Knowledge (XXG)

Dynamic nuclear polarization

Source 📝

687:
when the two electrons are dipolar coupled, another mechanism occurs: the cross-effect. In that case, the DNP process is the result of irradiation of an allowed transition (called single quantum) as a result the strength of microwave irradiation is less demanded than that in the solid effect. In practice, the correct EPR frequency separation is accomplished through random orientation of paramagnetic species with g-anisotropy. Since the "frequency" distance between the two electrons should be equal to the Larmor frequency of the targeted nucleus, cross-effect can only occur if the inhomogeneously broadened EPR lineshape has a linewidth broader than the nuclear Larmor frequency. Therefore, as this linewidth is proportional to external magnetic field B
720:
interactions. The strong interactions lead to a homogeneously broadened EPR lineshape of the involved paramagnetic species. The linewidth is optimized for polarization transfer from electrons to nuclei, when it is close to the nuclear Larmor frequency. The optimization is related to an embedded three-spin (electron-electron-nucleus) process that mutually flips the coupled three spins under the energy conservation (mainly) of the Zeeman interactions. Due to the inhomogeneous component of the associated EPR lineshape, the DNP enhancement by this mechanism also scales as B
695:. This remains true as long as the relaxation times remain constant. Usually going to higher field leads to longer nuclear relaxation times and this may partially compensate for the line broadening reduction. In practice, in a glassy sample, the probability of having two dipolarly coupled electrons separated by the Larmor frequency is very scarce. Nonetheless, this mechanism is so efficient that it can be experimentally observed alone or in addition to the solid-effect. 756:. Such electrons can give large polarization enhancements to nearby protons via proton-proton spin-diffusion if they are not so close together that the electron-nuclear dipolar interaction does not broaden the proton resonance beyond detection. For small isolated clusters, the free electrons are fixed and give rise to solid-state enhancements (SS). The maximal proton solid-state enhancement is observed at microwave offsets of ω ≈ ω 704:
multi-step process involving EPR single quantum transition, electron dipolar anti-crossing and cross effect degeneracy conditions. In the most simple case the MAS-DNP mechanism can be explained by the combination of a single quantum transition followed by the cross-effect degeneracy condition, or by the electron-dipolar anti-crossing followed by the cross-effect degeneracy condition.
733: 660:
the exciting microwave frequency shifts up or down by the nuclear Larmor frequency from the electron Larmor frequency in the discussed two-spin system. The direction of frequency shifts corresponds to the sign of DNP enhancements. Solid effect exist in most cases but is more easily observed if the linewidth of the EPR spectrum of involved
784:= 0. The cellulose char also exhibits electrons undergoing thermal mixing effects (TM). While the enhancement curve reveals the types electron-nuclear spin interactions in a material, it is not quantitative and the relative abundance of the different types of nuclei cannot be determined directly from the curve. 103:, because of the lack of microwave (or terahertz) sources operating at the appropriate frequency. Today such sources are available as turn-key instruments, making DNP a valuable and indispensable method especially in the field of structure determination by high-resolution solid-state NMR spectroscopy. 672:
In the case of magic angle spinning DNP (MAS-DNP), the mechanism is different but to understand it, a two spins system can still be used. The polarization process of the nucleus still occurs when the microwave irradiation excites the double quantum or zero quantum transition, but due to the fact that
659:
when all the relaxation parameters are kept constant. Once this transition is excited and the relaxation is acting, the magnetization is spread over the "bulk" nuclei (the major part of the detected nuclei in an NMR experiment) via the nuclear dipole network. This polarizing mechanism is optimal when
120:
level populations observed in metals and free radicals when electron spin transitions are saturated by microwave irradiation. This effect relies on stochastic interactions between an electron and a nucleus. The "dynamic" initially meant to highlight the time-dependent and random interactions in this
744:
Many types of solid materials can exhibit more than one mechanism for DNP. Some examples are carbonaceous materials such bituminous coal and charcoal (wood or cellulose heated at high temperatures above their decomposition point which leaves a residual solid char). To separate out the mechanisms of
703:
As in the static case, the MAS-DNP mechanism of cross effect is deeply modified due to the time dependent energy level. By taking a simple three spin system, it has been demonstrated that the cross-effect mechanism is different in the Static and MAS case. The cross effect is the result of very fast
650:
In a simple picture of an electron-nucleus two-spin system, the solid effect occurs when a transition involving an electron-nucleus mutual flip (called zero quantum or double quantum) is excited by a microwave irradiation, in the presence of relaxation. This kind of transition is in general weakly
809:
is transferred onto the nuclear spins of interest using a microwave source. There are two main DNP approaches for solids. If the material does not contain suitable unpaired electrons, exogenous DNP is applied: the material is impregnated by a solution containing a specific radical. When possible,
686:
The cross effect requires two unpaired electrons as the source of high polarization. Without special condition, such a three spins system can only generate a solid effect type of polarization. However, when the resonance frequency of each electron is separated by the nuclear Larmor frequency, and
79:
When electron spin polarization deviates from its thermal equilibrium value, polarization transfers between electrons and nuclei can occur spontaneously through electron-nuclear cross relaxation or spin-state mixing among electrons and nuclei. For example, the polarization transfer is spontaneous
651:
allowed, meaning that the transition moment for the above microwave excitation results from a second-order effect of the electron-nuclear interactions and thus requires stronger microwave power to be significant, and its intensity is decreased by an increase of the external magnetic field B
719:
Thermal mixing is an energy exchange phenomenon between the electron spin ensemble and the nuclear spin, which can be thought of as using multiple electron spins to provide hyper-nuclear polarization. Note that the electron spin ensemble acts as a whole because of stronger inter-electron
607:, resulting in a loss of the electron polarization. In addition, due to the small state mixing caused by the B term of the hyperfine interaction, it is possible to irradiate on the electron-nucleus zero quantum or double quantum ("forbidden") transitions around 527: 909:
J. Puebla; E.A. Chekhovich; M. Hopkinson; P. Senellart; A. Lemaitre; M.S. Skolnick; A.I. Tartakovskii (2013). "Dynamic nuclear polarization in InGaAs/GaAs and GaAs/AlGaAs quantum dots under non-resonant ultra-low power optical excitation".
