Knowledge

DNA end resection

Source πŸ“

220:. The structure of telomeres is highly conserve and is organized in multiple short tandem DNA repeats. Telomeres and DSBs have different functionality, such that telomeres prevent DNA repair activities. During telomeric DNA replication in the S/G2 and G1 phases of the cell cycle, the 3' lagging strand leaves a short overhang called a G-tail. Telomeric DNA ends at the 3' G tail end because the 3' lagging strand extends without its complementary 5' C leading strand. The G tail provide a major function to telomeric DNA such that the G tails control telomere homeostasis. 240:. Such process in S. Cerevisiae for example is negatively regulated by this activity. The MRX complex and the Ku complex bind simultaneously and independently to DSBs ends. In the presence of the telomere-associated proteins, MRX fails to bind to the DSB ends while the Ku complex binds to DSB ends. The bound Ku complex to the DSB ends protect the telomeres from nucleolytic degradation by 50: 342:
to the HR pathway. Cyclin-dependent protein kinase such as cdk1 serve as a positive regulator of the HR pathway. This positive regulator promotes 5′–3β€² nucleolytic degradation of DNA ends. Along with cdk1, the MRX complex, B1 cyclin, and Spo11-induced DSBs serve as a positive regulators to the HR pathway.
332:
Resection ensures that DSBs are not repaired by NHEJ (which joins broken DNA ends together without ensuring that they match), but rather by methods based on homology (matching DNA sequences). Cyclin-dependent protein kinase such as cdk1 in yeast serves as a negative regulator of the NHEJ pathway. Any
297:
enzyme, Sgs1 enzyme, and the nucleases Exo1 and Dna2. Involvement of Sae2 Sar267 in DSB processing is highly conserved throughout eukaryotes, such that the Sae2 along with the MRX complex are involved in two major functions: single-strand annealing, and processing of hairpin DNA structures. Like all
341:
The presence of a ssDNA allows the broken end of the DNA to line up accurately with a matching sequence, so that it can be accurately repaired. For HR pathway to occur in the S and G2 phases of the cell cycle, availability of a sister chromatid is required. 5′–3β€² resection automatically links a DSB
319:
The pathway of choice in DNA repair is highly regulated to guarantee that cells in the S/G2 and G1 phase use the appropriate mechanism. Regulators in both the NHEJ and HR pathway mediate the appropriate DNA repair response pathway. Furthermore, recent studies into DNA repair show that regulation of
310:
filament which can take part in the search for a matching region, allowing HR to take place. The 3' ssDNA coated by a RPA promotes the recruitment of Mec1. Mec1 further phosphorylates Sae2 along with cdk1. The resulting phosphorylation by Sae2 by Mec1 helps increase the effect of resection and this
142:
for activation, this event only happens in the G2 and S phases of the cell cycle during replication. DSBs that have not begun DNA end resection can be ligated by NHEJ pathway, but resection of a few nucleotides inhibits the NHEJ pathway and commits' DNA repair by the HR pathway. The NHEJ pathway is
264:
parts of the resection machinery. This process alleviates the inhibitory effect of the telomere-associated proteins, and allows Cdc13 (a binding protein on both the lagging strand, and leading strand) to cover telomeric DNA. The binding of cdc13 to DNA suppresses DNA damage checkpoint and allows
328:
DNA end resection is key in determining the correct pathway in NHEJ. For NHEJ pathway to occur, positive regulators such as the Ku and MRX complex mediate recruitment of other NHEJ-associated proteins such as Tel1, Lif1, Dnl4, and Nej1. Since NHEJ does not rely on end resection, NHEJ could only
273:
One of the important regulatory controls in mitotic cells is deciding which specific DSB repair pathway to take. Once a DSB is detected, the highly conserved complexes are recruited by the DNA ends. If the cell is in the G1 phase of the cell cycle, the complex Ku prevents resection to occur and
68:
recombination. Furthermore, the natural ends of the linear chromosomes resemble DSBs, and although DNA breaks can cause damage to the integrity of genomic DNA, the natural ends are packed into complex specialized DNA protective packages called
121:
Accurate repair of DSBs are essential in the upkeep of genome integrity. From the three mechanisms that exists to repair DSBs, NHEJ and HR repair mechanisms are the dominant pathways. Several highly conservative proteins trigger the
93:. Furthermore, DSBs can lead to genome rearrangements and instability. Cases where two complementary strands are linked at the point of the DSB have potential to be catastrophic, such that the cell will not be able to complete 126:
for detection of DSBs ensuing repair by either NHEJ or HR repair pathways. NHEJ mechanism functions in ligating two different DSBs with high fidelity, while HR relies on a homologous template to repair DSB ends.
