interacting strings to the regime where a black hole could exist requires
1806: 739: 544: 161: 93: 3597: 3321: 3062: 2868: 2759: 2731: 2554: 1786: 1517: 1212: 1196: 789: 499: 218: 135: 3471: 2807: 2774: 2638: 2480: 1188: 1160: 649: 3176: 3116: 3057: 3024: 3019: 2817: 2515: 2510: 2505: 2490: 1145:
changes. This induces open string production and as a result the two scattering branes will be trapped.
1071: 1032: 1000: 893: 845: 354: 294: 261: 238: 89: 76: 3346: 524: 3561: 2559: 2544: 2500: 2333: 2222: 2164: 2128: 2091: 2046: 1978: 1935: 1661: 1281: 1249: 992: 744: 213: 151: 85: 3476: 3361: 3014: 2913: 2539: 1926:
Dai, Jin; Leigh, R.G.; Polchinski, Joseph (1989-10-20). "New connections between string theories".
1810: 1284:
of order 1. D-branes can be used to generate gauge theories of higher order, in the following way:
1277: 1240: 1031:. Because string theory implies that the Universe has more dimensions than we expect—26 for 654: 539: 187: 986: 3521: 3441: 3341: 3301: 3181: 3146: 2981: 2858: 2754: 2495: 2365: 2323: 2299: 2246: 2212: 2192: 1839: 1751: 1568: 1344: 1164: 1036: 1028: 1012: 704: 619: 519: 479: 359: 324: 197: 81: 3231: 2908: 679: 1007:
flux) an arbitrary D-brane configuration to be obtained from a stack of D9 and anti D9-branes.
942: 3486: 3391: 3226: 3136: 3106: 2902: 2797: 2749: 2643: 2382: 2357: 2349: 2281: 2262: 2238: 2180: 2144: 2107: 2070: 2062: 1994: 1951: 1850: 1360: 1352: 1192: 1175:. Therefore, the separation between D-branes controls the minimum mass open strings may have. 1004: 873: 664: 569: 404: 314: 284: 3496: 3431: 3401: 3281: 3221: 3186: 3131: 3121: 3101: 3034: 2986: 2944: 2849: 2842: 2835: 2828: 2821: 2739: 2529: 2437: 2341: 2230: 2172: 2136: 2099: 2054: 1986: 1943: 1575: 829: 674: 609: 579: 459: 399: 364: 309: 299: 279: 156: 45: 1543: 1128: 1108: 3576: 3531: 3481: 3466: 3456: 3351: 3316: 3141: 2711: 2485: 1790: 1356: 1040: 759: 714: 659: 644: 634: 529: 494: 319: 223: 3421: 912:, corresponding to free endpoints moving through spacetime at the speed of light, or the 599: 2337: 2226: 2168: 2132: 2095: 2050: 1982: 1939: 1809:
in the case where the gas atoms or molecules experience inter-particle forces (like the
1793:"). What, then, are the "degrees of freedom" which can give rise to black hole entropy? 1664:
is proportional to the mass, the Bekenstein entropy is proportional to the black hole's
1203:, the fundamental quantum of the electromagnetic field. The resemblance is precise: a 3551: 3546: 3506: 3446: 3436: 3356: 3276: 3266: 3261: 3256: 3171: 3166: 3161: 3126: 3111: 3039: 2716: 2579: 1889: 1523: 1495: 968: 922: 734: 729: 689: 624: 614: 534: 454: 444: 439: 434: 349: 344: 339: 304: 289: 192: 3591: 3541: 3526: 3501: 3491: 3461: 3406: 3381: 3326: 3311: 3306: 3271: 3246: 3206: 2996: 2648: 2564: 2442: 2423: 2250: 2176: 2119:
Bars, Itzhak (1976-06-28). "Exact Equivalence of Chromodynamics to a String Theory".
1990: 1881: 1830: 1817: 1785:
same total energy. However, a black hole was believed to be a featureless object (in
1778: 1270: 1008: 881: 817: 724: 709: 684: 669: 639: 584: 559: 504: 489: 484: 449: 424: 414: 384: 228: 50: 22: 1884:. In 1995 Polchinski showed that D-branes are the sources of electric and magnetic 1183:-brane, that is to say the strings which begin and end on any particular D-brane of 30: 3571: 3411: 3291: 3241: 3211: 3196: 3004: 2971: 2863: 2789: 2769: 2706: 2569: 2369: 1892:, leading to rapid progress in the nonperturbative understanding of string theory. 1862: 1660:
The Bekenstein entropy is proportional to the black hole mass squared; because the
1513: 1266: 885: 836:, after which they are named. D-branes are typically classified by their spatial 754: 589: 469: 419: 389: 374: 233: 2082:
Bars, Itzhak; Hanson, Andrew J. (1976-03-15). "Quarks at the ends of the string".