796:
signals but also to introduce an inherent spatial dependence: the magnetization enhancement takes place in the vicinity of the irradiated electrons and propagates throughout the sample. Spatial selectivity can finally be obtained using
305: 310:
These terms are referring respectively to the electron and nucleus Zeeman interaction with the external magnetic field, and the hyperfine interaction. S and I are the electron and nuclear spin operators in the Zeeman basis (spin
673:
the sample is spinning, this condition is only met for a short time at each rotor cycle (which makes it periodical). The DNP process in that case happens step by step and not continuously as in the static case.
588: 745:
DNP and to characterize the electron-nuclear interactions occurring in such solids a DNP enhancement curve can be made. A typical enhancement curve is obtained by measuring the maximum intensity of the NMR
166:
While the Overhauser effect relies on time-dependent electron-nuclear interactions, the remaining polarizing mechanisms rely on time-independent electron-nuclear and electron-electron interactions.
801:(MRI) techniques, so that signals from similar parts can be separated based on their location in the sample. DNP has triggered enthusiasm in the NMR community because it can enhance sensitivity in 1466:
Wind, R.A.; Li, L.; Maciel, G.E.; Wooten, J.B. (1993). "Characterization of Electron Spin Exchange Interactions in Cellulose Chars by Means of ESR, 1H NMR, and Dynamic Nuclear Polarization".
60:. It is also possible that those electrons are aligned to a higher degree of order by other preparations of electron spin order such as: chemical reactions (leading to chemical-induced DNP, 1842:
Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; Van Der Wel, Patrick C. A.; et al. (2008).
382: 99:
The first DNP experiments were performed in the early 1950s at low magnetic fields but until recently the technique was of limited applicability for high-frequency, high-field
2118:
Dynamic Nuclear Polarization: New Experimental and Methodology Approaches and Applications in Physics, Chemistry, Biology and Medicine, Appl. Magn. Reson., 2008. 34(3–4)
1113:
T. Maly; G.T. Debelouchina; V.S. Bajaj; K.-N. Hu; C.G. Joo; M.L. Mak-Jurkauskas; J.R. Sirigiri; P.C.A. van der Wel; J. Herzfeld; R.J. Temkin; R.G. Griffin (2008).
1172:
A.B. Barnes; G. De Paëpe; P.C.A. van der Wel; K.-N. Hu; C.G. Joo; V.S. Bajaj; M.L. Mak-Jurkauskas; J.R. Sirigiri; J. Herzfeld; R.J. Temkin; R.G. Griffin (2008).
772:
are the electron and nuclear Larmor frequencies, respectively. For larger and more densely concentrated aromatic clusters, the free electrons can undergo rapid
1410:"Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings" 180: 2052:
Wind, R.A.; Duijvestijn, M.J.; Van Der Lugt, C.; Manenschijn, A.; Vriend, J. (1985). "Applications of dynamic nuclear polarization in C NMR in solids".
1361:
Mentink-Vigier, F.; Akbey, U.; Hovav, Y.; Vega, S.; Oschkinat, H.; Feintuch, A. (2012). "Fast passage dynamic nuclear polarization on rotating solids".
628:, resulting in polarization transfer between the electrons and the nuclei. The effective MW irradiation on these transitions is approximately given by 1342: 1914:
Barnes, A. B.; De Paëpe, G.; Van Der Wel, P. C. A.; Hu, K.-N.; Joo, C.-G.; Bajaj, V. S.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; et al. (2008).
802: 84:
chemical reaction. On the other hand, when the electron spin system is in a thermal equilibrium, the polarization transfer requires continuous
136:
and other renowned physicists of the time on the grounds of being "thermodynamically improbable". The experimental confirmation by Carver and
2082: 1832: 1758: 1688: 848: 174:
The simplest spin system exhibiting the SE DNP mechanism is an electron-nucleus spin pair. The Hamiltonian of the system can be written as:
2152: 532: 822:. It is important to note that DNP was only performed ex situ as it usually requires low temperature to lower electronic relaxation. 749:
of the H nuclei, for example, in the presence of continuous microwave irradiation as a function of the microwave frequency offset.