252:
In the late S/G2 phase of the cell cycle, the telomere-associated proteins RIF1, RIF2, and RAP2 exhibit their inhibitory effect by binding to telomeric DNA. In the Late S/G2 phase, the protein kinase
293:
Ser267. After phosphorylation occurs by Cdk1, MRX complex binds to dsDNA ends and generates short ssDNA that stretches in the 5' direction. The 5' ssDNA continues resection by the activity of the
196:-interacting protein (CtIP) needs to bind to the MRN complex so that the first phase of resection can begin, namely short-range end resection. After 73:
that prevent DNA repair activities. Telomeres and mitotic DSBs have different functionality, but both experience the same 5′–3β€² degradation process.
777:"The isolation and partial characterization of age-correlated oligo-deoxyribo-ribonucleotides with covalently linked aspartyl-glutamyl polypeptides" 244:. This results in an inhibition of telomerase elongation at the DSB ends and prevents further telomere action at the G1 phase of the cell cycle. 1354: 1318: 147:
phase. In G1 phase there is no sister chromatids to repair DSBs via the HR pathway making the NHEJ pathway a critical repair mechanism.
1116: 396: 106: 39: 421:
Jimeno S, MejΓ­as-Navarro F, Prados-Carvajal R, Huertas P (2019). "Controlling the balance between chromosome break repair pathways".
1223: 442: 229: 46:(ssDNA) allows the broken end of the DNA to line up accurately with a matching sequence, so that it can be accurately repaired. 282:
and the Nej1/XLF protein. This process results in error-prone religation of DSB ends at the G1 phase of the cell cycle.
386: 366: 102: 274:
triggers the NHEJ pathway factors. DSBs in the NHEJ pathway are ligated, a step in the NHEJ pathway that requires
286: 253: 167: 329:
happen in the G1 phase of the cell cycle. Both Ku and NHEJ-associated proteins prevent initiation of resection.
391: 110: 1206:
Pinto C, Anand R, Cejka P (2018). "Methods to Study DNA End Resection II: Biochemical Reconstitution Assays".
97:
when it next divides, and will either die or, in rare cases, undergo chromosomal loss, duplications, and even
49: 261: 257: 197: 732:
Bjorksten J, Acharya PV, Ashman S, Wetlaufer DB (July 1971). "Gerogenic fractions in the tritiated rat".
64:
causing DNA end resection and repair activities to take place, but they are also normal intermediates in
361: 299: 123: 27: 150:
Before resection can take place, the break needs to be detected. In animals, this detection is done by
85:
is a kind of DNA damage in which both strands in the double helix are severed. DSBs only occur during
1263: 1017:"PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses" 57: 1208:
Mechanisms of DNA Recombination and Genome Rearrangements: Methods to Study Homologous Recombination
1376: 333:
activity associated with the presence of cyclin dependent protein kinases inhibit the NHEJ pathway
43: 1068:"PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites" 757: 456: 1350: 1324: 1314: 1291: 1229: 1219: 1181: 1089: 1048: 997: 948: 900: 877: 836: 784: 749: 714: 632: 512: 448: 438: 139: 1066:
Haince JF, McDonald D, Rodrigue A, DΓ©ry U, Masson JY, Hendzel MJ, Poirier GG (January 2008).
1281: 1271: 1211: 1171: 1161: 1079: 1038: 1028: 987: 979: 938: 867: 826: 818: 741: 704: 696: 622: 614: 502: 494: 430: 170: 86: 1108: 1267: 1148:
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP (2019).
1286: 1251: 1176: 1149: 1043: 1016: 992: 967: 831: 806: 745: 709: 684: 627: 602: 507: 482: 216:
Linear chromosomes are packed into complex specialized DNA protective packages called
1370: 927:"DNA joint dependence of pol X family polymerase action in nonhomologous end joining" 320:
DNA end resection is governed by the activity of cdk1 in the cell replication cycle.
