Knowledge (XXG)

Dyakonov surface wave

Source 📝

89:
characteristics of the wave. Consequently, numerous potential applications are envisaged, including devices for integrated optics, chemical and biological surface sensing, etc. However, it is not easy to satisfy the necessary conditions for the DSW, and because of this the first proof-of-principle experimental observation of DSW was reported only 20 years after the original prediction.
331:
The extreme sensitivity of DSW to anisotropy, and thereby to stress, along with their low-loss (long-range) character render them particularly attractive for enabling high sensitivity tactile and ultrasonic sensing for next-generation high-speed transduction and read-out technologies. Moreover, the
92:
A large number of theoretical work appeared dealing with various aspects of this phenomenon, see the detailed review. In particular, DSW propagation at magnetic interfaces, in left-handed materials, in electro-optical, and chiral materials was studied. Resonant transmission due to DSW in structures
88:
In recent years, the significance and potential of the DSW have attracted the attention of many researchers: a change of the constitutive properties of one or both of the two partnering materials – due to, say, infiltration by any chemical or biological agent – could measurably change the
327:
of at least one of the constituent materials and the limited number of naturally available materials fulfilling this requirement. However, this is about to change in light of novel artificially engineered metamaterials and revolutionary material synthesis techniques.
762:
Nelatury, S. R., Polo jr., J. A., and Lakhtakia, A. (2008). "Electrical Control of Surface-Wave Propagation at the Planar Interface of a Linear Electro-Optic Material and an Isotropic Dielectric Material".
227: 65:, and showed that under certain conditions waves localized at the interface should exist. Later, similar waves were predicted to exist at the interface between two identical uniaxial crystals with 695:
Crassovan, L. C., Takayama, D., Artigas, D., Johansen, S. K., Mihalache, D., and Torner, L. (2006). "Enhanced localization of Dyakonov-like surface waves in left-handed materials".
1452: 1395: 1338: 1289: 1225: 1169: 1112: 1055: 994: 885: 818: 748: 681: 624: 575: 503: 446: 1183:
Takayama, O., Shkondin, E., Bogdanov A., Panah, M. E., Golenitskii, K., Dmitriev, P., Repän, T., Malureanu, R., Belov, P., Jensen, F., and Lavrinenko, A. (2017).
518: 81:
of one of the materials forming the interface is negative, while the other one is positive (for example, this is the case for the air/metal interface below the
832:
Nelatury, S. R., Polo jr., J. A., and Lakhtakia, A. (2008). "On widening the angular existence domain for Dyakonov surface waves using the Pockels effect".
133:
axis is parallel to the interface. For this configuration, the DSW can propagate along the interface within certain angular intervals with respect to the
85:). In contrast, the DSW can propagate when both materials are transparent; hence they are virtually lossless, which is their most fascinating property. 319:
A widespread experimental investigation of DSW material systems and evolution of related practical devices has been largely limited by the stringent
899:
Gao, Jun; Lakhtakia, Akhlesh; Lei, Mingkai (2009). "On Dyakonov-Tamm waves localized to a central twist defect in a structurally chiral material".
1409:
Takayama, O.; Artigas, D., Torner, L. (2014). "Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves".
93:
using prisms was predicted, and combination and interaction between DSW and surface plasmons (Dyakonov plasmons) was studied and observed.
1239:
Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bogdanov A., and Lavrinenko, A. (2018).
1513: 179: 1303:
Takayama, O.; Crasovan, L. C., Johansen, S. K.; Mihalache, D, Artigas, D.; Torner, L. (2008). "Dyakonov Surface Waves: A Review".
935: 419:
Averkiev, N. S. and Dyakonov, M. I. (1990). "Electromagnetic waves localized at the interface of transparent anisotropic media".
372: 638:
Crassovan, L. C., Artigas, D., Mihalache, D., and Torner, L. (2005). "Optical Dyakonov surface waves at magnetic interfaces".