1671:
Sze, Kong Hung; Wu, Qinglin; Tse, Ho Sum; Zhu, Guang (2011). "Dynamic Nuclear Polarization: New Methodology and Applications".
1119: 753: 89: 1996:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
866: 2101:
Anatole Abragam and Maurice Goldman, "Nuclear Magnetism: Order and Disorder", New York : Oxford University Press, 1982
147:, which is responsible for the DNP phenomenon is caused by rotational and translational modulation of the electron-nucleus 343:
are the secular and pseudo-secular parts of the hyperfine interaction. For simplicity we will only consider the case of |
1356: 1354: 815: 69: 798: 793: 752:
Carbonaceous materials such as cellulose char contain large numbers of stable free electrons delocalized in large
2147: 93: 1076:
T.R. Carver; C.P. Slichter (1956). "Experimental Verification of the Overhauser Nuclear Polarization Effect".
1510: 707:
This in turn change dramatically the CE dependence over the static magnetic field which does not scale like B
522:{\displaystyle H=\Delta \omega _{e}\;S_{z}+\omega _{\rm {n}}I_{z}+AS_{z}I_{z}+B\ S_{z}I_{x}+\omega _{1}S_{x}} 362:
has little effect on the evolution of the spin system. During DNP a MW irradiation is applied at a frequency
1628:
Ni, Qing Zhe; Daviso E; Can TV; Markhasin E; Jawla SK; Swager TM; Temkin RJ; Herzfeld J; Griffin RG (2013).
1339: 92:(EPR) frequency. In particular, mechanisms for the microwave-driven DNP processes are categorized into the 137: 53: 116:
DNP was first realized using the concept of the Overhauser effect, which is the perturbation of nuclear
81: 144: 2032: 2003: 1966: 1855: 1789: 1522: 1422: 1371: 1314: 1278: 1128: 1087: 1050: 1013: 978: 931: 875: 819: 773: 746: 156: 1363: 1570: 593:
The MW irradiation can excite the electron single quantum transitions ("allowed transitions") when
152: 57: 45: 41: 1982: 1601: 1548: 1491: 1250: 1004:
Solem, J. C. (1974). "Dynamic polarization of protons and deuterons in solid deuterium hydride".
947: 921: 891: 148: 2121:
High field dynamic nuclear polarization – the renaissance, Phys. Chem. Chem. Phys., 2010. 12(22)
16:
Spin polarization of atomic nuclei in response to electron spin realignment in a magnetic field
2078: 1945: 1881: 1828: 1764: 1754: 1729: 1694: 1684: 1659: 1593: 1540: 1483: 1448: 1387: 1242: 1203: 1154: 844: 806: 661: 125: 73: 29: 2061: 2040: 2011: 1974: 1935: 1927: 1902: 1871: 1863: 1820: 1797: 1746: 1719: 1676: 1649: 1641: 1585: 1530: 1475: 1438: 1430: 1379: 1322: 1286: 1234: 1193: 1185: 1144: 1136: 1095: 1058: 1021: 986: 939: 883: 811: 776:. These electrons give rise to an Overhauser enhancement centered at a microwave offset of ω 100: 1346: 1078: 1041: 65: 1802: 1777: 1535: 2036: 2007: 1970: 1859: 1793: 1526: 1426: 1375: 1318: 1282: 1132: 1091: 1054: 1017: 982: 965:
Solem, J. C.; Rebka Jr., G. A. (1968). "EPR of atoms and radicals in radiation-damaged H
935: 879: 2098:
Carson Jeffries, "Dynamic Nuclear Orientation", New York, Interscience Publishers, 1963
1940: 1915: 1876: 1843: 1824: 1654: 1629: 1443: 1414: 1409: 1198: 1173: 1149: 1114: 300:{\displaystyle H_{0}=\omega _{e}S_{z}+\omega _{\rm {n}}I_{z}+AS_{z}I_{z}+B\ S_{z}I_{x}} 160: 117: 49: 140:
as well as an apologetic letter from Ramsey both reached Overhauser in the same year.
2141: 2065: 1986: 1978: 1605: 1552: 1254: 1025: 895: 887: 691:, the overall DNP efficiency (or the enhancement of nuclear polarization) scales as B 151:. The theory of this process is based essentially on the second-order time-dependent 129: 37: 2044: 1495: 951: 736:
H DNP-NMR enhancement curve for cellulose char heated for several hours at 350 °C. P
912: 1511:"Dynamic Nuclear Polarization Solid-State NMR Spectroscopy for Materials Research" 1223:"High-Temperature Dynamic Nuclear Polarization Enhanced Magic-Angle-Spinning NMR" 1589: 1304:
Carver, T.R.; Slichter, C.P. (1953). "Polarization of Nuclear Spins in Metals".
133: 2105: 2015: 1916:"High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR" 1174:"High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR" 943: 1931: 1906: 1383: 1306: 1270: 1238: 1189: 1039:
T.R. Carver; C.P. Slichter (1953). "Polarization of Nuclear Spins in Metals".