307: 241: 761: 460: 290: 201: 1150:"Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context" 1033: 700: 434: 351: 279: 237: 205: 186: 163: 143:
involved throughout the cell cycle, but it is critical to DNA repair during the
1256:
Proceedings of the National Academy of Sciences of the United States of America
1250:
Xue C, Wang W, Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC (March 2019).
1215: 1345:
Poon RY (2016-01-01). "Mitotic Catastrophe". In Bradshaw RA, Stahl PD (eds.).
498: 376: 371: 356: 275: 90: 82: 61: 35: 1328: 1166: 904: 265:
resection to occur while allowing for telomerase elongation at the DSB ends.
1276: 256:(cyclin-dependent) promotes telomeric resection. This control is exerted by 155: 1295: 1233: 1185: 1093: 1084: 1067: 1052: 1001: 952: 943: 926: 881: 872: 855: 840: 718: 636: 618: 516: 452: 788: 776: 753: 1252:"Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection" 968:"The multifaceted roles of PARP1 in DNA repair and chromatin remodelling" 381: 294: 217: 144: 135: 98: 70: 983: 854:
Liang L, Deng L, Chen Y, Li GC, Shao C, Tischfield JA (September 2005).
130:
DNA end resection in the HR pathway only occurs at two specific phases:
895:
Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R, eds. (2004).
204:, probably about 300 base pairs from the end, and then acts as a 3'β†’5' 131: 94: 65: 42:
to produce a 3' single-stranded sequence. The presence of a section of
822: 200:
CtIP binds, the Mre11 subunit is able to cut the 5'-terminated strand
53:
Mechanism of regulation of 5' resection of Mitotic and Telomeric DSBs.
1113:
Atlas of Genetics and Cytogenetics in Oncology and Haematology - NBS1
182: 174: 285:
If the cells are in S/G2 phase, mitotic DSBs are controlled through
228:
In the G1 phase of the cell cycle, the telomere-associated proteins
899:(5th ed.). Pearson Benjamin Cummings; CSHL Press. Ch. 9, 10. 303: 233: 193: 178: 159: 151: 601:
Longhese MP, Bonetti D, Manfrini N, Clerici M (September 2010).
185:
in mammals, or Xrs2 in yeast, where this complex is called the
31: 298:
ssDNA in the nucleus, the resected region is first coated by
807:"DNA resection in eukaryotes: deciding how to fix the break" 113:
HR. Of these, only NHEJ does not rely on DNA end resection.
1210:. Methods in Enzymology. Vol. 600. pp. 67–106. 162:
seems to play this role. PARP binding then recruits the
311:
in turn leads to the DNA damage checkpoint activation.
925:
Daley JM, Laan RL, Suresh A, Wilson TE (August 2005).
423:
Advances in Protein Chemistry and Structural Biology
856:"Modulation of DNA end joining by nuclear proteins" 685:"DNA end resection: many nucleases make light work" 1015:Song J, Keppler BD, Wise RR, Bent AF (May 2015). 603:"Mechanisms and regulation of DNA end resection" 236:bind to telomeric DNA and prevent access to the 966:Ray Chaudhuri A, Nussenzweig A (October 2017). 1107:Uhrhammer N, Bay JO, Gatti RA (October 2002). 1349:. Waltham: Academic Press. pp. 399–403. 302:(RPA) complex, but RPA is then replaced with 8: 683:Mimitou EP, Symington LS (September 2009). 