101:
The simplest configuration considered in Ref. 1 consists of an interface between an isotropic material with permittivity
24: 74: 1240: 1518: 1352:
Takayama, O.; Bogdanov, A. A., Lavrinenko, A. V. (2017). "Photonic surface waves on metamaterial interfaces".
341: 1069:
Jacob, Z. and Narimanov, E. E. (2008). "Optical hyperspace for plasmons: Dyakonov states in metamaterials".
1184: 285:). However the physically more important group velocity interval is substantially larger (proportional to 1523: 1468:"Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials" 782: 589:
Takayama, O., Crassovan, L. C., Mihalache, D., and Torner, L. (2008). "Dyakonov Surface Waves: A Review".
66: 1446: 1389: 1332: 1283: 1219: 1163: 1106: 1049: 988: 879: 812: 742: 675: 618: 569: 497: 440: 44: 1479: 1418: 1361: 1255: 1135: 1078: 950: 934:
Takayama, O., Nikitin, A. Yu., Martin-Moreno, L., Mihalache, D., Torner, L., and Artigas, A. (2011).
908: 851: 714: 647: 533: 469: 428: 387: 787: 58: 1320: 1271: 1207: 1094: 1025: 867: 841: 800: 772: 730: 704: 606: 557: 485: 126: 49: 1434: 1377: 1151: 976: 663: 549: 157:
is satisfied. Thus DSW are supported by interfaces with positive birefringent crystals only (
1487: 1426: 1369: 1312: 1263: 1199: 1143: 1086: 1035: 968: 958: 916: 859: 792: 722: 655: 598: 541: 477: 82: 70: 62: 36: 1483: 1422: 1365: 1259: 1139: 1082: 954: 912: 855: 718: 651: 537: 473: 432: 391: 1507: 1324: 1275: 1211: 1126:
Takayama, O., Artigas, D., and Torner, L. (2012). "Coupling plasmons and dyakonons".
734: 610: 489: 395: 324: 323:
conditions necessary for successful DSW propagation, particularly the high degree of
32: 1098: 804: 561: 871: 545: 346: 78: 1203: 1492: 1467: 1373: 726: 1316: 1267: 796: 602: 351: 332:
unique directionality of DSW can be used for the steering of optical signals.
320: 481: 920: 460:
Torner, L., Artigas, D., and Takayama, O. (2009). "Dyakonov Surface Waves".
257:
and even for the most strongly birefringent natural crystals is very narrow
54: 40: 28: 1438: 1381: 1155: 980: 667: 553: 53:
of materials forming the interface. He considered the interface between an
35:
medium. They were theoretically predicted in 1988 by the Russian physicist
1430: 1040: 1009: 1147: 963: 659: 709: 972: 282: 1185:"Midinfrared surface waves on a high aspect ratio nanotrench platform" 1090: 863: 268: 1241:"Experimental observation of Dyakonov plasmons in the mid-infrared" 1030: 846: 777: 517:
Takayama, O., Crassovan, L., Artigas D., and Torner, L. (2009).
251:) are different. The phase velocity interval is proportional to 47:
surface waves, the DSW's existence is due to the difference in
373:"New type of electromagnetic wave propagating at an interface" 233:
The angular intervals for the DSW phase and group velocities (
222:{\displaystyle \eta ={\frac {\epsilon _{e}}{\epsilon _{0}}}-1} 1008:
Guo, Yu.. Newman, W., Cortes, C. L. and Jacob, Z. (2012).