1319:
coincident D-branes yields a set of interacting quantum fields which is exactly a
1235:
spatial dimensions, the brane carries (in addition to its Maxwell field) a set of
1199:
the string), one finds that among the spectrum of particles is one resembling the
1167:, adding energy to a string is equivalent to adding mass, by Einstein's relation 3566: 3536: 3516: 3376: 3331: 3286: 3251: 3201: 2966: 2935: 2696: 2653: 2345: 2140: 1867: 749: 719: 699: 554: 509: 464: 429: 379: 2314:
Polchinski, Joseph (1995-12-25). "Dirichlet Branes and Ramond-Ramond Charges".
3511: 3451: 3386: 3049: 3029: 2928: 2887: 2701: 2234: 2203:
Giveon, Amit; Kutasov, David (1999-07-01). "Brane dynamics and gauge theory".
1947: 1339:. Since the 1970s, scientists have debated the problem of black holes having 1336: 996: 694: 629: 564: 256: 2353: 2242: 2184: 2148: 2111: 2103: 2066: 2058: 2033:
Bardeen, W. A.; Bars, Itzhak; Hanson, Andrew J.; Peccei, R. D. (1976-04-15).
1998: 1955: 1295:-branes, arranged in parallel for simplicity. The branes are labeled 1,2,..., 3426: 3216: 3156: 2802: 2676: 2597: 2592: 2587: 1858: 1802: 1016: 849: 837: 604: 394: 334: 120: 115: 110: 2361: 1315:
The zero-mass states in the open-string particle spectrum for a system of
3072: 2961: 2956: 2686: 2681: 2618: 2534: 1906: 1052: 897: 130: 125: 1797:
relatively easy to count the degrees of freedom quantum strings possess
2691: 2628: 2623: 2374:. An article which established D-branes' significance in string theory. 2328: 2303: 2217: 2196: 1340: 1044: 2074: 2034: 1265:
The quantum version of Maxwell's electromagnetism is only one kind of
2011:
Polchinski, J. (1995). "Dirichlet branes and Ramond-Ramond charges".
1253:
of the particles existing on it. In fact, these massless scalars are
1200: 2663: 853: 55: 1969:
Hoƙava, Petr (1989). "Background duality of open-string models".
1003:, tachyon condensation allows (in the absence of Neveu-Schwarz 3- 989:, in which a collection of Dp-branes expand into a D(p+2)-brane. 2392: 1651:{\displaystyle S_{\rm {B}}={\frac {k_{B}4\pi G}{\hbar c}}M^{2}.} 857: 2396: 1739:{\displaystyle S_{\rm {B}}={\frac {Ak_{B}}{4l_{\rm {P}}^{2}}},} 1207:-dimensional version of the electromagnetic field, obeying a 1011:
has shown that such configurations will be classified by the
1335:
Another important use of D-branes has been in the study of
1055:
which carry gravitational forces are vibrational states of
1125:(separation of the branes) changes, the mass of the field 880:, in 1989. In 1995, Polchinski identified D-branes with 2259:
D-Brane: Superstrings and New Perspective of Our World.
1754: 1676: 1586: 1546: 1526: 1498: 1371: 1131: 1111: 1074: 971: 945: 925: 2035:"Study of the longitudinal kink modes of the string" 3094: 3071: 3048: 2995: 2880: 2788: 2730: 2662: 2611: 2578: 2473: 2430: 1247:of the brane arrangement is closely related to the 840:, which is indicated by a number written after the 2127:(26). American Physical Society (APS): 1521–1525. 1769: 1738: 1650: 1559: 1532: 1504: 1482: 1137: 1117: 1097: 977: 957: 931: 828:, are a class of extended objects upon which open 2090:(6). American Physical Society (APS): 1744–1760. 2045:(8). American Physical Society (APS): 2364–2382. 1934:(21). World Scientific Pub Co Pte Lt: 2073–2083. 1179:theory. The simplest case is the sector for a D 1187:dimensions. Examining the consequences of the 1880:nonperturbative string effects anticipated by 2408: 2191:Bachas, C. P. "Lectures on D-branes" (1998). 797: 8: 2415: 2401: 2393: 1470: 1457: 1430: 852:D(–1)-branes, which are localized in both 804: 790: 29: 18: 2327: 2216: 1799:if they do not interact with one another. 