990: 2023:
Atsarkin, V A (1978). "Dynamic polarization of nuclei in solid dielectrics".
1957:
Abragam, A; Goldman, M (1978). "Principles of dynamic nuclear polarization".
1597: 1544: 1487: 1326: 1246: 1062: 864:
A. Abragam; M. Goldman (1976). "Principles of Dynamic Nuclear Polarization".
1812: 1724: 1706:
Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey (2011).
1099: 96:(OE), the solid-effect (SE), the cross-effect (CE) and thermal-mixing (TM). 85: 1949: 1885: 1768: 1741:
Günther, Ulrich L. (2011). "Dynamic Nuclear Hyperpolarization in Liquids".
1733: 1707: 1698: 1663: 1452: 1391: 1290: 1207: 1158: 664:
is smaller than the nuclear Larmor frequency of the corresponding nuclei.
2132: 1750: 1680: 33: 1569:
Bagheri, Khashayar; Deschamps, Michael; Salager, Elodie (1 April 2023).
818:. The experiments usually need to be performed at low temperatures with 1479: 1867: 1645: 1434: 1140: 732: 1571:"Nuclear magnetic resonance for interfaces in rechargeable batteries" 1708:"NMR of Insensitive Nuclei Enhanced by Dynamic Nuclear Polarization" 1222: 655:. As a result, the DNP enhancement from the solid effect scales as B 68:
and spin injection. DNP is considered one of several techniques for
926: 731: 61: 48:
are aligned. Note that the alignment of electron spins at a given
1994:
Goertz, S.T. (2004). "The dynamic nuclear polarization process".
583:{\displaystyle \Delta \omega _{e}=\omega _{e}-\omega _{\rm {MW}}} 1819:. Annual Reports on NMR Spectroscopy. Vol. 73. p. 83. 1675:. Topics in Current Chemistry. Vol. 326. pp. 215–42. 1778:"Dynamic nuclear polarization: Yesterday, today, and tomorrow" 1745:. Topics in Current Chemistry. Vol. 335. pp. 23–69. 740:– 1 is the relative polarization or intensity of the H signal. 1268:
Overhauser, A.W. (1953). "Polarization of Nuclei in Metals".
1221:
Akbey, U.; Linden, A. H. & Oschkinat, H. (May 2012).
841:
Spin Temperature and Nuclear Magnetic Resonance in Solids
814:
ions (metal-ion dynamic nuclear polarization, MIDNP) or
711:
and makes it much more efficient than the solid effect.
1844:"Dynamic nuclear polarization at high magnetic fields" 1115:"Dynamic Nuclear Polarization at High Magnetic Fields" 88:
irradiation at a frequency close to the corresponding
535: 385: 376:, resulting in a rotating frame Hamiltonian given by 335:
are the electron and nuclear Larmor frequencies, and
183: 1564: 1562: 2054:
Progress in Nuclear Magnetic Resonance Spectroscopy
810:endogenous DNP is performed using the electrons in 1578:Current Opinion in Colloid & Interface Science 1340:Purdue University Obituary of Albert W. Overhauser 582: 521: 299: 124:The DNP phenomenon was theoretically predicted by 2108:, Spindrift Publications, The Netherlands, 2016 128:in 1953 and initially drew some criticism from 1509:Moroz, Ilia B.; Leskes, Michal (1 July 2022). 2075:Hyperpolarization methods in NMR spectroscopy 1630:"High Frequency Dynamic Nuclear Polarization" 8: 2106:"Essentials of Dynamic Nuclear Polarization" 1893:Kemsley, Jyllian (2008). "Sensitizing Nmr". 1817:Solution-State Dynamic Nuclear Polarization 1712:CHIMIA International Journal for Chemistry 1403: 1401: 405: 2073:Kuhn, Lars T.; et al., eds. (2013). 1939: 1875: 1801: 1723: 1653: 1534: 1442: 1197: 1148: 925: 570: 569: 556: 543: 534: 513: 503: 490: 480: 461: 451: 435: 424: 423: 410: 399: 384: 291: 281: 262: 252: 236: 225: 224: 211: 201: 188: 182: 76:produced by radiation damage in solids. 831: 1673:NMR of Proteins and Small Biomolecules 1782:Journal of Physics: Conference Series 7: 1536:10.1146/annurev-matsci-081720-085634 792:DNP can be performed to enhance the 52:and temperature is described by the 1515:Annual Review of Materials Research 1825:10.1016/B978-0-08-097074-5.00003-7 1408:Thurber, K. R.; Tycko, R. (2012). 