173:). The angular interval is defined by the parameter 69:. The previously known electromagnetic surface waves, 182: 1014:
Applications of Hyperbolic Metamaterial Substrates"
221: 27:that travel along the interface in between an 936:"Dyakonov surface wave resonant transmission" 8: 1451:: CS1 maint: multiple names: authors list ( 1394:: CS1 maint: multiple names: authors list ( 1337:: CS1 maint: multiple names: authors list ( 1288:: CS1 maint: multiple names: authors list ( 1224:: CS1 maint: multiple names: authors list ( 1168:: CS1 maint: multiple names: authors list ( 1111:: CS1 maint: multiple names: authors list ( 1054:: CS1 maint: multiple names: authors list ( 993:: CS1 maint: multiple names: authors list ( 884:: CS1 maint: multiple names: authors list ( 817:: CS1 maint: multiple names: authors list ( 747:: CS1 maint: multiple names: authors list ( 680:: CS1 maint: multiple names: authors list ( 623:: CS1 maint: multiple names: authors list ( 574:: CS1 maint: multiple names: authors list ( 502:: CS1 maint: multiple names: authors list ( 445:: CS1 maint: multiple names: authors list ( 901:Journal of the Optical Society of America B 107:and a uniaxial crystal with permittivities 1491: 1466:Liu, Hsuan-Hao; Chang, Hung-Chun (2013). 1039: 1029: 962: 845: 786: 776: 708: 205: 195: 189: 181: 834:Microwave and Optical Technology Letters 519:"Observation of Dyakonov Surface Waves" 363: 1444: 1387: 1330: 1281: 1217: 1161: 1104: 1047: 986: 877: 810: 740: 673: 616: 567: 495: 438: 137:axis, provided that the condition of 77:, exist under the condition that the 7: 1354:Journal of Physics: Condensed Matter 14: 546:10.1103/PhysRevLett.102.043903 421:Optics and Spectroscopy (USSR) 371:Dyakonov, M. I. (April 1988). 1: 25:surface electromagnetic waves 1204:10.1021/acsphotonics.7b00924 1018:Advances in OptoElectronics 1540: 1493:10.1109/JPHOT.2013.2288298 727:10.1103/PhysRevB.74.155120 129:respectively. The crystal 75:surface plasmon polaritons 1317:10.1080/02726340801921403 1268:10.1134/S1063782618040279 797:10.1080/02726340801921486 603:10.1080/02726340801921403 462:Optics and Photonics News 125:for the ordinary and the 1514:Condensed matter physics 1374:10.1088/1361-648X/aa8bdd 482:10.1364/OPN.20.12.000025 39:. Unlike other types of 921:10.1364/JOSAB.26.000B74 1472:IEEE Photonics Journal 223: 67:different orientations 17:Dyakonov surface waves 1431:10.1038/nnano.2014.90 1411:Nature Nanotechnology 291:). Calculations give 224: 1148:10.1364/OL.37.001983 964:10.1364/OE.19.006339 660:10.1364/OL.30.003075 180: 1484:2013IPhoJ...500806L 1423:2014NatNa...9..419T 1366:2017JPCM...29T3001T 1260:2018Semic..52..442T 1140:2012OptL...37.1983T 1083:2008ApPhL..93v1109J 1041:10.1155/2012/452502 955:2011OExpr..19.6339T 913:2009JOSAB..26B..74G 856:2008arXiv0804.4879N 719:2006PhRvB..74o5120C 652:2005OptL...30.3075C 538:2009PhRvL.102d3903T 522:(Free PDF download) 474:2009OptPN..20...25T 433:1990OptSp..68..653A 399:(Free PDF download) 392:1988JETP...67..714D 380:Soviet Physics JETP 342:Dyakonov–Voigt wave 127:extraordinary waves 97:Physical properties 61:and an anisotropic 219: 1198:(11): 2899–2907. 