1760: 1759: 1753: 1724: 1718: 1717: 1702: 1692: 1682: 1681: 1675: 1639: 1609: 1602: 1592: 1591: 1585: 1551: 1545: 1525: 1497: 1451: 1438: 1421: 1397: 1387: 1377: 1376: 1370: 1130: 1110: 1089: 1079: 1073: 970: 944: 924: 1918: 1626: 1390: 1262:directions perpendicular to the brane. 169: 143: 102: 68: 37: 21: 16:Extended objects found in string theory 1231:-brane is embedded in a spacetime of 868:D-branes were discovered by Jin Dai, 7: 2813:Bogomol'nyi–Prasad–Sommerfield bound 1902:Bogomol'nyi–Prasad–Sommerfield bound 995:is a central concept in this field. 247:= 4 supersymmetric Yang–Mills theory 2381:Cambridge University Press (2004). 1761: 1719: 1683: 1593: 1378: 1098:{\displaystyle \phi ^{2}\chi ^{2}} 178:Geometric Langlands correspondence 14: 888:, a discovery that triggered the 2379:A First Course in String Theory. 3010:Eleven-dimensional supergravity 1857:independently, discovered that 1431: 1474: 1432: 1: 2458:Second superstring revolution 1540:is the black hole's mass and 1355:to the study of black holes, 1276:gauge theory where the gauge 914:Dirichlet boundary conditions 890:Second Superstring Revolution 834:Dirichlet boundary conditions 2952:Generalized complex manifold 2453:First superstring revolution 2177:10.1016/0550-3213(76)90327-8 1991:10.1016/0370-2693(89)90209-8 1349:second law of thermodynamics 2346:10.1103/physrevlett.75.4724 2163:(3). Elsevier BV: 413–440. 2141:10.1103/physrevlett.36.1521 1977:(3). Elsevier BV: 251–257. 1770:{\displaystyle l_{\rm {P}}} 1191:(and applying the rules of 3614: 2550:Non-critical string theory 2278:Cambridge University Press 2272:Johnson, Clifford (2003). 1027:This has implications for 910:Neumann boundary condition 2296:TASI Lectures on D-branes 2235:10.1103/revmodphys.71.983 2205:Reviews of Modern Physics 1948:10.1142/s0217732389002331 1801:This is analogous to the 1211:-dimensional analogue of 1051:due to open strings; the 958:{\displaystyle N\times N} 3086:Introduction to M-theory 2780:Wess–Zumino–Witten model 2722:Hanany–Witten transition 2448:History of string theory 2104:10.1103/physrevd.13.1744 2059:10.1103/physrevd.13.2364 1928:Modern Physics Letters A 1872:Dirac–Born–Infeld action 1791:Black holes have no hair 103:Non-perturbative results 2765:Vertex operator algebra 2465:String theory landscape 2316:Physical Review Letters 2121:Physical Review Letters 1807:kinetic theory of gases 1033:bosonic string theories 876:, and independently by 3063:AdS/CFT correspondence 2818:Exceptional Lie groups 2760:Superconformal algebra 2732:Conformal field theory 2603:Montonen–Olive duality 2555:Non-linear sigma model 1771: 1740: 1652: 1561: 1534: 1518:gravitational constant 1506: 1484: 1139: 1119: 1099: 1001:Type IIB string theory 979: 959: 933: 904:Theoretical background 219:Conformal field theory 136:AdS/CFT correspondence 3058:Holographic principle 3025:Type IIB supergravity 3020:Type IIA supergravity 2872:-form electrodynamics 2491:Bosonic string theory 2306:. Lectures given at 1888:that are required by 1772: 1741: 1653: 1562: 1560:{\displaystyle k_{B}} 1535: 1507: 1485: 1255:Goldstone excitations 1140: 1138:{\displaystyle \chi } 1120: 1118:{\displaystyle \phi } 1105:. Thus, as the field 1100: 980: 960: 934: 846:bosonic string theory 262:Holographic principle 239:Twistor string theory 2977:Hoƙava–Witten theory 2924:HyperkĂ€hler manifold 2612:Particles and fields 2560:Tachyon condensation 2545:Matrix string theory 2294:Polchinski, Joseph, 1886:Ramond–Ramond fields 1752: 1674: 1662:Schwarzschild radius 1584: 1569:Boltzmann's constant 1544: 1524: 1496: 1369: 1287:Consider a group of 1250:quantum field theory 1129: 1109: 1072: 1037:superstring theories 1023:Braneworld cosmology 993:Tachyon condensation 969: 943: 923: 214:Theory of everything 3015:Type I supergravity 2919:Calabi–Yau manifold 2914:Ricci-flat manifold 2893:Kaluza–Klein theory 2634:Ramond–Ramond field 2540:String field theory 2377:Zwiebach, Barton. 