574: 571: 536: 425: 392: 226: 14: 754:polycyclic aromatic hydrocarbons 72:. DNP can also be induced using 2045:10.1070/PU1978v021n09ABEH005678 1895:Chemical & Engineering News 1848:The Journal of Chemical Physics 1120:The Journal of Chemical Physics 1006:Nuclear Instruments and Methods 143:The so-called electron-nucleus 121:polarization transfer process. 90:electron paramagnetic resonance 1959:Reports on Progress in Physics 1803:10.1088/1742-6596/324/1/012003 867:Reports on Progress in Physics 774:electron exchange interactions 1: 1634:Accounts of Chemical Research 805:. In DNP, a large electronic 2066:10.1016/0079-6565(85)80005-4 1026:10.1016/0029-554X(74)90294-8 321:considered for simplicity), 28:) results from transferring 22:Dynamic nuclear polarization 1590:10.1016/j.cocis.2022.101675 843:. Oxford University Press. 2169: 2153:Nuclear magnetic resonance 2016:10.1016/j.nima.2004.03.147 1979:10.1088/0034-4885/41/3/002 1920:Applied Magnetic Resonance 1468:Applied Magnetic Resonance 1178:Applied Magnetic Resonance 944:10.1103/PhysRevB.88.045306 888:10.1088/0034-4885/41/3/002 799:magnetic resonance imaging 728:DNP-NMR enhancement curves 1932:10.1007/s00723-008-0129-1 1907:10.1021/cen-v086n043.p012 1384:10.1016/j.jmr.2012.08.013 1239:10.1007/s00723-012-0357-2 1190:10.1007/s00723-008-0129-1 991:10.1103/PhysRevLett.21.19 839:Goldman, Maurice (1970). 699:Magic angle spinning case 668:Magic angle spinning case 1327:10.1103/PhysRev.92.212.2 1063:10.1103/PhysRev.92.212.2 1725:10.2533/chimia.2011.260 1100:10.1103/PhysRev.102.975 971:Physical Review Letters 40:, thereby aligning the 2025:Soviet Physics Uspekhi 1776:Atsarkin, V A (2011). 1743:Modern NMR Methodology 1291:10.1103/PhysRev.92.411 741: 584: 523: 301: 54:Boltzmann distribution 735: 585: 524: 302: 2077:. Berlin: Springer. 1751:10.1007/128_2011_229 1681:10.1007/128_2011_297 820:magic angle spinning 816:conduction electrons 533: 383: 181: 157:von Neumann equation 2037:1978SvPhU..21..725A 2008:2004NIMPA.526...28G 1971:1978RPPh...41..395A 1860:2008JChPh.128e2211M 1811:Lingwood, Mark D.; 1794:2011JPhCS.324a2003A 1527:2022AnRMS..52...25M 1427:2012JChPh.137h4508T 1376:2012JMagR.224...13M 1319:1953PhRv...92..212C 1283:1953PhRv...92..411O 1133:2008JChPh.128e2211M 1092:1956PhRv..102..975C 1055:1953PhRv...92..212C 1018:1974NucIM.117..477S 983:1968PhRvL..21...19S 936:2013PhRvB..88d5306P 880:1978RPPh...41..395A 153:perturbation theory 58:thermal equilibrium 44:to the extent that 1480:10.1007/BF03162519 1345:2006-01-09 at the 742: 662:unpaired electrons 646:Static sample case 580: 519: 358:|. In such a case 297: 149:hyperfine coupling 74:unpaired electrons 2131:The DNP-NMR blog 2084:978-3-642-39728-8 1868:10.1063/1.2833582 1834:978-0-08-097074-5 1760:978-3-642-37990-1 1690:978-3-642-28916-3 1646:10.1021/ar300348n 1435:10.1063/1.4747449 1227:Appl. Magn. Reson 1141:10.1063/1.2833582 850:978-0-19-851251-6 807:spin polarization 475: 276: 126:Albert Overhauser 112:Overhauser effect 94:Overhauser effect 70:hyperpolarization 30:spin polarization 2160: 2148:Chemical physics 2104:Tom Wenckebach, 2088: 2069: 2048: 2019: 1990: 1953: 1943: 1926:(3–4): 237–263. 1910: 1889: 1879: 1838: 1807: 1805: 1772: 1737: 1727: 1702: 1667: 1657: 1610: 1609: 1575: 1566: 1557: 1556: 1538: 1506: 1500: 1499: 1463: 1457: 1456: 1446: 1405: 1396: 1395: 1358: 1349: 1337: 1331: 1330: 1301: 1295: 1294: 1265: 1259: 1258: 1218: 1212: 1211: 1201: 1184:(3–4): 237–263. 1169: 1163: 1162: 1152: 1127:(5): 052211–19. 