1091:10.1063/1.3037208 864:10.1002/mop.23698 211: 1531: 1498: 1497: 1495: 1463: 1457: 1456: 1450: 1442: 1406: 1400: 1399: 1393: 1385: 1349: 1343: 1342: 1336: 1328: 1305:Electromagnetics 1300: 1294: 1293: 1287: 1279: 1245: 1236: 1230: 1229: 1223: 1215: 1189: 1180: 1174: 1173: 1167: 1159: 1123: 1117: 1116: 1110: 1102: 1071:Appl. Phys. Lett 1066: 1060: 1059: 1053: 1045: 1043: 1033: 1005: 999: 998: 992: 984: 966: 940: 931: 925: 924: 896: 890: 889: 883: 875: 849: 840:(9): 2360–2362. 829: 823: 822: 816: 808: 790: 780: 765:Electromagnetics 759: 753: 752: 746: 738: 712: 692: 686: 685: 679: 671: 635: 629: 628: 622: 614: 591:Electromagnetics 586: 580: 579: 573: 565: 523: 514: 508: 507: 501: 493: 457: 451: 450: 444: 436: 416: 410: 409: 407: 406: 400: 394:. Archived from 377: 368: 310: 301:for rutile, and 300: 290: 280: 266: 256: 250: 241: 228: 226: 225: 220: 212: 210: 209: 200: 199: 190: 172: 156: 124: 115: 106: 83:plasma frequency 71:surface plasmons 63:uniaxial crystal 37:Mikhail Dyakonov 31:and an uniaxial- 1539: 1538: 1534: 1533: 1532: 1530: 1529: 1528: 1519:Surface science 1504: 1503: 1502: 1501: 1465: 1464: 1460: 1443: 1408: 1407: 1403: 1386: 1351: 1350: 1346: 1329: 1302: 1301: 1297: 1280: 1243: 1238: 1237: 1233: 1216: 1187: 1182: 1181: 1177: 1160: 1125: 1124: 1120: 1103: 1068: 1067: 1063: 1046: 1012:Review Article: 1007: 1006: 1002: 985: 938: 933: 932: 928: 907:(12): B74–B82. 898: 897: 893: 876: 831: 830: 826: 809: 788:10.1.1.251.6060 761: 760: 756: 739: 710:physics/0603181 694: 693: 689: 672: 637: 636: 632: 615: 588: 587: 583: 566: 526:Phys. Rev. Lett 521: 516: 515: 511: 494: 459: 458: 454: 437: 418: 417: 413: 404: 402: 398: 375: 370: 369: 365: 360: 338: 317: 308: 302: 298: 292: 286: 278: 272: 264: 258: 252: 249: 243: 240: 234: 201: 191: 178: 177: 171: 164: 158: 155: 144: 138: 123: 117: 114: 108: 102: 99: 45:electromagnetic 12: 11: 5: 1537: 1535: 1527: 1526: 1521: 1516: 1506: 1505: 1500: 1499: 1478:(6): 4800806. 1458: 1417:(6): 419–424. 1401: 1360:(46): 463001. 1344: 1311:(3): 126–145. 1295: 1248:Semiconductors 1231: 1175: 1134:(11): 1983–5. 1128:Optics Letters 1118: 1077:(22): 221109. 1061: 1000: 949:(7): 6339–47. 943:Optics Express 926: 891: 824: 771:(3): 162–174. 754: 703:(15): 155120. 687: 646:(22): 3075–7. 630: 597:(3): 126–145. 581: 509: 452: 411: 362: 361: 359: 356: 355: 354: 349: 344: 337: 334: 316: 313: 306: 296: 276: 262: 247: 238: 231: 230: 218: 215: 208: 204: 198: 194: 188: 185: 169: 162: 153: 142: 121: 112: 98: 95: 13: 10: 9: 6: 4: 3: 2: 1536: 1525: 1524:Surface waves 1522: 1520: 1517: 1515: 1512: 1511: 1509: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1459: 1454: 1448: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1405: 1402: 1397: 1391: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1348: 1345: 1340: 1334: 1326: 1322: 1318: 1314: 1310: 1306: 1299: 