2338:1995PhRvL..75.4724P 2227:1999RvMP...71..983G 2169:1976NuPhB.111..413B 2133:1976PhRvL..36.1521B 2096:1976PhRvD..13.1744B 2051:1976PhRvD..13.2364B 1983:1989PhLB..231..251H 1940:1989MPLA....4.2073D 1811:van der Waals force 1729: 1280:is made of unitary 1215:, exists on every D 1213:Maxwell's equations 999:has argued that in 252:Kaluza–Klein theory 188:Monstrous moonshine 69:Perturbative theory 38:Fundamental objects 2982:K-theory (physics) 2859:ADE classification 2496:Superstring theory 2019:(10): R6041–R6045. 1840:strong interaction 1767: 1736: 1713: 1648: 1557: 1530: 1502: 1480: 1345:thought experiment 1343:. Consider, as a 1161:Chan–Paton indices 1135: 1115: 1095: 1063:D-brane scattering 1029:physical cosmology 975: 955: 929: 848:. There are also 826:Dirichlet membrane 3585: 3584: 3367:van Nieuwenhuizen 2903:Why 10 dimensions 2808:Chern–Simons form 2775:Kac–Moody algebra 2755:Conformal algebra 2750:Conformal anomaly 2644:Magnetic monopole 2639:Kalb–Ramond field 2481:Nambu–Goto action 2322:(26): 4724–4727. 2267:978-3-642-23573-3 2261:Springer (2012). 2257:Hashimoto, Koji, 2157:Nuclear Physics B 2084:Physical Review D 2039:Physical Review D 2013:Physical Review D 1971:Physics Letters B 1789:'s catchphrase, " 1731: 1633: 1533:{\displaystyle M} 1505:{\displaystyle G} 1468: 1428: 1361:Hawking radiation 1353:quantum mechanics 1307:to another brane 1193:quantum mechanics 1189:Nambu–Goto action 978:{\displaystyle N} 932:{\displaystyle N} 814: 813: 545:van Nieuwenhuizen 3605: 3095:String theorists 3035:Lie superalgebra 2987:Twisted K-theory 2945:Spin(7)-manifold 2898:Compactification 2740:Virasoro algebra 2523:Heterotic string 2417: 2410: 2403: 2394: 2373: 2331: 2291: 2254: 2220: 2188: 2152: 2115: 2078: 2020: 2009: 2003: 2002: 1966: 1960: 1959: 1923: 1879: 1776: 1774: 1773: 1768: 1766: 1765: 1764: 1745: 1743: 1742: 1737: 1732: 1730: 1728: 1723: 1722: 1708: 1707: 1706: 1693: 1688: 1687: 1686: 1657: 1655: 1654: 1649: 1644: 1643: 1634: 1632: 1624: 1614: 1613: 1603: 1598: 1597: 1596: 1566: 1564: 1563: 1558: 1556: 1555: 1539: 1537: 1536: 1531: 1511: 1509: 1508: 1503: 1489: 1487: 1486: 1481: 1469: 1464: 1456: 1455: 1439: 1429: 1427: 1426: 1425: 1403: 1402: 1401: 1388: 1383: 1382: 1381: 1144: 1142: 1141: 1136: 1124: 1122: 1121: 1116: 1104: 1102: 1101: 1096: 1094: 1093: 1084: 1083: 984: 982: 981: 976: 964: 962: 961: 956: 938: 936: 935: 930: 892:and led to both 806: 799: 792: 208:Related concepts 33: 19: 3613: 3612: 3608: 3607: 3606: 3604: 3603: 3602: 3588: 3587: 3586: 3581: 3090: 3067: 3044: 2991: 2939: 2909:KĂ€hler manifold 2876: 2853: 2846: 2839: 2832: 2825: 2784: 2745:Mirror symmetry 2726: 2712:Brane cosmology 2658: 2607: 2574: 2530:N=2 superstring 2516:Type IIB string 2511:Type IIA string 2486:Polyakov action 2469: 2426: 2421: 2313: 2288: 2271: 2211:(4): 983–1084. 2202: 2154: 2118: 2081: 2032: 2029: 2024: 2023: 2010: 2006: 1968: 1967: 1963: 1925: 1924: 1920: 1915: 1898: 1875: 1826: 1755: 1750: 1749: 1709: 1698: 1694: 1677: 1672: 1671: 1635: 1625: 1605: 1604: 1587: 1582: 1581: 1547: 1542: 1541: 1522: 1521: 1494: 1493: 1447: 1440: 1417: 1404: 1393: 1389: 1372: 1367: 1366: 1357:Stephen Hawking 1333: 1151: 1127: 1126: 1107: 1106: 1085: 1075: 1070: 1069: 1065: 1043:. The force of 1041:brane cosmology 1025: 967: 966: 941: 940: 921: 920: 906: 866: 810: 765: 764: 275: 267: 266: 224:Quantum gravity 209: 183:Mirror symmetry 17: 12: 11: 5: 3611: 3609: 3601: 3600: 3590: 3589: 3583: 3582: 3580: 3579: 3574: 3569: 3564: 3559: 3554: 3549: 3544: 3539: 3534: 3529: 3524: 3519: 3514: 3509: 3504: 3499: 3494: 3489: 3484: 3479: 3474: 3469: 3464: 3459: 3454: 3449: 3444: 