1110: 1104: 1103: 1073: 1067: 1066: 1036: 1030: 1029: 1001: 995: 994: 962: 956: 955: 929: 906: 900: 899: 861: 855: 854: 836: 812:transition metal 589: 587: 586: 581: 579: 578: 577: 561: 560: 548: 547: 528: 526: 525: 520: 518: 517: 508: 507: 495: 494: 485: 484: 473: 466: 465: 456: 455: 440: 439: 430: 429: 428: 415: 414: 404: 403: 320: 319: 315: 306: 304: 303: 298: 296: 295: 286: 285: 274: 267: 266: 257: 256: 241: 240: 231: 230: 229: 216: 215: 206: 205: 193: 192: 155:solution of the 145:cross-relaxation 101:NMR spectroscopy 2168: 2167: 2163: 2162: 2161: 2159: 2158: 2157: 2138: 2137: 2128: 2115: 2095: 2085: 2072: 2051: 2022: 1993: 1956: 1913: 1892: 1841: 1835: 1810: 1775: 1761: 1740: 1705: 1691: 1670: 1627: 1624: 1622:Review articles 1619: 1617:Further reading 1614: 1613: 1573: 1568: 1567: 1560: 1508: 1507: 1503: 1465: 1464: 1460: 1407: 1406: 1399: 1360: 1359: 1352: 1347:Wayback Machine 1338: 1334: 1303: 1302: 1298: 1267: 1266: 1262: 1220: 1219: 1215: 1171: 1170: 1166: 1112: 1111: 1107: 1079:Physical Review 1075: 1074: 1070: 1042:Physical Review 1038: 1037: 1033: 1003: 1002: 998: 968: 964: 963: 959: 908: 907: 903: 863: 862: 858: 851: 838: 837: 833: 828: 803:solid-state NMR 790: 783: 779: 771: 767: 763: 759: 739: 730: 723: 717: 710: 701: 694: 690: 684: 679: 670: 658: 654: 648: 641: 634: 627: 620: 613: 606: 599: 565: 552: 539: 531: 530: 509: 499: 486: 476: 457: 447: 431: 419: 406: 395: 381: 380: 375: 368: 357: 334: 326: 317: 313: 312: 287: 277: 258: 248: 232: 220: 207: 197: 184: 179: 178: 172: 114: 109: 66:optical pumping 17: 12: 11: 5: 2166: 2164: 2156: 2155: 2150: 2140: 2139: 2136: 2135: 2127: 2124: 2123: 2122: 2119: 2114: 2113:Special issues 2111: 2110: 2109: 2102: 2099: 2094: 2091: 2090: 2089: 2083: 2070: 2049: 2031:(9): 725–745. 2020: 2002:(1–2): 28–42. 1991: 1954: 1911: 1890: 1839: 1833: 1808: 1773: 1759: 1738: 1718:(4): 260–263. 1703: 1689: 1668: 1640:(9): 1933–41. 1623: 1620: 1618: 1615: 1612: 1611: 1558: 1501: 1474:(2): 161–176. 1458: 1415:J. Chem. Phys. 1397: 1364:J. Mag. Reson. 1350: 1332: 1313:(1): 212–213. 1296: 1277:(2): 411–415. 1260: 1233:(1–2): 81–90. 1213: 1164: 1105: 1086:(4): 975–980. 1068: 1049:(1): 212–213. 1031: 1012:(2): 477–485. 996: 966: 957: 901: 874:(3): 395–467. 856: 849: 830: 829: 827: 824: 789: 786: 781: 777: 769: 765: 761: 757: 737: 729: 726: 721: 716: 715:Thermal mixing 713: 708: 700: 697: 692: 688: 683: 680: 678: 675: 669: 666: 656: 652: 647: 644: 639: 632: 625: 618: 611: 604: 597: 591: 590: 576: 573: 568: 564: 559: 555: 551: 546: 542: 538: 516: 512: 506: 502: 498: 493: 489: 483: 479: 472: 469: 464: 460: 454: 450: 446: 443: 438: 434: 427: 422: 418: 413: 409: 402: 398: 394: 391: 388: 373: 369:and intensity 366: 355: 332: 324: 308: 307: 294: 290: 284: 280: 273: 270: 265: 261: 255: 251: 247: 244: 239: 235: 228: 223: 219: 214: 210: 204: 200: 196: 191: 187: 171: 168: 161:density matrix 113: 110: 108: 105: 50:magnetic field 46:electron spins 15: 13: 10: 9: 6: 4: 3: 2: 2165: 2154: 2151: 2149: 2146: 2145: 2143: 2134: 2130: 2129: 2125: 2120: 2117: 2116: 2112: 2107: 2103: 2100: 2097: 2096: 2092: 2086: 2080: 2076: 2071: 2067: 2063: 2059: 2055: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1955: 1951: 1947: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1912: 1908: 1904: 1901:(43): 12–15. 1900: 1896: 1891: 1887: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1854:(5): 052211. 1853: 1849: 1845: 1840: 1836: 1830: 1826: 1822: 1818: 1814: 1809: 1804: 1799: 1795: 1791: 1788:(1): 012003. 