Knowledge (XXG)

Duane's hypothesis

Source 📝

1469:
that this did not lead him to think that the collective global properties of the grating should make it a diffractor with corresponding quantal properties, such as would supply the diffracted electron with a definite trajectory. It seems, rather, that he thought of the diffraction as necessarily a manifestation of wave character belonging to the electron. It seems that he felt this was necessary to explain interference when the electron was detected far from the diffractor. Thus it seems possible that in 1927, Heisenberg was not thinking in terms of Duane's hypothesis of quantal transfer of translative momentum. By 1930, however, Heisenberg thought enough of Duane's hypothesis to expound it in his textbook.
236:." Examining the hypothesis of Duane on quantized translational momentum transfer, as it accounted for X-ray diffraction by crystals, and its follow-up by Compton, Epstein and Ehrenfest had written "The phenomena of Fraunhofer diffraction can be treated as well on the basis of the wave theory of light as by a combination of concept of light quanta with Bohr's principle of correspondence." Later, Born and Biem wrote: "Every physicist must accept Duane's rule." 22: 1490:. The quantum of translational momentum was proposed to be explained by global quantum physical properties of the diffractor arising from its spatial periodicity. This is consonant with present-day quantum mechanical thinking, in which macroscopic physical bodies are conceived as supporting collective modes, manifest for example in quantized quasi-particles, such as 1468:
It seems that Heisenberg in 1927 was thinking in terms of a classical diffractor. According to Bacciagaluppi & Crull (2009), Heisenberg in 1927 recognized that "the electron is deflected only in the discrete directions that depend on the global properties of the grating". Nevertheless, it seems
1464:
A classical diffractor is devoid of quantum character. For diffraction, classical physics usually considers the case of an incoming and an outgoing wave, not of particle beams. When diffraction of particle beams was discovered by experiment, it seemed fitting to many writers to continue to think in
1455:
The phenomena may be analysed in several appropriate ways. The incoming and outgoing diffracted objects may be treated severally as particles or as waves. The diffracting object may be treated as a macroscopic classical object free of quantum features, or it may be treated as a physical object with
254:
in 1923 pointed out that such quantum translational momentum transfer, examined by Fourier analysis in the old quantum theory, accounts for diffraction even by only two slits. More recently, two slit particle diffraction has been experimentally demonstrated with single-particle buildup of electron
101:
In effect, the observed scattering patterns are reproduced by a model where the possible reactions of the crystal are quantized, and the incident photons behave as free particles, as opposed to models where the incident particle acts as a wave, and the wave then 'collapses' to one of many possible
387:
is a momentum characteristic of the reflecting planes, in the direction perpendicular to them. The reflection is elastic, with negligible transfer of kinetic energy, because the crystal is massive. The initial momentum of the particle in the direction perpendicular to the reflecting planes was
2130:
Schmidt, L.P.H., Lower, J., Jahnke, T., SchĂ¶ĂŸler, S., Schöffler, M.S., Menssen, A., LĂ©vĂȘque, C., Sisourat, N., TaĂŻeb, R., Schmidt-Böcking, H., Dörner, R. (2013). Momentum transfer to a free floating double slit: realization of a thought experiment from the Einstein-Bohr debates,
661:
According to Ballentine, Duane's proposal of quantum translational momentum transfer is no longer needed as a special hypothesis; rather, it is predicted as a theorem of quantum mechanics. It is presented in terms of quantum mechanics by other present day writers also.
1485:
as particles according to Einstein's new conception of them, as carriers of quanta of momentum. The diffractor was imagined as exhibiting quantum transfer of translational momentum, in close analogy with transfer of angular momentum in integer multiples of the
2157:: 312–319; p. 313: "It is further important to realize that any determination of Planck's constant rests upon the comparison between aspects of the phenomena which can be described only by means of pictures not combinable on the basis of classical theories." 562:
provides information for a wave viewpoint. Before the discovery of quantum mechanics, de Broglie in 1923 discovered how to inter-translate the particle viewpoint information and the wave viewpoint information for material particles: use the
190:
also showed that the recoil of molecules during the emission and absorption of photons was consistent with, and necessary for, a quantum description of thermal radiation processes. Each photon acts as if it imparts a momentum impulse
964: 1385: 220:". He wrote "It seems to me that a connection of a completely formal kind exists between these and that other mystical explanation of reflection, diffraction and interference using 'spatial' quantisation which 116:
angles of X-rays by a crystal. Subsequently, the principles that Duane advanced were also seen to provide the correct relationships for optical scattering at gratings, and the diffraction of electrons.
1456:
essentially quantum character. Several cases of these forms of analysis, of which there are eight, have been considered. For example, Schrödinger proposed a purely wave account of the Compton effect.
832: 768: 1083: 345: 455: 1221: 98:
is that a simple quantum rule based on the lattice structure alone determines the quanta of momentum that can be exchanged between the crystal lattice and an incident particle.
1123: 545: 601: 509: 1465:
terms of classical diffractors, formally belonging to the macroscopic laboratory apparatus, and of wave character belonging to the quantum object that suffers diffraction.