734:Journal of the American Geriatrics Society 1285: 1275: 1175: 1165: 1083: 1042: 1032: 991: 942: 871: 830: 811:Nature Structural & Molecular Biology 781:Johns Hopkins Medical Journal. Supplement 708: 626: 506: 487:Genomics, Proteomics & Bioinformatics 483:"DNA End Resection: Facts and Mechanisms" 289:activity and involves phosphorylation of 101:. Three mechanisms exist to repair DSBs: 34:(dsDNA) is modified by cutting away some 208:to strip away the end of the 5' strand. 48: 408: 166:to the breakage site. This is a highly 972:Nature Reviews. Molecular Cell Biology 1340: 1338: 1311:New research directions in DNA repair 1245: 1243: 1201: 1199: 1197: 1195: 1143: 1141: 1139: 1137: 1135: 1133: 920: 918: 916: 914: 678: 676: 674: 672: 670: 668: 666: 596: 594: 592: 590: 588: 586: 584: 582: 580: 578: 576: 574: 572: 570: 568: 566: 564: 562: 560: 558: 556: 554: 552: 550: 548: 546: 60:(DSBs) can occur at any phase of the 26:, is a biochemical process where the 7: 1109:"NBN (Nijmegen breakage syndrome 1)" 800: 798: 664: 662: 660: 658: 656: 654: 652: 650: 648: 646: 544: 542: 540: 538: 536: 534: 532: 530: 528: 526: 476: 474: 472: 470: 416: 414: 412: 1072:The Journal of Biological Chemistry 931:The Journal of Biological Chemistry 860:The Journal of Biological Chemistry 1154:Frontiers in Molecular Biosciences 746:10.1111/j.1532-5415.1971.tb02577.x 397:Microhomology-mediated end joining 138:phases. Since HR pathway requires 107:microhomology-mediated end joining 14: 154:; similar systems exist in other 248:Telomeres in the late S/G2 phase 30:of a section of double-stranded 1119:from the original on 2006-09-29 1: 897:Molecular Biology of the Gene 1347:Encyclopedia of Cell Biology 1034:10.1371/journal.pgen.1005200 701:10.1016/j.dnarep.2009.04.017 481:Liu T, Huang J (June 2016). 435:10.1016/bs.apcsb.2018.10.004 278:activity of Dnl4-Lif1/XRCC4 192:Before resection can start, 1393: 1216:10.1016/bs.mie.2017.11.009 805:Huertas P (January 2010). 367:Non-homologous end joining 212:Resection of telomere DSBs 103:non-homologous end joining 499:10.1016/j.gpb.2016.05.002 269:Resection of mitotic DSBs 1167:10.3389/fmolb.2019.00043 392:Homologous Recombination 258:cyclin-dependent kinases 111:homologous recombination 1277:10.1073/pnas.1819276116 1085:10.1074/jbc.M706734200 944:10.1074/jbc.M505277200 873:10.1074/jbc.M503776200 619:10.1038/emboj.2010.165 54: 300:Replication protein A 224:Telomeres in G1 phase 124:DNA Damage Checkpoint 52: 1309:Chen C, ed. (2013). 429:. Elsevier: 95–134. 357:Double-strand breaks 58:Double-strand breaks 1313:. Croatia: InTech. 1268:2019PNAS..116.6091X 984:10.1038/nrm.2017.53 937:(32): 29030–29037. 866:(36): 31442–31449. 775:Acharya PV (1972). 337:Positive regulators 202:endonucleolytically 181:and NBS1 (known as 83:double-strand break 44:single-stranded DNA 16:Biochemical process 55: 1356:978-0-12-394796-3 1320:978-953-51-1114-6 1262:(13): 6091–6100. 823:10.1038/nsmb.1710 613:(17): 2864–2874. 140:sister chromatids 24:5′–3β€² degradation 20:DNA end resection 1384: 1361: 1360: 1342: 1333: 1332: 1306: 1300: 1299: 1289: 1279: 1247: 1238: 1237: 1203: 1190: 1189: 1179: 1169: 1145: 1128: 1127: 1125: 1124: 1104: 1098: 1097: 1087: 1078:(2): 1197–1208. 