1787: 1783: 1779: 1774: 1770: 1766: 1762: 1756: 1752: 1748: 1744: 1739: 1735: 1731: 1726: 1721: 1717: 1713: 1709: 1704: 1700: 1696: 1692: 1686: 1682: 1678: 1674: 1669: 1665: 1661: 1656: 1651: 1647: 1643: 1639: 1635: 1631: 1626: 1625: 1621: 1616: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1565: 1563: 1559: 1554: 1550: 1546: 1542: 1537: 1532: 1528: 1524: 1520: 1516: 1512: 1505: 1502: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1459: 1454: 1450: 1445: 1440: 1436: 1432: 1428: 1424: 1421:(8): 084508. 1420: 1417: 1416: 1411: 1404: 1402: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1366: 1365: 1357: 1355: 1351: 1348: 1344: 1341: 1336: 1333: 1328: 1324: 1320: 1316: 1312: 1309: 1308: 1300: 1297: 1292: 1288: 1284: 1280: 1276: 1273: 1272: 1264: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1214: 1209: 1205: 1200: 1195: 1191: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1156: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1121: 1116: 1109: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1080: 1072: 1069: 1064: 1060: 1056: 1052: 1048: 1044: 1043: 1035: 1032: 1027: 1023: 1019: 1015: 1011: 1007: 1000: 997: 992: 988: 984: 980: 976: 972: 961: 958: 953: 949: 945: 941: 937: 933: 928: 923: 919: 915: 914: 905: 902: 897: 893: 889: 885: 881: 877: 873: 869: 868: 860: 857: 852: 846: 842: 835: 832: 825: 823: 821: 817: 813: 808: 804: 800: 795: 787: 785: 775: 755: 750: 748: 734: 727: 725: 714: 712: 705: 698: 696: 681: 676: 674: 667: 665: 663: 645: 643: 638: 631: 624: 617: 610: 603: 596: 566: 562: 557: 553: 549: 544: 540: 514: 510: 504: 500: 496: 491: 487: 481: 477: 470: 467: 462: 458: 452: 448: 444: 441: 436: 432: 420: 416: 411: 407: 400: 396: 389: 386: 379: 378: 377: 372: 365: 361: 354: 350: 346: 342: 338: 331: 327: 292: 288: 282: 278: 271: 268: 263: 259: 253: 249: 245: 242: 237: 233: 221: 217: 212: 208: 202: 198: 194: 189: 185: 177: 176: 175: 169: 167: 164: 162: 159:for the spin 158: 154: 150: 146: 141: 139: 135: 131: 130:Norman Ramsey 127: 122: 119: 111: 106: 104: 102: 97: 95: 91: 87: 83: 77: 75: 71: 67: 63: 59: 55: 51: 47: 43: 42:nuclear spins 39: 38:atomic nuclei 35: 31: 27: 23: 19: 2074: 2057: 2053: 2028: 2024: 1999: 1995: 1962: 1958: 1923: 1919: 1898: 1894: 1851: 1847: 1816: 1785: 1781: 1742: 1715: 1711: 1672: 1637: 1633: 1581: 1577: 1521:(1): 25–55. 1518: 1514: 1504: 1471: 1467: 1461: 1418: 1413: 1367: 1362: 1335: 1310: 1305: 1299: 1274: 1269: 1263: 1230: 1226: 1216: 1181: 1177: 1167: 1124: 1118: 1108: 1083: 1077: 1071: 1046: 1040: 1034: 1009: 1005: 999: 974: 970: 960: 917: 913:Phys. Rev. B 911: 904: 871: 865: 859: 840: 834: 791: 751: 743: 718: 706: 702: 685: 677:Cross effect 671: 649: 636: 629: 622: 615: 608: 601: 600:is close to 594: 592: 370: 363: 359: 352: 348: 344: 340: 336: 329: 322: 309: 173: 170:Solid effect 165: 142: 123: 115: 98: 78: 25: 21: 20: 18: 682:Static case 134:Felix Bloch 2142:Categories 1965:(3): 395. 1813:Han, Songi 1584:: 101675. 1307:Phys. Rev. 1271:Phys. Rev. 826:References 351:|<<| 107:Mechanisms 56:under the 2060:: 33–67. 1987:250855406 1606:255364390 1598:1359-0294 1553:247375660 1545:1531-7331 1488:0937-9347 1370:: 13–21. 1255:254087348 1247:0937-9347 977:(1): 19. 969:and HD". 927:1306.0469 896:250855406 764:, where ω 567:ω 563:− 554:ω 541:ω 537:Δ 501:ω 421:ω 397:ω 393:Δ 222:ω 199:ω 86:microwave 82:homolysis 34:electrons 1950:19194532 1886:18266416 1815:(2011). 1769:22025060 1734:28982406 1699:22057860 1664:23597038 1496:96672106 1453:22938251 1392:23000976 1343:Archived 1208:19194532 1159:18266416 952:76658845 920:(4): 9. 