1172: 105:
Duane argued that the way that crystal scattering can be explained by quantization of momentum is not explicable by models based on diffraction by classical waves, as in
697: 1422: 651: 1001: 1293: 1266: 1024: 840: 120:
In the early days of diffraction fine details were not observable because the detectors were inefficient, and the sources were also of low intensities. Hence
87:
photons by a crystal lattice. Duane showed that such a model gives the same scattering angles as the ones calculated via a wave diffraction model, see
1819: 2177:, North-Holland, Amsterdam, p. 52, "relations between dynamical variables of the particle and characteristic quantities of the associated wave". 2089: 2305: 1663: 1638: 1613: 1545: 2404: 1302: 1549: 2523: 2425: 2234: 2114: 1583: 1027: 66: 1864: 1477:
A quantum diffractor has an essentially quantum character. It was first conceived of in 1923 by William Duane, in the days of the
350:
then there is constructive interference between the reflected rays, which may be observed in the interference pattern. This is
1719: 2118: 1731: 275:
upon an array of crystal atomic planes, lying in a characteristic orientation, separated by a characteristic distance
1658:. Monographs on the physics and chemistry of materials (1. publ. in paperback ed.). Oxford: Oxford Univ. Press. 773: 709: 243:, linking wavelengths and frequencies to energy and momenta, gives an account of diffraction of material particles. 2552: 48: 1036: 217: 1800: 1513: 305: 225: 80: 2445: 2367: 2350: 2547: 2510:
edited by H. Mark, S. Fernbach, Interscience Publishers, New York, reprinted at pp. 335–339 in Heisenberg, W.,
1938: 1915: 1888: 1517: 1538:
The Present Status of the Quantum Theory of Light: Proceedings of a Symposium in Honour of Jean-Pierre Vigier
976:
In diffraction, the difference of the momenta of the scattered particle and the incident particle is called
357:
The same phenomenon, considered from a different viewpoint, is described by a beam of particles of momentum
140:
diffraction are now known which cannot be explained by his approach. Hence his approach is no longer used.
415: 2019: 1179: 255:
diffraction patterns, as may be seen in the photo in this reference and with helium atoms and molecules.
970: 1091: 2437: 1809: 1740: 1697: 1494:. Formally, the diffractor belongs to the quantum system, not to the classical laboratory apparatus. 1444: 1223:
is a better measure for the typical distance resolution of the reaction than the momenta themselves.
514: 221: 153: 137: 133: 573: 472: 2542: 2258: 2011: 1911: 1880: 1436: 1131: 983:
Such phenomena can also be considered from a wave viewpoint, by use of the reduced Planck constant
240: 229: 208:
In 1925, shortly before the development of the full mathematical description of quantum mechanics,
125: 2486:
Bacciagaluppi, G., Crull, E. (2009). Heisenberg (and Schrödinger, and Pauli) on hidden variables,
32: 2295: 2282: 2270: 2246: 1688: 1478: 1296: 1234: 2321:
Wennerstrom, H. (2014). Scattering and diffraction described using the momentum representation,
1839: 673: 36: 1684:"Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" 1390: 2519: 2515: 2503: 2472: 2421: 2400: 2342: 2301: 2230: 2211: 2189: 2110: 2035: 1989: 1843: 1659: 1634: 1609: 1579: 1541: 1440: 1226: 1126: 618: 129: 1973: 1748: 1705: 1571: 1432: 1425: 986: 213: 2309: 1271: 1244: 293:
denotes the number of planes of the separation, and is called the order of diffraction. If
2508:
Properties of Matter Under Unusual Conditions (In Honor of Edward Teller's 60th Birthday),
2455:. Translated from the second German edition by J.F. Shearer, W.M. Deans at pp. 124–129 in 1795: 1780: 1679: 1487: 1230: 959:{\displaystyle {\vec {q}}={\vec {p}}_{i1}-{\vec {p}}_{f1}={\vec {p}}_{f2}-{\vec {p}}_{i2}} 564: 187: 179: 149: 2468: 2207: 2031: 1998:, translated by C. Eckart and F.C. Hoyt, University of Chicago Press, Chicago, pp. 77–78. 1957: 124:
was the only type of diffraction observable, and Duane's approach could model it. Modern
2416:
Böni, P., Furrer, A. (1999). Introduction to neutron scattering, Chapter 1, pp. 1–27 of
1813: 1744: 1701: 2379: 2166: 1934: 1907: 1884: 1835: 1828: 1575: 1009: 351: 233: 121: 106: 88: 1563: 1540:, edited by Whitney, C.K., Jeffers, S., Roy, S., Vigier, J.-P., Hunter, G., Springer, 156:
could be explained if a beam of light was composed of a stream of discrete particles (
2536: 2338: 2198:, translated by C. Eckart and F.C. Hoyt, University of Chicago Press, Chicago, p. 77. 2065: 2007: 1823: 251: 398:. For reflection, the change of momentum of the particle in that direction must be 1756: 369:
upon the same array of crystal atomic planes. It is supposed that a collective of
1238: 1031: 1004: 2506:(1969/1985) The concept of "understanding" in theoretical physics, pp. 7–10 in 2069: 2147: 2049: 1086: 703: 113: 1710: 1683: 460:
This agrees with the observed Bragg condition for the diffraction pattern if
132:
instruments are many orders of magnitude brighter, so many find details of
1961: 1860: 209: 375:
such atomic planes reflects the particle, transferring to it a momentum
281:. Two rays of the beam are reflected from planes separated by distance 1977: 1752: 246: 2088:
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H. (1989).