1063: 1057: 1056: 1046: 1036: 1012: 1006: 1005: 995: 963: 957: 956: 946: 922: 909: 908: 892: 886: 885: 875: 851: 845: 844: 834: 802: 793: 792: 772: 766: 765: 729: 723: 722: 712: 680: 641: 640: 630: 607:The EMBO Journal 598: 521: 520: 510: 478: 465: 464: 418: 1392: 1391: 1387: 1386: 1385: 1383: 1382: 1381: 1367: 1366: 1365: 1364: 1357: 1344: 1343: 1336: 1321: 1308: 1307: 1303: 1249: 1248: 1241: 1226: 1205: 1204: 1193: 1147: 1146: 1131: 1122: 1120: 1106: 1105: 1101: 1065: 1064: 1060: 1027:(5): e1005200. 1014: 1013: 1009: 978:(10): 610–621. 965: 964: 960: 924: 923: 912: 894: 893: 889: 853: 852: 848: 804: 803: 796: 774: 773: 769: 731: 730: 726: 682: 681: 644: 600: 599: 524: 480: 479: 468: 445: 420: 419: 410: 405: 348: 339: 326: 317: 271: 250: 226: 214: 119: 87:DNA replication 79: 17: 12: 11: 5: 1390: 1388: 1380: 1379: 1369: 1368: 1363: 1362: 1355: 1334: 1319: 1301: 1239: 1224: 1191: 1129: 1099: 1058: 1007: 958: 910: 887: 846: 794: 783:(1): 254–260. 767: 740:(7): 561–574. 724: 695:(9): 983–995. 642: 522: 493:(3): 126–130. 466: 443: 407: 406: 404: 401: 400: 399: 394: 389: 384: 379: 374: 369: 364: 359: 354: 347: 344: 338: 335: 325: 322: 316: 313: 270: 267: 249: 246: 225: 222: 213: 210: 198:phosphorylated 173:consisting of 118: 115: 78: 75: 22:, also called 15: 13: 10: 9: 6: 4: 3: 2: 1389: 1378: 1375: 1374: 1372: 1358: 1352: 1348: 1341: 1339: 1335: 1330: 1326: 1322: 1316: 1312: 1305: 1302: 1297: 1293: 1288: 1283: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1244: 1240: 1235: 1231: 1227: 1225:9780128144299 1221: 1217: 1213: 1209: 1202: 1200: 1198: 1196: 1192: 1187: 1183: 1178: 1173: 1168: 1163: 1159: 1155: 1151: 1144: 1142: 1140: 1138: 1136: 1134: 1130: 1118: 1114: 1110: 1103: 1100: 1095: 1091: 1086: 1081: 1077: 1073: 1069: 1062: 1059: 1054: 1050: 1045: 1040: 1035: 1030: 1026: 1022: 1021:PLOS Genetics 1018: 1011: 1008: 1003: 999: 994: 989: 985: 981: 977: 973: 969: 962: 959: 954: 950: 945: 940: 936: 932: 928: 921: 919: 917: 915: 911: 906: 902: 898: 891: 888: 883: 879: 874: 869: 865: 861: 857: 850: 847: 842: 838: 833: 828: 824: 820: 816: 812: 808: 801: 799: 795: 790: 786: 782: 778: 771: 768: 763: 759: 755: 751: 747: 743: 739: 735: 728: 725: 720: 716: 711: 706: 702: 698: 694: 690: 686: 679: 677: 675: 673: 671: 669: 667: 665: 663: 661: 659: 657: 655: 653: 651: 649: 647: 643: 638: 634: 629: 624: 620: 616: 612: 608: 604: 597: 595: 593: 591: 589: 587: 585: 583: 581: 579: 577: 575: 573: 571: 569: 567: 565: 563: 561: 559: 557: 555: 553: 551: 549: 547: 545: 543: 541: 539: 537: 535: 533: 531: 529: 527: 523: 518: 514: 509: 504: 500: 496: 492: 488: 484: 477: 475: 473: 471: 467: 462: 458: 454: 450: 446: 444:9780128155592 440: 436: 432: 428: 424: 417: 415: 413: 409: 402: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 353: 350: 349: 345: 343: 336: 334: 330: 323: 321: 314: 312: 309: 308:nucleoprotein 305: 301: 296: 292: 288: 283: 281: 277: 268: 266: 263: 262:phosphorylate 259: 255: 247: 245: 243: 239: 235: 231: 223: 221: 219: 211: 209: 207: 203: 199: 195: 190: 188: 184: 180: 176: 172: 169: 165: 161: 158:: in plants, 157: 153: 148: 146: 141: 137: 133: 128: 125: 116: 114: 112: 108: 104: 100: 96: 92: 88: 84: 76: 74: 72: 67: 63: 59: 51: 47: 45: 41: 37: 33: 29: 25: 21: 1346: 1310: 1304: 1259: 1255: 1207: 1157: 1153: 1121:. Retrieved 1112: 1102: 1075: 1071: 1061: 1024: 1020: 1010: 975: 971: 961: 934: 930: 896: 890: 863: 859: 849: 817:(1): 11–16. 