3439: 3434: 3429: 3424: 3419: 3417:Randjbar-Daemi 3414: 3409: 3404: 3399: 3394: 3389: 3384: 3379: 3374: 3369: 3364: 3359: 3354: 3349: 3344: 3339: 3334: 3329: 3324: 3319: 3314: 3309: 3304: 3299: 3294: 3289: 3284: 3279: 3274: 3269: 3264: 3259: 3254: 3249: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3124: 3119: 3114: 3109: 3104: 3098: 3096: 3092: 3091: 3089: 3088: 3083: 3077: 3075: 3069: 3068: 3066: 3065: 3060: 3054: 3052: 3046: 3045: 3043: 3042: 3040:Lie supergroup 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3001: 2999: 2993: 2992: 2990: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2948: 2947: 2942: 2937: 2933: 2932: 2931: 2921: 2911: 2906: 2900: 2895: 2890: 2884: 2882: 2878: 2877: 2875: 2874: 2866: 2861: 2856: 2851: 2844: 2837: 2830: 2823: 2815: 2810: 2805: 2800: 2794: 2792: 2786: 2785: 2783: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2736: 2734: 2728: 2727: 2725: 2724: 2719: 2717:Quiver diagram 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2668: 2666: 2660: 2659: 2657: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2615: 2613: 2609: 2608: 2606: 2605: 2600: 2595: 2590: 2584: 2582: 2580:String duality 2576: 2575: 2573: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2526: 2525: 2520: 2519: 2518: 2513: 2506:Type II string 2503: 2493: 2488: 2483: 2477: 2475: 2471: 2470: 2468: 2467: 2462: 2461: 2460: 2455: 2445: 2443:Cosmic strings 2440: 2434: 2432: 2428: 2427: 2422: 2420: 2419: 2412: 2405: 2397: 2391: 2390: 2375: 2329:hep-th/9510017 2311: 2304:hep-th/9611050 2292: 2286: 2269: 2255: 2218:hep-th/9802067 2200: 2197:hep-th/9806199 2189: 2116: 2079: 2028: 2025: 2022: 2021: 2004: 1961: 1917: 1916: 1914: 1911: 1910: 1909: 1904: 1897: 1894: 1890:string duality 1845:In 1989, Dai, 1825: 1822: 1763: 1758: 1735: 1727: 1721: 1716: 1712: 1705: 1701: 1697: 1691: 1685: 1680: 1647: 1642: 1638: 1631: 1628: 1623: 1620: 1617: 1612: 1608: 1601: 1595: 1590: 1554: 1550: 1529: 1501: 1479: 1476: 1473: 1467: 1463: 1460: 1454: 1450: 1446: 1443: 1437: 1434: 1424: 1420: 1416: 1413: 1410: 1407: 1400: 1396: 1392: 1386: 1380: 1375: 1332: 1329: 1150: 1149:Gauge theories 1147: 1134: 1114: 1092: 1088: 1082: 1078: 1064: 1061: 1024: 1021: 974: 954: 951: 948: 928: 905: 902: 865: 862: 812: 811: 809: 808: 801: 794: 786: 783: 782: 781: 780: 775: 767: 766: 763: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 595:Randjbar-Daemi 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 452: 447: 442: 437: 432: 427: 422: 417: 412: 407: 402: 397: 392: 387: 382: 377: 372: 367: 362: 357: 352: 347: 342: 337: 332: 327: 322: 317: 312: 307: 302: 297: 292: 287: 282: 276: 273: 272: 269: 268: 265: 264: 259: 254: 249: 241: 236: 231: 226: 221: 216: 210: 207: 206: 203: 202: 201: 200: 195: 193:Vertex algebra 190: 185: 180: 172: 171: 167: 166: 165: 164: 159: 154: 146: 145: 141: 140: 139: 138: 133: 128: 123: 118: 113: 105: 104: 100: 99: 98: 97: 79: 71: 70: 66: 65: 64: 63: 58: 53: 48: 40: 39: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 3610: 3599: 3598:String theory 3596: 3595: 3593: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3562:Zamolodchikov 3560: 3558: 3557:Zamolodchikov 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3498: 3495: 3493: 3490: 3488: 3485: 3483: 3480: 3478: 3475: 3473: 3470: 3468: 3465: 3463: 3460: 3458: 3455: 3453: 3450: 3448: 3445: 3443: 3440: 3438: 3435: 3433: 3430: 3428: 3425: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3380: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3099: 3097: 3093: 3087: 3084: 3082: 3081:Matrix theory 3079: 3078: 3076: 3074: 3070: 3064: 3061: 3059: 3056: 3055: 3053: 3051: 3047: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3002: 3000: 2998: 2997:Supersymmetry 