1491: 606:
It follows that the characteristic quantum of translational momentum
157: 2193: 2090:
Demonstration of single‐electron buildup of an interference pattern
1993: 1380:{\displaystyle {\vec {G}}={\vec {Q}}={\vec {k}}_{f}-{\vec {k}}_{i}} 1482: 84: 83:
presented a discrete momentum-exchange model of the reflection of
2016:
Introduction to Quantum Mechanics: with Applications to Chemistry
1720:"Einstein's proposal of the photon concept: A translation of the 2273:(2010). Linear momentum quantization in periodic structures ii, 1847: 1424:. As momentum is conserved, the transfer of momentum occurs to 1536:
Bitsakis, E.(1997). The wave-particle duality, pp. 333–348 in
1447:
are nowadays commonly studied as momentum transfer processes.
247:
Young's two-slit diffraction experiment, with Fourier analysis
239:
Using Duane's 1923 hypothesis, the old quantum theory and the
15: 2249:(1967). Linear momentum quantization in periodic structures, 2399:, third edition, Cambridge University Press, Cambridge UK, 1295:, respectively, are equal. Just the direction changes by a 1125:. Often, momentum transfer is given in wavenumber units in 2150:(1948). On the notions of causality and complementarity, 1633:. Dover books on physics and chemistry. New York: Dover. 2397:
Introduction to the Theory of Thermal Neutron Scattering
1518:
The transfer in quanta of radiation momentum to matter,
670:
One may consider a particle with translational momentum
1608:(3rd ed.). Upper Saddle River, NJ: Prentice Hall. 44: 2173:, volume 1, translated by G.M. Temmer from the French 1233:. It conserves the particle energy and thus is called 1451:
Physical accounts of wave and of particle diffraction
1393: 1305: 1274: 1247: 1182: 1134: 1094: 1039: 1012: 989: 843: 776: 712: 676: 621: 576: 556:
provides information for a particle viewpoint, while
517: 475: 418: 308: 2420:, edited by A. Furrer, World Scientific, Singapore, 228:
proposed and which has been more closely studied by
195:
equal to its energy divided by the speed of light, (
41:
and explaining the responses to the fringe theories.
2488:
Studies in History and Philosophy of Modern Physics
2300:, third edition, New Age International, New Delhi, 1939:The quantum integral and diffraction by a crystal, 1785:
Mitteilungen der Physikalischen Gesellschaft ZĂŒrich
1654:Peng, L.-M.; Dudarev, S. L.; Whelan, M. J. (2011). 1176:Momentum transfer is an important quantity because 212:
drew Einstein's attention to the then-new idea of "
2185: 2183: 1827: 1416: 1379: 1287: 1260: 1215: 1166: 1117: 1077: 1018: 995: 958: 826: 762: 691: 645: 595: 539: 503: 449: 339: 2364:Twentieth-Century Philosophy of Science:a History 2070:The interference of light and the quantum theory 1889:The quantum theory of the Fraunhofer diffraction 706:of two colliding particles with initial momenta 2514:, series C, volume 3, ed. W. Blum, H.-P. DĂŒrr, 2040:, Sir Isaac Pitman and Sons, London, pp. 19–22. 1656:High energy electron diffraction and microscopy 827:{\displaystyle {\vec {p}}_{f1},{\vec {p}}_{f2}} 763:{\displaystyle {\vec {p}}_{i1},{\vec {p}}_{i2}} 612:for the crystal planes of interest is given by 174:) of each photon being equal to the frequency ( 2477:, Sir Isaac Pitman and Sons, London pp. 16–18. 1604:Cullity, Bernard D.; Stock, Stuart R. (2001). 2195:The Physical Principles of the Quantum Theory 1995:The Physical Principles of the Quantum Theory 8: 2347:The Historical Development of Quantum Theory 1916:Remarks on the quantum theory of diffraction 1798:(1917). "Zur Quantentheorie der Strahlung". 1783:(1916). "Zur Quantentheorie der Strahlung". 