814: 810: 780: 770: 737: 733: 727: 692: 688: 610: 606: 490: 486: 426: 422: 340: 331: 327: 324:NHEJ pathway 318: 284: 272: 251: 232:, RIF2, and 227: 215: 191: 149: 129: 120: 109:(MMEJ), and 80: 56: 23: 19: 18: 352:Exonuclease 280:heterodimer 238:MRX complex 206:exonuclease 187:MRX complex 164:MRN complex 36:nucleotides 1377:DNA repair 1123:2008-02-12 689:DNA Repair 403:References 377:Cell cycle 372:Nucleotide 362:Blunt ends 315:Regulators 306:to form a 276:DNA ligase 156:eukaryotes 91:cell cycle 77:Background 62:cell cycle 1329:957280914 905:936762772 218:telomeres 168:conserved 117:Mechanism 99:mutations 71:telomeres 38:from the 28:blunt end 1371:Category 1296:30850524 1234:29458776 1186:31231660 1117:Archived 1094:18025084 1053:25950582 1002:28676700 953:15964833 882:16012167 841:20051983 762:33154242 719:19473888 637:20647996 517:27240470 461:73459973 453:30798939 382:Telomere 346:See also 295:helicase 260:, which 105:(NHEJ), 1287:6442620 1264:Bibcode 1177:6567933 1044:4423837 993:6591728 832:2850169 789:5055816 754:5106728 710:2760233 628:2944052 508:4936662 171:complex 95:mitosis 89:of the 66:mitosis 1353:  1327:  1317:  1294:  1284:  1232:  1222:  1184:  1174:  1160:: 43. 1092:  1051:  1041:  1000:  990:  951:  903:  880:  839:  829:  787:  760:  752:  717:  707:  635:  625:  515:  505:  459:  451:  441:  183:Nibrin 40:5' end 758:S2CID 457:S2CID 304:RAD51 194:CtBP1 179:Rad50 175:Mre11 160:PARP2 152:PARP1 1351:ISBN 1325:OCLC 1315:ISBN 1292:PMID 1230:PMID 1220:ISBN 1182:PMID 1090:PMID 1049:PMID 998:PMID 949:PMID 901:OCLC 878:PMID 837:PMID 785:PMID 750:PMID 715:PMID 633:PMID 513:PMID 449:PMID 439:ISBN 387:NHEJ 291:Sae2 287:Cdk1 254:CDK1 242:exo1 234:RAP2 230:RIF1 134:and 1282:PMC 1272:doi 1260:116 1212:doi 1172:PMC 1162:doi 1080:doi 1076:283 1039:PMC 1029:doi 988:PMC 980:doi 939:doi 935:280 868:doi 864:280 827:PMC 819:doi 742:doi 705:PMC 697:doi 623:PMC 615:doi 503:PMC 495:doi 431:doi 427:115 189:). 32:DNA 1373:: 1337:^ 1323:. 1290:. 1280:. 1270:. 1258:. 1254:. 1242:^ 1228:. 1218:. 1194:^ 1180:. 1170:. 1156:. 1152:. 1132:^ 1115:. 1111:. 1088:. 1074:. 1070:. 1047:. 1037:. 1025:11 1023:. 1019:. 996:. 986:. 976:18 974:. 970:. 947:. 933:. 929:. 913:^ 876:. 862:. 858:. 835:. 825:. 815:17 813:. 809:. 797:^ 779:. 756:. 748:. 738:19 736:. 713:. 703:. 691:. 687:. 645:^ 631:. 621:. 611:29 609:. 605:. 525:^ 511:. 501:. 491:14 489:. 485:. 469:^ 455:. 447:. 437:. 425:. 411:^ 177:, 145:G1 136:G2 81:A 1359:. 1331:. 1298:. 1274:: 1266:: 1236:. 1214:: 1188:. 1164:: 1158:6 1126:. 1096:. 1082:: 1055:. 1031:: 1004:. 982:: 955:. 941:: 907:. 884:. 870:: 843:. 821:: 791:. 764:. 744:: 721:. 699:: 693:8 639:. 617:: 519:. 497:: 463:. 433:: 132:S

Index

blunt end
DNA
nucleotides
5' end
single-stranded DNA

Double-strand breaks
cell cycle
mitosis
telomeres
double-strand break
DNA replication
cell cycle
mitosis
mutations
non-homologous end joining
microhomology-mediated end joining
homologous recombination
DNA Damage Checkpoint
S
G2
sister chromatids
G1
PARP1
eukaryotes
PARP2
MRN complex
conserved
complex
Mre11

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