1296: 1291: 1285: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1235: 1232: 1227: 1221: 1213: 1209: 1205: 1201: 1197: 1193: 1192:ACS Photonics 1186: 1179: 1176: 1171: 1165: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1122: 1119: 1114: 1108: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1062: 1057: 1051: 1042: 1037: 1032: 1027: 1023: 1019: 1015: 1013: 1004: 1001: 996: 990: 982: 978: 974: 970: 965: 960: 956: 952: 948: 944: 937: 930: 927: 922: 918: 914: 910: 906: 902: 895: 892: 887: 881: 873: 869: 865: 861: 857: 853: 848: 843: 839: 835: 828: 825: 820: 814: 806: 802: 798: 794: 789: 784: 779: 774: 770: 766: 758: 755: 750: 744: 736: 732: 728: 724: 720: 716: 711: 706: 702: 698: 691: 688: 683: 677: 669: 665: 661: 657: 653: 649: 645: 641: 634: 631: 626: 620: 612: 608: 604: 600: 596: 592: 585: 582: 577: 571: 563: 559: 555: 551: 547: 543: 539: 535: 532:(4): 043903. 531: 527: 520: 513: 510: 505: 499: 491: 487: 483: 479: 475: 471: 467: 463: 456: 453: 448: 442: 434: 430: 426: 422: 415: 412: 401:on 2018-07-13 397: 393: 389: 385: 381: 374: 367: 364: 357: 353: 350: 348: 345: 343: 340: 339: 335: 333: 329: 326: 325:birefringence 322: 314: 312: 311:for calomel. 305: 295: 289: 284: 275: 270: 261: 255: 246: 237: 216: 213: 206: 202: 196: 192: 186: 183: 176: 175: 174: 168: 161: 152: 148: 141: 136: 132: 128: 120: 111: 105: 96: 94: 90: 86: 84: 80: 76: 72: 68: 64: 60: 57:transmitting 56: 52: 51: 46: 42: 38: 34: 30: 26: 22: 18: 1475: 1471: 1461: 1447:cite journal 1414: 1410: 1404: 1390:cite journal 1357: 1353: 1347: 1333:cite journal 1308: 1304: 1298: 1284:cite journal 1254:(4): 442–6. 1251: 1247: 1234: 1220:cite journal 1195: 1191: 1178: 1164:cite journal 1131: 1127: 1121: 1107:cite journal 1074: 1070: 1064: 1050:cite journal 1021: 1017: 1011: 1003: 989:cite journal 946: 942: 929: 904: 900: 894: 880:cite journal 837: 833: 827: 813:cite journal 768: 764: 757: 743:cite journal 700: 697:Phys. Rev. B 696: 690: 676:cite journal 643: 639: 633: 619:cite journal 594: 590: 584: 570:cite journal 529: 525: 512: 498:cite journal 465: 461: 455: 441:cite journal 424: 420: 414: 403:. Retrieved 396:the original 383: 379: 366: 347:Surface wave 330: 318: 315:Perspectives 303: 293: 287: 273: 259: 253: 244: 235: 232: 166: 159: 150: 146: 139: 134: 130: 118: 109: 103: 100: 91: 87: 79:permittivity 48: 33:birefringent 20: 16: 15: 973:10261/47330 1508:Categories 468:(12): 25. 427:(5): 653. 405:2013-07-30 386:(4): 714. 358:References 352:Leaky mode 321:anisotropy 1325:121726611 1276:255238679 1212:126006666 1031:1211.0980 847:0804.4879 783:CiteSeerX 778:0711.1663 735:119439238 640:Opt. Lett 611:121726611 490:120465632 214:− 203:ϵ 193:ϵ 184:η 55:isotropic 29:isotropic 1439:24859812 1382:29053474 1156:22660095 1099:39395734 981:21451661 805:10301459 668:16315726 562:14540394 554:19257419 336:See also 50:symmetry 41:acoustic 1480:Bibcode 1419:Bibcode 1362:Bibcode 1256:Bibcode 1136:Bibcode 1079:Bibcode 1024:: 1–9. 