1509: 1507: 1078:{\displaystyle {\vec {k}}={\vec {p}}/\hbar } 2349:, volume 1, part 2, Springer, pp. 555–556 2216:, Sir Isaac Pitman and Sons, London, p. 20. 1871:, translated by I. Born, Macmillan, London. 567:and recall Einstein's formula for photons: 340:{\displaystyle 2d\sin \theta =n\lambda \,,} 112:Duane applied his hypothesis to derive the 2323:Advances in Colloid and Interface Science 1709: 1406: 1392: 1387:with the relation to the lattice spacing 1371: 1360: 1359: 1349: 1338: 1337: 1322: 1321: 1307: 1306: 1304: 1279: 1273: 1252: 1246: 1208: 1200: 1195: 1181: 1158: 1145: 1133: 1107: 1093: 1067: 1056: 1055: 1041: 1040: 1038: 1011: 988: 947: 936: 935: 922: 911: 910: 897: 886: 885: 872: 861: 860: 845: 844: 842: 815: 804: 803: 790: 779: 778: 775: 751: 740: 739: 726: 715: 714: 711: 678: 677: 675: 639: 631: 620: 589: 575: 533: 516: 493: 479: 474: 443: 417: 333: 307: 67:Learn how and when to remove this message 1964:, Biem, W. (1968). 'Dialog on dualism', 2227:Quantum Mechanics: a Modern Development 1503: 1192: 1072: 990: 2384:Non-equilibrium Statistical Mechanics 2056:, Prentice Hall, New York, pp. 71–73. 1718:Arons, A. B.; Peppard, M. B. (1965). 1241:of the final and incident particles, 7: 834:. The momentum transfer is given by 450:{\displaystyle 2p\sin \theta =nP\,.} 144:Early developments in quantum theory 2459:, Blackie & Son, London (1928). 1216:{\displaystyle \Delta x=\hbar /|q|} 2457:Collected papers on Wave Mechanics 2105:Dragoman, D. Dragoman, M. (2004). 1183: 969:where the last identity expresses 152:presented the hypothesis that the 14: 2440:(1927). Über den Comptoneffekt, 2366:, self-published by the author, 2259:doi:10.1016/0031-8914(67)90138-3 1576:10.1016/b978-044482218-5/50008-0 1481:, to account for diffraction of 1118:{\displaystyle \lambda =2\pi /k} 20: 2418:Frontiers of Neutron Scattering 2386:, Wiley, New York, pp. 258–262. 2283:doi:10.1016/j.physa.2009.12.026 2229:, World Scientific, Singapore, 1793:and a nearly identical version 1629:Warren, Bertram Eugene (1990). 540:{\displaystyle p\lambda =Pd\,.} 2294:Thankappan, V.K. (1985/2012). 1570:, Elsevier, pp. 123–144, 1365: 1343: 1327: 1312: 1209: 1201: 1061: 1046: 941: 916: 891: 866: 850: 809: 784: 745: 720: 683: 596:{\displaystyle p\lambda =h\,.} 504:{\displaystyle p/d=P/\lambda } 1: 1606:Elements of X-ray diffraction 1167:{\displaystyle Q=k_{f}-k_{i}} 770:, resulting in final momenta 79:In 1923, American physicist 47:or discuss the issue on the 2395:Squires, G.L. (1978/2012). 2107:Quantum–Classical Analogies 1732:American Journal of Physics 1564:"Diffraction from crystals" 702:In the simplest example of 2569: 1085:, which is related to the 692:{\displaystyle {\vec {p}}} 2225:Ballentine, L.E. (1998). 2018:, McGraw-Hill, New York, 1869:The Born-Einstein Letters 1801:Physikalische Zeitschrift 1431:For the investigation of 1417:{\displaystyle G=2\pi /d} 1711:10.1002/andp.19053220607 1562:COWLEY, JOHN M. (1995), 699:, a vectorial quantity. 646:{\displaystyle P=h/d\,.} 160:), each with an energy ( 2133:Physical Review Letters 2074:Proc. Natl. Acad. Sci. 1941:Proc. Natl. Acad. Sci. 1920:Proc. Natl. Acad. Sci. 1893:Proc. Natl. Acad. Sci. 1865:Letter of 15 July 1925 1830:The Old Quantum Theory 1520:Proc. Natl. Acad. Sci. 1418: 1381: 1289: 1262: 1217: 1168: 1119: 1079: 1020: 997: 996:{\displaystyle \hbar } 960: 828: 764: 693: 647: 597: 541: 505: 451: 341: 39:to the mainstream view 2362:Hickey, T.J. (2014). 