138:Slichter 80:after a 2033:Bibcode 2004:Bibcode 1967:Bibcode 1941:2634864 1877:2770872 1856:Bibcode 1790:Bibcode 1655:3778063 1523:Bibcode 1444:3443114 1423:Bibcode 1372:Bibcode 1315:Bibcode 1279:Bibcode 1199:2634864 1150:2770872 1129:Bibcode 1088:Bibcode 1051:Bibcode 1014:Bibcode 979:Bibcode 932:Bibcode 876:Bibcode 788:DNP-NMR 316:⁄ 2133:(Link) 2081:  1985:  1948:  1938:  1884:  1874:  1831:  1767:  1757:  1732:  1697:  1687:  1662:  1652:  1604:  1596:  1551:  1543:  1494:  1486:  1451:  1441:  1390:  1253:  1245:  1206:  1196:  1157:  1147:  950:  894:  847:  529:where 474:  275:  2126:Blogs 2093:Books 1983:S2CID 1602:S2CID 1574:(PDF) 1549:S2CID 1492:S2CID 1251:S2CID 948:S2CID 922:arXiv 892:S2CID 768:and ω 62:CIDNP 32:from 2079:ISBN 1946:PMID 1882:PMID 1829:ISBN 1765:PMID 1755:ISBN 1730:PMID 1695:PMID 1685:ISBN 1660:PMID 1594:ISSN 1541:ISSN 1484:ISSN 1449:PMID 1388:PMID 1243:ISSN 1204:PMID 1155:PMID 845:ISBN 339:and 328:and 118:spin 2062:doi 2041:doi 2012:doi 2000:526 1975:doi 1936:PMC 1928:doi 1903:doi 1872:PMC 1864:doi 1852:128 1821:doi 1798:doi 1786:324 1747:doi 1720:doi 1677:doi 1650:PMC 1642:doi 1586:doi 1531:doi 1476:doi 1439:PMC 1431:doi 1419:137 1380:doi 1368:224 1323:doi 1287:doi 1235:doi 1194:PMC 1186:doi 1145:PMC 1137:doi 1125:128 1096:doi 1084:102 1059:doi 1022:doi 1010:117 987:doi 940:doi 884:doi 794:NMR 780:– ω 760:± ω 747:FID 347:|,| 64:), 36:to 26:DNP 2144:: 2058:17 2056:. 2039:. 2029:21 2027:. 2010:. 1998:. 1981:. 1973:. 1963:41 1961:. 1944:. 1934:. 1924:34 1922:. 1918:. 1899:86 1897:. 1880:. 1870:. 1862:. 1850:. 1846:. 1827:. 1796:. 1784:. 1780:. 1763:. 1753:. 1728:. 1716:65 1714:. 1710:. 1693:. 1683:. 1658:. 1648:. 1638:46 1636:. 1632:. 1600:. 1592:. 1582:64 1580:. 1576:. 1561:^ 1547:. 1539:. 1529:. 1519:52 1517:. 1513:. 1490:. 1482:. 1470:. 1447:. 1437:. 1429:. 1412:. 1400:^ 1386:. 1378:. 1353:^ 1321:. 1311:92 1285:. 1275:92 1249:. 1241:. 1231:43 1229:. 1225:. 1202:. 1192:. 1182:34 1180:. 1176:. 1153:. 1143:. 1135:. 1123:. 1117:. 1094:. 1082:. 1057:. 1047:92 1045:. 1020:. 1008:. 985:. 975:21 973:. 946:. 938:. 930:. 918:88 916:. 890:. 882:. 872:41 870:. 724:. 642:. 635:/2 630:Bω 621:± 614:= 612:MW 598:MW 367:MW 163:. 132:, 2087:. 2068:. 2064:: 2047:. 2043:: 2035:: 2018:. 2014:: 2006:: 1989:. 1977:: 1969:: 1952:. 1930:: 1909:. 1905:: 1888:. 1866:: 1858:: 1837:. 1823:: 1806:. 1800:: 1792:: 1771:. 1749:: 1736:. 1722:: 1701:. 1679:: 1666:. 1644:: 1608:. 1588:: 1555:. 1533:: 1525:: 1498:. 1478:: 1472:5 1455:. 1433:: 1425:: 1394:. 1382:: 1374:: 1329:. 1325:: 1317:: 1293:. 1289:: 1281:: 1257:. 1237:: 1210:. 1188:: 1161:. 1139:: 1131:: 1102:. 1098:: 1090:: 1065:. 1061:: 1053:: 1028:. 1024:: 1016:: 993:. 989:: 981:: 967:2 954:. 942:: 934:: 924:: 898:. 886:: 878:: 853:. 782:H 778:e 770:H 766:e 762:H 758:e 738:H 722:0 709:0 693:0 689:0 657:0 653:0 640:n 637:ω 633:1 626:n 623:ω 619:e 616:ω 609:ω 605:e 602:ω 595:ω 575:W 572:M 558:e 550:= 545:e 515:x 511:S 505:1 497:+ 492:x 488:I 482:z 478:S 471:B 468:+ 463:z 459:I 453:z 449:S 445:A 442:+ 437:z 433:I 426:n 417:+ 412:z 408:S 401:e 390:= 387:H 374:1 371:ω 364:ω 360:A 356:n 353:ω 349:B 345:A 341:B 337:A 333:n 330:ω 325:e 323:ω 318:2 314:1 293:x 289:I 283:z 279:S 272:B 269:+ 264:z 260:I 254:z 250:S 246:A 243:+ 238:z 234:I 227:n 218:+ 213:z 209:S 203:e 195:= 190:0 186:H 24:(

Index

spin polarization
electrons
atomic nuclei
nuclear spins
electron spins
magnetic field
Boltzmann distribution
thermal equilibrium
CIDNP
optical pumping
hyperpolarization
unpaired electrons
homolysis
microwave
electron paramagnetic resonance
Overhauser effect
NMR spectroscopy
spin
Albert Overhauser
Norman Ramsey
Felix Bloch
Slichter
cross-relaxation
hyperfine coupling
perturbation theory
von Neumann equation
density matrix
unpaired electrons

FID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.