951:Bibcode 909:Bibcode 872:6024041 852:Bibcode 715:Bibcode 648:Bibcode 534:Bibcode 470:Bibcode 429:Bibcode 388:Bibcode 283:calomel 1437:  1380:  1323:  1274:  1210:  1154:  1097:  979:  870:  803:  785:  733:  666:  609:  560:  552:  488:  271:) and 269:rutile 59:medium 23:) are 1321:S2CID 1272:S2CID 1244:(PDF) 1208:S2CID 1188:(PDF) 1095:S2CID 1026:arXiv 939:(PDF) 868:S2CID 842:arXiv 801:S2CID 773:arXiv 731:S2CID 705:arXiv 607:S2CID 558:S2CID 486:S2CID 376:(PDF) 309:≈ 20° 165:> 149:> 145:> 1453:link 1435:PMID 1396:link 1378:PMID 1339:link 1290:link 1226:link 1170:link 1152:PMID 1113:link 1056:link 1022:2012 995:link 977:PMID 886:link 819:link 749:link 682:link 664:PMID 625:link 576:link 550:PMID 504:link 447:link 299:≈ 7° 279:≈ 4° 265:≈ 1° 242:and 116:and 73:and 43:and 21:DSWs 1488:doi 1427:doi 1370:doi 1313:doi 1264:doi 1200:doi 1144:doi 1087:doi 1036:doi 969:hdl 959:doi 917:doi 860:doi 793:doi 723:doi 656:doi 599:doi 542:doi 530:102 478:doi 1510:: 1486:. 1474:. 1470:. 1449:}} 1445:{{ 1433:. 1425:. 1413:. 1392:}} 1388:{{ 1376:. 1368:. 1358:29 1356:. 1335:}} 1331:{{ 1319:. 1309:28 1307:. 1286:}} 1282:{{ 1270:. 1262:. 1252:52 1250:. 1246:. 1222:}} 1218:{{ 1206:. 1194:. 1190:. 1166:}} 1162:{{ 1150:. 1142:. 1132:37 1130:. 1109:}} 1105:{{ 1093:. 1085:. 1075:93 1073:. 1052:}} 1048:{{ 1034:. 1020:. 1016:. 991:}} 987:{{ 975:. 967:. 957:. 947:19 945:. 941:. 915:. 905:26 903:. 882:}} 878:{{ 866:. 858:. 850:. 838:50 836:. 815:}} 811:{{ 799:. 791:. 781:. 769:28 767:. 745:}} 741:{{ 729:. 721:. 713:. 701:74 699:. 678:}} 674:{{ 662:. 654:. 644:30 642:. 621:}} 617:{{ 605:. 595:28 593:. 572:}} 568:{{ 556:. 548:. 540:. 528:. 524:. 500:}} 496:{{ 484:. 476:. 466:20 464:. 443:}} 439:{{ 425:68 423:. 384:67 382:. 378:. 307:gr 304:Δθ 297:gr 294:Δθ 277:ph 274:Δθ 263:ph 260:Δθ 248:gr 245:Δθ 239:ph 236:Δθ 1496:. 1490:: 1482:: 1476:5 1455:) 1441:. 1429:: 1421:: 1415:9 1398:) 1384:. 1372:: 1364:: 1341:) 1327:. 1315:: 1292:) 1278:. 1266:: 1258:: 1228:) 1214:. 1202:: 1196:4 1172:) 1158:. 1146:: 1138:: 1115:) 1101:. 1089:: 1081:: 1058:) 1044:. 1038:: 1028:: 1010:" 997:) 983:. 971:: 961:: 953:: 923:. 919:: 911:: 888:) 874:. 862:: 854:: 844:: 821:) 807:. 795:: 775:: 751:) 737:. 725:: 717:: 707:: 684:) 670:. 658:: 650:: 627:) 613:. 601:: 578:) 564:. 544:: 536:: 506:) 492:. 480:: 472:: 449:) 435:. 431:: 408:. 390:: 288:η 281:( 267:( 254:η 229:. 217:1 207:0 197:e 187:= 170:0 167:ε 163:e 160:ε 154:0 151:ε 147:ε 143:e 140:ε 135:C 131:C 122:e 119:ε 113:0 110:ε 104:ε 19:(

Index

surface electromagnetic waves
isotropic
birefringent
Mikhail Dyakonov
acoustic
electromagnetic
symmetry
isotropic
medium
uniaxial crystal
different orientations
surface plasmons
surface plasmon polaritons
permittivity
plasma frequency
extraordinary waves
rutile
calomel
anisotropy
birefringence
Dyakonov–Voigt wave
Surface wave
Leaky mode
"New type of electromagnetic wave propagating at an interface"
Bibcode
1988JETP...67..714D
the original
Bibcode
1990OptSp..68..653A
cite journal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.