1419: 1382: 1290: 1288:{\displaystyle k_{i}} 1263: 1261:{\displaystyle k_{f}} 1229:occurs on the atomic 1218: 1169: 1120: 1080: 1021: 998: 971:momentum conservation 961: 829: 765: 694: 648: 598: 542: 506: 452: 342: 269:is incident at angle 263:A wave of wavelength 2109:, Springer, Berlin, 1460:Classical diffractor 1445:electron diffraction 1391: 1303: 1272: 1245: 1180: 1132: 1092: 1037: 1010: 987: 841: 774: 710: 674: 619: 574: 515: 473: 416: 306: 178:) multiplied by the 154:photoelectric effect 126:electron microscopes 2175:MĂ©canique Quantique 1814:1917PhyZ...18..121E 1745:1965AmJPh..33..367A 1702:1905AnP...322..132E 1568:Diffraction Physics 550:It is evident that 241:de Broglie relation 94:The key feature of 2442:Annalen der Physik 1722:Annalen der Physik 1689:Annalen der Physik 1479:old quantum theory 1473:Quantum diffractor 1414: 1377: 1297:reciprocal lattice 1285: 1258: 1235:elastic scattering 1213: 1164: 1115: 1075: 1016: 993: 956: 824: 760: 689: 643: 593: 537: 501: 447: 363:incident at angle 337: 186:). Later, in 1916 96:Duane's hypothesis 37:appropriate weight 2553:Quantum mechanics 2518:, Piper, Munich, 2474:Quantum Mechanics 2306:978-81-224-3357-9 2297:Quantum Mechanics 2213:Quantum Mechanics 2171:Quantum Mechanics 2037:Quantum Mechanics 1978:10.1063/1.3035103 1753:10.1119/1.1971542 1665:978-0-19-960224-7 1640:978-0-486-66317-3 1631:X-ray diffraction 1615:978-0-201-61091-8 1546:978-94-010-6396-8 1368: 1346: 1330: 1315: 1227:Bragg diffraction 1127:reciprocal length 1064: 1049: 1019:{\displaystyle k} 978:momentum transfer 944: 919: 894: 869: 853: 812: 787: 748: 723: 686: 657:Quantum mechanics 259:Bragg diffraction 130:x-ray diffraction 77: 76: 69: 35:, without giving 2560: 2527: 2501: 2495: 2484: 2478: 2466: 2460: 2453:(2)>: 257–264 2435: 2429: 2414: 2408: 2405:978-110-764406-9 2393: 2387: 2377: 2371: 2360: 2354: 2336: 2330: 2319: 2313: 2292: 2286: 2268: 2262: 2244: 2238: 2223: 2217: 2205: 2199: 2187: 2178: 2164: 2158: 2145: 2139: 2128: 2122: 2103: 2097: 2086: 2080: 2063: 2057: 2047: 2041: 2029: 2023: 2005: 1999: 1987: 1981: 1955: 1949: 1932: 1926: 1905: 1899: 1878: 1872: 1858: 1852: 1851: 1833: 1818:Translated here 1817: 1792: 1777: 1771: 1770: 1768: 1767: 1761: 1755:. Archived from 1728: 1715: 1713: 1676: 1670: 1669: 1651: 1645: 1644: 1626: 1620: 1619: 1601: 1595: 1594: 1593: 1592: 1559: 1553: 1534: 1528: 1511: 1433:condensed matter 1426:crystal momentum 1423: 1421: 1420: 1415: 1410: 1386: 1384: 1383: 1378: 1376: 1375: 1370: 1369: 1361: 1354: 1353: 1348: 1347: 1339: 1332: 1331: 1323: 1317: 1316: 1308: 1294: 1292: 1291: 1286: 1284: 1283: 1267: 1265: 1264: 1259: 1257: 1256: 1222: 1220: 1219: 1214: 1212: 1204: 1199: 1173: 1171: 1170: 1165: 1163: 1162: 1150: 1149: 1124: 1122: 1121: 1116: 1111: 1084: 1082: 1081: 1076: 1071: 1066: 1065: 1057: 1051: 1050: 1042: 1025: 1023: 1022: 1017: 1002: 1000: 999: 994: 965: 963: 962: 957: 955: 954: 946: 945: 937: 930: 929: 921: 920: 912: 905: 904: 896: 895: 887: 880: 879: 871: 870: 862: 855: 854: 846: 833: 831: 830: 825: 823: 822: 814: 813: 805: 798: 797: 789: 788: 780: 769: 767: 766: 761: 759: 758: 750: 749: 741: 734: 733: 725: 724: 716: 698: 696: 695: 690: 688: 687: 679: 652: 650: 649: 644: 635: 611: 602: 600: 599: 594: 561: 555: 546: 544: 543: 538: 510: 508: 507: 502: 497: 483: 465: 456: 454: 453: 448: 409:. Consequently, 408: 397: 386: 380: 374: 368: 362: 346: 344: 343: 338: 298: 292: 286: 280: 274: 268: 204: 169: 72: 65: 61: 58: 52: 24: 23: 16: 2568: 2567: 2563: 2562: 2561: 2559: 2558: 2557: 2548:Albert Einstein 2533: 2532: 2531: 2530: 2512:Collected Works 2502: 2498: 2485: 2481: 2467: 2463: 2438:Schrödinger, E. 2436: 2432: 2415: 2411: 2394: 2390: 2378: 2374: 2361: 2357: 2337: 2333: 2320: 2316: 2293: 2289: 2269: 2265: 2245: 2241: 2224: 2220: 2206: 2202: 2188: 2181: 2165: 2161: 2146: 2142: 2129: 2125: 2104: 2100: 2092:, Am. J. Phys. 