2994: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2946: 2943: 2941: 2934: 2930: 2927: 2926: 2925: 2922: 2920: 2917: 2916: 2915: 2912: 2910: 2907: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2885: 2883: 2879: 2873: 2871: 2867: 2865: 2862: 2860: 2857: 2854: 2847: 2840: 2833: 2826: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2795: 2793: 2791: 2787: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2737: 2735: 2733: 2729: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2669: 2667: 2665: 2661: 2655: 2652: 2650: 2649:Dual graviton 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2616: 2614: 2610: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2585: 2583: 2581: 2577: 2571: 2568: 2566: 2565:RNS formalism 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2524: 2521: 2517: 2514: 2512: 2509: 2508: 2507: 2504: 2502: 2501:Type I string 2499: 2498: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2478: 2476: 2472: 2466: 2463: 2459: 2456: 2454: 2451: 2450: 2449: 2446: 2444: 2441: 2439: 2436: 2435: 2433: 2429: 2425: 2424:String theory 2418: 2413: 2411: 2406: 2404: 2399: 2398: 2395: 2388: 2387:0-521-83143-1 2384: 2380: 2376: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2330: 2325: 2321: 2317: 2312: 2309: 2305: 2301: 2297: 2293: 2289: 2287:0-521-80912-6 2283: 2279: 2276:. Cambridge: 2275: 2270: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2219: 2214: 2210: 2206: 2201: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2031: 2030: 2026: 2018: 2014: 2008: 2005: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1965: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1919: 1912: 1908: 1905: 1903: 1900: 1899: 1895: 1893: 1891: 1887: 1883: 1878: 1873: 1869: 1864: 1860: 1856: 1852: 1848: 1843: 1841: 1837: 1836:Michael Green 1832: 1831:Warren Siegel 1823: 1821: 1819: 1818:supersymmetry 1814: 1812: 1808: 1804: 1800: 1794: 1792: 1788: 1782: 1780: 1779:Planck length 1756: 1746: 1733: 1725: 1714: 1710: 1703: 1699: 1695: 1689: 1678: 1669: 1667: 1666:surface area. 1663: 1658: 1645: 1640: 1636: 1629: 1621: 1618: 1615: 1610: 1606: 1599: 1588: 1579: 1577: 1572: 1570: 1552: 1548: 1527: 1519: 1515: 1499: 1490: 1477: 1471: 1465: 1461: 1458: 1452: 1448: 1444: 1441: 1435: 1422: 1418: 1414: 1411: 1408: 1405: 1398: 1394: 1384: 1373: 1364: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1330: 1328: 1326: 1322: 1318: 1313: 1310: 1306: 1302: 1298: 1294: 1290: 1285: 1283: 1279: 1275: 1273: 1268: 1263: 1261: 1256: 1252: 1251: 1246: 1242: 1238: 1234: 1230: 1224: 1220: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1176: 1174: 1170: 1166: 1162: 1157: 1148: 1146: 1132: 1112: 1090: 1086: 1080: 1076: 1062: 1060: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1022: 1020: 1018: 1014: 1010: 1009:Edward Witten 1006: 1002: 998: 994: 990: 988: 972: 952: 949: 946: 926: 917: 915: 911: 903: 901: 899: 895: 891: 887: 884:solutions of 883: 882:black p-brane 879: 875: 871: 863: 861: 859: 855: 851: 847: 843: 839: 835: 832:can end with 831: 827: 823: 819: 818:string theory 807: 802: 800: 795: 793: 788: 787: 785: 784: 779: 776: 774: 771: 770: 769: 768: 761: 758: 756: 753: 751: 748: 746: 745:Zamolodchikov 743: 741: 740:Zamolodchikov 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 391: 388: 386: 383: 381: 378: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 346: 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 286: 283: 281: 278: 277: 271: 270: 263: 260: 258: 255: 253: 250: 248: 246: 242: 240: 237: 235: 232: 230: 229:Supersymmetry 227: 225: 222: 220: 217: 215: 212: 211: 205: 204: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 175: 174: 173: 168: 163: 160: 158: 155: 153: 152:Phenomenology 150: 149: 148: 147: 144:Phenomenology 142: 137: 