2087: 2083: 2064: 2060: 2048: 2044: 2030: 2026: 2006: 2002: 1988: 1984: 1956: 1952: 1933: 1929: 1906: 1902: 1879: 1875: 1867:, pp. 84–85 in 1859: 1855: 1822: 1794: 1779: 1778: 1774: 1765: 1763: 1759: 1726: 1717: 1716:Translated in 1678: 1677: 1673: 1666: 1653: 1652: 1648: 1641: 1628: 1627: 1623: 1616: 1603: 1602: 1598: 1590: 1588: 1586: 1561: 1560: 1556: 1535: 1531: 1512: 1505: 1500: 1488:Planck constant 1475: 1462: 1453: 1389: 1388: 1358: 1336: 1301: 1300: 1275: 1270: 1269: 1248: 1243: 1242: 1231:crystal lattice 1178: 1177: 1154: 1141: 1130: 1129: 1090: 1089: 1035: 1034: 1008: 1007: 985: 984: 934: 909: 884: 859: 839: 838: 802: 777: 772: 771: 738: 713: 708: 707: 672: 671: 668: 659: 617: 616: 607: 572: 571: 565:Planck constant 557: 551: 513: 512: 471: 470: 461: 414: 413: 399: 389: 382: 376: 370: 364: 358: 304: 303: 294: 288: 282: 276: 270: 264: 261: 249: 196: 188:Albert Einstein 180:Planck constant 161: 150:Albert Einstein 146: 73: 62: 56: 53: 45:help improve it 42: 33:fringe theories 25: 21: 12: 11: 5: 2566: 2564: 2556: 2555: 2550: 2545: 2535: 2534: 2529: 2528: 2504:Heisenberg, W. 2496: 2479: 2461: 2430: 2409: 2388: 2372: 2355: 2343:Rechenberg, H. 2331: 2314: 2287: 2263: 2239: 2218: 2200: 2190:Heisenberg, W. 2179: 2159: 2140: 2138:: 103201, 1–5. 2123: 2098: 2081: 2058: 2054:Quantum Theory 2042: 2024: 2000: 1990:Heisenberg, W. 1982: 1950: 1927: 1900: 1873: 1853: 1836:Pergamon Press 1772: 1724:paper of 1905" 1696:(6): 132–148. 1671: 1664: 1646: 1639: 1621: 1614: 1596: 1584: 1554: 1529: 1502: 1501: 1499: 1496: 1474: 1471: 1461: 1458: 1452: 1449: 1413: 1409: 1405: 1402: 1399: 1396: 1374: 1367: 1364: 1357: 1352: 1345: 1342: 1335: 1329: 1326: 1320: 1314: 1311: 1282: 1278: 1255: 1251: 1211: 1207: 1203: 1198: 1194: 1191: 1188: 1185: 1161: 1157: 1153: 1148: 1144: 1140: 1137: 1114: 1110: 1106: 1103: 1100: 1097: 1074: 1070: 1063: 1060: 1054: 1048: 1045: 1028:absolute value 1015: 992: 967: 966: 953: 950: 943: 940: 933: 928: 925: 918: 915: 908: 903: 900: 893: 890: 883: 878: 875: 868: 865: 858: 852: 849: 821: 818: 811: 808: 801: 796: 793: 786: 783: 757: 754: 747: 744: 737: 732: 729: 722: 719: 685: 682: 667: 664: 658: 655: 654: 653: 642: 638: 634: 630: 627: 624: 604: 603: 592: 588: 585: 582: 579: 548: 547: 536: 532: 529: 526: 523: 520: 500: 496: 492: 489: 486: 482: 478: 458: 457: 446: 442: 439: 436: 433: 430: 427: 424: 421: 348: 347: 336: 332: 329: 326: 323: 320: 317: 314: 311: 260: 257: 248: 245: 170:) the energy ( 145: 142: 75: 74: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 2565: 2554: 2551: 2549: 2546: 2544: 2541: 2540: 2538: 2525: 2524:3-492-02927-2 2521: 2517: 2516:H. Rechenberg 2513: 2509: 2505: 2500: 2497: 2493: 2489: 2483: 2480: 2476: 2475: 2470: 2465: 2462: 2458: 2454: 2452: 2448: 2443: 2439: 2434: 2431: 2427: 2426:981-02-4069-4 2423: 2419: 2413: 2410: 2406: 2402: 2398: 2392: 2389: 2385: 2381: 2380:Prigogine, I. 2376: 2373: 2369: 2365: 2359: 2356: 2352: 2348: 2344: 2340: 2335: 2332: 2328: 2324: 2318: 2315: 2311: 2307: 2303: 2299: 2298: 2291: 2288: 2284: 2281:: 1585–1593, 2280: 2276: 2272: 2271:Van Vliet, K. 2267: 2264: 2260: 2256: 2252: 2248: 2247:Van Vliet, K. 2243: 2240: 2236: 2235:981-02-2707-8 2232: 2228: 2222: 2219: 2215: 2214: 2209: 2204: 2201: 2197: 2196: 2191: 2186: 2184: 2180: 2176: 2172: 2168: 2163: 2160: 2156: 2153: 2149: 2144: 2141: 2137: 2134: 2127: 2124: 2120: 2116: 2115:3-540-20147-5 2112: 2108: 2102: 2099: 2096:(2): 117–120. 2095: 2091: 2085: 2082: 2078: 2075: 2071: 2067: 2062: 2059: 2055: 2051: 2046: 2043: 2039: 2038: 2033: 2028: 2025: 2021: 2017: 2013: 2009: 2008:Pauling, L.C. 2004: 2001: 1997: 1996: 1991: 1986: 1983: 1979: 1975: 1971: 1967: 1966:Physics Today 1963: 1959: 1954: 1951: 1947: 1946:(11): 360–362 1945: 1942: 1936: 1935:Compton, A.H. 1931: 1928: 1924: 1921: 1917: 1914:(1924/1927). 1913: 1912:Epstein, P.S. 1909: 1908:Ehrenfest, P. 1904: 1901: 1897: 1894: 1890: 1886: 1885:Ehrenfest, P. 1882: 1881:Epstein, P.S. 1877: 1874: 1870: 1866: 1863:(1925/1971). 1862: 1857: 1854: 1849: 1845: 1841: 1837: 1832: 1831: 1825: 1820: 1815: 1811: 1807: 1803: 1802: 1797: 1790: 1786: 1782: 1776: 1773: 1762:on 2016-03-04 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1733: 1725: 1723: 1712: 1707: 1703: 1699: 1695: 1691: 1690: 1685: 1681: 1675: 1672: 1667: 1661: 1657: 1650: 1647: 1642: 1636: 1632: 1625: 1622: 1617: 1611: 1607: 1600: 1597: 1587: 1585:9780444822185 1581: 1577: 1573: 1569: 1565: 1558: 1555: 1551: 1547: 1543: 1539: 1533: 1530: 1526: 1524: 1521: 1515: 1510: 1508: 1504: 1497: 1495: 1493: 1489: 1484: 1480: 1472: 1470: 1466: 1459: 1457: 1450: 1448: 1446: 1442: 1438: 1434: 1429: 1427: 1411: 1407: 1403: 1400: 1397: 1394: 1372: 1362: 1355: 1350: 1340: 1333: 1324: 1318: 1309: 1298: 1280: 1276: 1253: 1249: 1240: 1236: 1232: 1228: 1224: 1205: 1196: 1189: 1186: 1174: 1159: 1155: 1151: 1146: 1142: 1138: 1135: 1128: 1112: 1108: 1104: 1101: 1098: 1095: 1088: 1068: 1058: 1052: 1043: 1033: 1029: 1013: 1006: 981: 979: 974: 972: 951: 948: 938: 931: 926: 923: 913: 906: 901: 898: 888: 881: 876: 873: 863: 856: 847: 837: 836: 835: 819: 816: 806: 799: 794: 791: 781: 755: 752: 742: 735: 730: 727: 717: 705: 700: 680: 665: 663: 656: 640: 636: 632: 628: 625: 622: 615: 614: 613: 610: 590: 586: 583: 580: 577: 570: 569: 568: 566: 560: 554: 534: 530: 527: 524: 521: 518: 498: 494: 490: 487: 484: 480: 476: 469: 468: 467: 466:is such that 464: 444: 440: 437: 434: 431: 428: 425: 422: 419: 412: 411: 410: 407: 403: 396: 392: 385: 379: 373: 367: 361: 355: 353: 334: 330: 327: 324: 321: 318: 315: 312: 309: 302: 301: 300: 299:is such that 297: 291: 285: 279: 273: 267: 258: 256: 253: 252:Gregory Breit 244: 242: 237: 235: 231: 227: 223: 219: 215: 211: 206: 203: 199: 194: 189: 185: 181: 177: 173: 168: 164: 159: 155: 151: 143: 141: 139: 135: 131: 127: 123: 118: 115: 110: 108: 103: 99: 97: 92: 90: 86: 82: 81:William Duane 71: 68: 60: 50: 46: 40: 38: 34: 29:This article 27: 18: 17: 2511: 2507: 2499: 2491: 2487: 2482: 2473: 2464: 2456: 2450: 2446: 2441: 2433: 2417: 2412: 2396: 2391: 2383: 2375: 2363: 2358: 2346: 2334: 2326: 2322: 2317: 2296: 2290: 2278: 2274: 2266: 2254: 2250: 2242: 2226: 2221: 2212: 2203: 2194: 2174: 2170: 2162: 2154: 2151: 2143: 2135: 2132: 2126: 2106: 2101: 2093: 2084: 2076: 2073: 2061: 2053: 2045: 2036: 2027: 2015: 2012:Wilson, E.B. 2003: 1994: 1985: 1972:(8): 55–56; 1969: 1965: 1953: 1943: 1940: 1930: 1922: 1919: 1903: 1895: 1892: 1876: 1868: 1856: 1829: 1824:ter Haar, D. 1805: 1799: 1796:Einstein, A. 1788: 1784: 1781:Einstein, A. 1775: 1764:. Retrieved 1757:the original 1736: 1730: 1721: 1693: 1687: 1680:Einstein, A. 1674: 1655: 1649: 1630: 1624: 1605: 1599: 1589:, retrieved 1567: 1557: 1537: 1532: 1525:(5): 158–164 1522: 1519: 1476: 1467: 1463: 1454: 1430: 1239:wave numbers 1225: 1175: 982: 977: 975: 968: 701: 669: 660: 608: 605: 558: 552: 549: 462: 459: 405: 401: 394: 390: 383: 377: 371: 365: 359: 356: 349: 295: 289: 283: 277: 271: 265: 262: 250: 238: 207: 201: 197: 192: 183: 175: 171: 166: 162: 147: 119: 111: 104: 100: 95: 93: 78: 63: 54: 31:may present 30: 2167:Messiah, A. 2119:pp. 170–175 1838:. pp.  1808:: 121–128. 1032:wave vector 1005:wave number 666:Diffraction 352:Bragg's law 122:Bragg's law 107:Bragg's Law 89:Bragg's Law 57:August 2023 2543:Max Planck 2537:Categories 2494:: 374–382. 