134: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 108: 107: 106: 101: 95: 91: 87: 83: 80: 78: 75: 74: 73: 72: 67: 62: 59: 57: 54: 52: 51:Cosmic string 49: 47: 44: 43: 42: 41: 36: 32: 28: 27: 24: 23:String theory 20: 3107:Arkani-Hamed 3005:Supergravity 2972:Moduli space 2869: 2864:Dirac string 2790:Gauge theory 2770:Loop algebra 2707:Black string 2671: 2570:GS formalism 2378: 2319: 2315: 2295: 2273: 2258: 2208: 2204: 2160: 2156: 2124: 2120: 2087: 2083: 2042: 2038: 2016: 2012: 2007: 1974: 1970: 1964: 1931: 1927: 1921: 1876: 1863:moduli space 1844: 1827: 1815: 1798: 1795: 1787:John Wheeler 1783: 1747: 1670: 1665: 1659: 1580: 1573: 1491: 1365: 1363:is given by 1334: 1324: 1320: 1316: 1314: 1308: 1304: 1300: 1296: 1292: 1288: 1286: 1271: 1267:gauge theory 1264: 1259: 1248: 1244: 1236: 1232: 1228: 1225: 1221: 1216: 1208: 1204: 1184: 1180: 1177: 1172: 1168: 1165:relativistic 1155: 1152: 1066: 1056: 1048: 1026: 991: 987:Myers effect 918: 907: 886:supergravity 867: 841: 825: 824:, short for 821: 815: 285:Arkani-Hamed 244: 234:Supergravity 60: 3467:Silverstein 2967:Orientifold 2702:Black holes 2697:Black brane 2654:Dual photon 1868:orientifold 1337:black holes 1331:Black holes 1035:and 10 for 900:dualities. 894:holographic 850:instantonic 645:Silverstein 170:Mathematics 82:Superstring 3487:Strominger 3482:Steinhardt 3477:Staudacher 3392:Polchinski 3342:Nanopoulos 3302:Mandelstam 3282:Kontsevich 3122:Berenstein 3050:Holography 3030:Superspace 2929:K3 surface 2888:Worldsheet 2803:Instantons 2431:Background 2027:References 1851:Polchinski 1578:entropy": 1576:Bekenstein 1291:separate D 997:Ashoke Sen 874:Polchinski 665:Strominger 660:Steinhardt 655:Staudacher 570:Polchinski 520:Nanopoulos 480:Mandelstam 460:Kontsevich 300:Berenstein 257:Multiverse 3522:Veneziano 3402:Rajaraman 3297:Maldacena 3187:Gopakumar 3137:Dijkgraaf 3132:Curtright 2798:Anomalies 2677:NS5-brane 2598:U-duality 2593:S-duality 2588:T-duality 2354:0031-9007 2251:119460857 2243:0034-6861 2185:0550-3213 2149:0031-9007 2112:0556-2821 2067:0556-2821 1999:0370-2693 1956:0217-7323 1859:T-duality 1803:ideal gas 1668:In fact, 1627:ℏ 1619:π 1445:× 1436:≈ 1409:π 1391:ℏ 1239:massless 1133:χ 1113:ϕ 1087:χ 1077:ϕ 1053:gravitons 1017:spacetime 950:× 864:Discovery 838:dimension 705:Veneziano 580:Rajaraman 475:Maldacena 365:Gopakumar 315:Dijkgraaf 310:Curtright 274:Theorists 162:Landscape 157:Cosmology 121:U-duality 116:T-duality 111:S-duality 94:Heterotic 3592:Category 3577:Zwiebach 3532:Verlinde 3527:Verlinde 3502:Townsend 3497:Susskind 3432:Sagnotti 3397:Polyakov 3352:Nekrasov 3317:Minwalla 3312:Martinec 3277:Knizhnik 3272:Klebanov 3267:Kapustin 3232:'t Hooft 3167:Fischler 3102:Aganagić 3073:M-theory 2962:Conifold 2957:Orbifold 2940:manifold 2881:Geometry 2687:M5-brane 2682:M2-brane 2619:Graviton 2535:F-theory 2362:10059981 2308:TASI '96 2274:D-branes 2153:; ibid. 1907:M-theory 1896:See also 1282:matrices 1245:geometry 1219:-brane. 1197:quantize 1156:oriented 1013:K-theory 898:M-theory 822:D-branes 778:Glossary 760:Zwiebach 715:Verlinde 710:Verlinde 685:Townsend 680:'t Hooft 675:Susskind 610:Sagnotti 575:Polyakov 530:Nekrasov 495:Minwalla 490:Martinec 455:Knizhnik 450:Klebanov 445:Kapustin 415:Horowitz 345:Fischler 280:Aganagić 198:K-theory 131:F-theory 126:M-theory 3507:Trivedi 3492:Sundrum 3457:Shenker 3447:Seiberg 3442:Schwarz 3412:Randall 3372:Novikov 3362:Nielsen 3347:Năstase 3257:Kallosh 3242:Gibbons 3182:Gliozzi 3172:Friedan 3162:Ferrara 3147:Douglas 3142:Distler 2692:S-brane 2672:D-brane 2629:Tachyon 2624:Dilaton 2438:Strings 2370:4671529 2334:Bibcode 2223:Bibcode 2165:Bibcode 2129:Bibcode 2092:Bibcode 2075:1443701 2047:Bibcode 1979:Bibcode 1936:Bibcode 1882:Shenker 1824:History 1777:is the 1341:entropy 1241:scalars 1045:gravity 1015:of the 830:strings 773:History 690:Trivedi 670:Sundrum 635:Shenker 625:Seiberg 620:Schwarz 590:Randall 550:Novikov 540:Nielsen 525:Năstase 435:Kallosh 420:Gibbons 360:Gliozzi 350:Friedan 340:Ferrara 325:Douglas 320:Distler 90:Type II 77:Bosonic 61:D-brane 3572:Zumino 3567:Zaslow 3552:Yoneya 3542:Witten 3462:Siegel 3437:Scherk 3407:Ramond 3382:Ooguri 3307:Marolf 3262:Kaluza 3247:Kachru 3237:Hoƙava 3227:Harvey 3222:Hanson 3207:Gubser 3197:Greene 3127:Bousso 3112:Atiyah 2664:Branes 2474:Theory 2385:  2368:  2360:  2352:  2284:  2265:  2249:  2241:  2183:  2147:  2110:  2073:  2065:  1997:  1954:  1855:Hoƙava 1853:, and 1748:where 1514:Newton 1492:where 1201:photon 1057:closed 878:Hoƙava 872:, and 755:Zumino 750:Zaslow 735:Yoneya 725:Witten 640:Siegel 615:Scherk 585:Ramond 560:Ooguri 485:Marolf 440:Kaluza 425:Kachru 410:Hoƙava 405:Harvey 400:Hanson 385:Gubser 375:Greene 305:Bousso 290:Atiyah 86:Type I 46:String 3512:Turok 3422:Roček 3387:Ovrut 3377:Olive 3357:Neveu 3337:Myers 3332:Mukhi 3322:Moore 3292:Linde 3287:Klein 3212:Gukov 3202:Gross 3192:Green 3177:Gates 3157:Dvali 3117:Banks 2366:S2CID 2324:arXiv 2300:arXiv 2247:S2CID 2213:arXiv 2193:arXiv 1913:Notes 1847:Leigh 1442:1.227 1278:group 1260:d - p 1237:d - p 870:Leigh 854:space 695:Turok 600:Roček 565:Ovrut 555:Olive 535:Neveu 515:Myers 510:Mukhi 500:Moore 470:Linde 465:Klein 390:Gukov 380:Gross 370:Green 355:Gates 335:Dvali 295:Banks 56:Brane 3537:Wess 3517:Vafa 3427:Rohm 3327:Motl 3252:Kaku 3217:Guth 3152:Duff 2383:ISBN 2358:PMID 2350:ISSN 2282:ISBN 2263:ISBN 2239:ISSN 2181:ISSN 2145:ISSN 2108:ISSN 2071:OSTI 2063:ISSN 1995:ISSN 1952:ISSN 1269:, a 1005:form 896:and 858:time 856:and 720:Wess 700:Vafa 605:Rohm 505:Motl 430:Kaku 395:Guth 330:Duff 3547:Yau 3472:SÆĄn 3452:Sen 2342:doi 2231:doi 2173:doi 2161:111 2137:doi 2100:doi 2055:doi 1987:doi 1975:231 1944:doi 1567:is 1516:'s 1512:is 1274:(1) 1195:to 1049:not 1047:is 816:In 730:Yau 650:SÆĄn 630:Sen 3594:: 2848:, 2841:, 2834:, 2827:, 2364:. 2356:. 2348:. 2340:. 2332:. 2320:75 2318:. 2298:, 2280:. 2245:. 2237:. 2229:. 2221:. 2209:71 2207:. 2179:. 2171:. 2159:. 2143:. 2135:. 2125:36 2123:. 2106:. 2098:. 2088:13 2086:. 2069:. 2061:. 2053:. 2043:13 2041:. 2037:. 2017:50 2015:, 1993:. 1985:. 1973:. 1950:. 1942:. 1932:04 1930:. 1849:, 1781:. 1571:. 1520:, 1453:23 1449:10 1173:mc 1171:= 860:. 842:D. 820:, 92:, 88:, 2938:2 2936:G 2905:? 2870:p 2855:) 2852:8 2850:E 2845:7 2843:E 2838:6 2836:E 2831:4 2829:F 2824:2 2822:G 2820:( 2416:e 2409:t 2402:v 2389:. 2372:. 2344:: 2336:: 2326:: 2310:. 2302:: 2290:. 2253:. 2233:: 2225:: 2215:: 2199:. 2195:: 2187:. 2175:: 2167:: 2151:. 2139:: 2131:: 2114:. 2102:: 2094:: 2077:. 2057:: 2049:: 2001:. 1989:: 1981:: 1958:. 1946:: 1938:: 1877:e 1762:P 1757:l 1734:, 1726:2 1720:P 1715:l 1711:4 1704:B 1700:k 1696:A 1690:= 1684:B 1679:S 1646:. 1641:2 1637:M 1630:c 1622:G 1616:4 1611:B 1607:k 1600:= 1594:B 1589:S 1553:B 1549:k 1528:M 1500:G 1478:, 1475:) 1472:K 1466:M 1462:g 1459:k 1433:( 1423:B 1419:k 1415:M 1412:G 1406:8 1399:3 1395:c 1385:= 1379:H 1374:T 1325:N 1323:( 1321:U 1317:N 1309:j 1305:i 1301:i 1297:N 1293:p 1289:N 1272:U 1233:d 1229:p 1227:D 1217:p 1209:p 1205:p 1185:p 1181:p 1169:E 1091:2 1081:2 973:N 953:N 947:N 927:N 805:e 798:t 791:v 245:N 96:) 84:(

Index

String theory

String
Cosmic string
Brane
D-brane
Bosonic
Superstring
Type I
Type II
Heterotic
S-duality
T-duality
U-duality
M-theory
F-theory
AdS/CFT correspondence
Phenomenology
Cosmology
Landscape
Geometric Langlands correspondence
Mirror symmetry
Monstrous moonshine
Vertex algebra
K-theory
Theory of everything
Conformal field theory
Quantum gravity
Supersymmetry
Supergravity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