2444:series 4, 2329:: 105–112. 2257:: 97–106, 2152:Dialectica 2079:: 238–243. 1925:: 400–408. 1898:: 133–139. 1887:, (1924). 1766:2014-09-14 1739:(5): 367. 1591:2023-08-13 1498:References 1087:wavelength 704:scattering 214:de Broglie 114:scattering 102:outcomes. 2526:, p. 336. 2469:LandĂ©, A. 2339:Mehra, J. 2275:Physica A 2237:, p. 136. 2208:LandĂ©, A. 2066:Breit, G. 2032:LandĂ©, A. 2020:pp. 34–36 1958:LandĂ©, A. 1514:Duane, W. 1404:π 1366:→ 1356:− 1344:→ 1328:→ 1313:→ 1193:ℏ 1184:Δ 1152:− 1105:π 1096:λ 1073:ℏ 1062:→ 1047:→ 991:ℏ 942:→ 932:− 917:→ 892:→ 882:− 867:→ 851:→ 810:→ 785:→ 746:→ 721:→ 684:→ 581:λ 522:λ 499:λ 432:θ 429:⁡ 331:λ 322:θ 319:⁡ 234:Ehrenfest 148:In 1905, 49:talk page 2471:(1951). 2382:(1962). 2345:(2001). 2210:(1951). 2192:(1930). 2169:(1961). 2148:Bohr, N. 2068:(1923). 2052:(1951). 2050:Bohm, D. 2034:(1951). 2014:(1935). 1992:(1930). 1962:Born, M. 1937:(1923). 1861:Born, M. 1848:66029628 1826:(1967). 1791:: 47–62. 1682:(1905). 1516:(1923). 381:, where 287:, where 134:electron 2310:pp. 6–7 2251:Physica 1840:167–183 1821:and in 1810:Bibcode 1741:Bibcode 1698:Bibcode 1492:phonons 1437:neutron 1299:vector 1030:of the 1026:is the 230:Epstein 222:Compton 158:photons 43:Please 2522:  2424:  2403:  2304:  2233:  2113:  1846:  1662:  1637:  1612:  1582:  1550:p. 338 1544:  1483:X-rays 1237:. The 1003:. The 1760:(PDF) 1727:(PDF) 1441:X-ray 226:Duane 218:waves 138:x-ray 85:X-ray 2520:ISBN 2449:< 2422:ISBN 2401:ISBN 2368:here 2351:here 2302:ISBN 2231:ISBN 2111:ISBN 1844:LCCN 1660:ISBN 1635:ISBN 1610:ISBN 1580:ISBN 1542:ISBN 1443:and 1268:and 404:sin 393:sin 232:and 224:and 210:Born 136:and 128:and 2451:387 2327:205 2279:389 2136:111 1974:doi 1749:doi 1706:doi 1572:doi 511:or 426:sin 316:sin 216:'s 205:). 202:E/c 2539:: 2492:40 2490:, 2447:82 2341:, 2325:, 2308:, 2277:, 2255:35 2253:, 2182:^ 2117:, 2094:57 2072:, 2010:, 1970:21 1968:, 1960:, 1923:13 1918:, 1910:, 1896:10 1891:, 1883:, 1842:. 1834:. 1806:18 1804:. 1789:18 1787:. 1747:. 1737:33 1735:. 1729:. 1704:. 1694:17 1692:. 1686:. 1578:, 1566:, 1548:, 1506:^ 1439:, 1435:, 1428:. 980:. 973:. 378:nP 354:. 284:nd 200:= 167:hf 165:= 109:. 91:. 2428:. 2407:. 2370:. 2353:. 2312:. 2285:. 2261:. 2155:2 2121:. 2077:9 2022:. 1980:. 1976:: 1948:. 1944:9 1850:. 1816:. 1812:: 1769:. 1751:: 1743:: 1714:. 1708:: 1700:: 1668:. 1643:. 1618:. 1574:: 1552:. 1527:. 1523:9 1412:d 1408:/ 1401:2 1398:= 1395:G 1373:i 1363:k 1351:f 1341:k 1334:= 1325:Q 1319:= 1310:G 1281:i 1277:k 1254:f 1250:k 1210:| 1206:q 1202:| 1197:/ 1190:= 1187:x 1160:i 1156:k 1147:f 1143:k 1139:= 1136:Q 1113:k 1109:/ 1102:2 1099:= 1069:/ 1059:p 1053:= 1044:k 1014:k 952:2 949:i 939:p 927:2 924:f 914:p 907:= 902:1 899:f 889:p 877:1 874:i 864:p 857:= 848:q 820:2 817:f 807:p 800:, 795:1 792:f 782:p 756:2 753:i 743:p 736:, 731:1 728:i 718:p 681:p 641:. 637:d 633:/ 629:h 626:= 623:P 609:P 591:. 587:h 584:= 578:p 559:λ 553:p 535:. 531:d 528:P 525:= 519:p 495:/ 491:P 488:= 485:d 481:/ 477:p 463:Ξ 445:. 441:P 438:n 435:= 423:p 420:2 406:Ξ 402:p 400:2 395:Ξ 391:p 384:P 372:n 366:Ξ 360:p 335:, 328:n 325:= 313:d 310:2 296:Ξ 290:n 278:d 272:Ξ 266:λ 198:p 193:p 184:h 182:( 176:f 172:E 163:E 70:) 64:( 59:) 55:( 51:.

Index

fringe theories
appropriate weight
help improve it
talk page
Learn how and when to remove this message
William Duane
X-ray
Bragg's Law
Bragg's Law
scattering
Bragg's law
electron microscopes
x-ray diffraction
electron
x-ray
Albert Einstein
photoelectric effect
photons
Planck constant
Albert Einstein
Born
de Broglie
waves
Compton
Duane
Epstein
Ehrenfest
de Broglie relation
Gregory Breit
Bragg's law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