Knowledge (XXG)

Davenport–Schinzel sequence

Source 📝

1657: 1768:
continuous or that are defined only over intervals of the real line; however, in this case, the points of discontinuity of the functions and the endpoints of the interval within which each function is defined add to the order of the sequence. For instance, a non-vertical line segment in the plane can
28:
of symbols in which the number of times any two symbols may appear in alternation is limited. The maximum possible length of a Davenport–Schinzel sequence is bounded by the number of its distinct symbols multiplied by a small but nonconstant factor that depends on the number of alternations that are
145:
is a Davenport–Schinzel sequence of order 3: it contains alternating subsequences of length four, such as ...1, ... 2, ... 1, ... 2, ... (which appears in four different ways as a subsequence of the whole sequence) but it does not contain any alternating subsequences of length five.
1543: 815: 1725:
within which one function has values smaller than all of the other functions. The sequence of these intervals, labeled by the minimizing function within each interval, forms a Davenport–Schinzel sequence of order
679: 2371: 1781:
values, and the lower envelope of a collection of line segments forms a Davenport–Schinzel sequence of order three because any two line segments can form an alternating subsequence with length at most four.
864: 595: 1296: 1138: 1061: 507: 1645: 1420: 1357: 1425: 987: 433: 937: 1212: 1584: 380: 336: 286:
is the Ackermann function. Due to the very rapid growth of the Ackermann function, its inverse α grows very slowly, and is at most four for problems of any practical size.
1730:. Thus, any upper bound on the complexity of a Davenport–Schinzel sequence of this order also bounds the number of intervals in this representation of the lower envelope. 697: 1733:
In the original application of Davenport and Schinzel, the functions under consideration were a set of different solutions to the same homogeneous
2272: 602: 2198:, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 49, American Mathematical Society, pp. 169–178 2381: 820: 2582: 530: 1217: 2577: 2271:
Nivasch, Gabriel (2009), "Improved bounds and new techniques for Davenport–Schinzel sequences and their generalizations",
1067: 993: 2592: 1734: 38: 440: 2553: 1679: 1589: 2587: 1538:{\displaystyle \lambda _{s}(n)=\Omega \left(n\left({\frac {s}{2\log \log _{s}n}}\right)^{\log \log _{s}n}\right)} 1365: 1301: 509:. This complexity bound can be realized to within a factor of 2 by line segments: there exist arrangements of 943: 2156: 1722: 387: 50: 899: 1158: 105:
are two distinct values occurring in the sequence, then the sequence does not contain a subsequence ...
1551: 343: 299: 2522: 2291: 2315: 2147:(1986), "Nonlinearity of Davenport–Schinzel sequences and of generalized path compression schemes", 2161: 1770: 1714: 2204: 2512: 2495: 2477: 2307: 2281: 2182: 2123: 248: 2540: 2377: 2274:
Improved bounds and new techniques for Davenport--Schinzel sequences and their generalizations
2237: 2036:(1989), "Sharp upper and lower bounds on the length of general Davenport–Schinzel sequences", 2025: 1656: 46: 2487: 2446: 2345: 2299: 2249: 2216: 2166: 2115: 2103: 2099: 2079: 2045: 810:{\displaystyle \lambda _{s}(n)=n\cdot 2^{{\frac {1}{t!}}\alpha (n)^{t}+O(\alpha (n)^{t-1})}} 34: 30: 2460: 2425: 2404: 2359: 2263: 2228: 2178: 2135: 2091: 2059: 2557: 2456: 2421: 2400: 2355: 2259: 2224: 2174: 2131: 2087: 2067: 2055: 1791: 2526: 2295: 1665: 1660:
A Davenport–Schinzel sequence of order 3 formed by the lower envelope of line segments.
514: 290: 2571: 2437:(1988), "Planar realizations of nonlinear Davenport–Schinzel sequences by segments", 2413: 2333: 2220: 2083: 2050: 17: 2468:
Pettie, Seth (2015), "Sharp bounds on Davenport-Schinzel sequences of every order",
2186: 1764:
The same concept of a lower envelope can also be applied to functions that are only
1721:
values. With these assumptions, the real line can be partitioned into finitely many
2499: 2434: 2367: 2311: 2144: 2029: 2509:
Lower bounds on Davenport-Schinzel sequences via rectangular Zarankiewicz matrices
2418:
Combinatorial theory and its applications, III (Proc. Colloq., Balatonfüred, 1969)
198: 2207:(1988), "A simplified construction of nonlinear Davenport–Schinzel sequences", 2033: 2194:
Klazar, M. (1999), "On the maximum lengths of Davenport–Schinzel sequences",
2544: 2350: 2336:; Stanton, R. G. (1971), "Some properties of Davenport-Schinzel sequences", 2303: 2254: 1765: 45:
these sequences and their length bounds have also become a standard tool in
2550: 1151:
the upper and lower bounds on Davenport-Schinzel sequences are not tight.
2106:(1965), "A combinatorial problem connected with differential equations", 1713:
Suppose that these functions are particularly well behaved: they are all
25: 2391:
Stanton, R. G.; Dirksen, P. H. (1976), "Davenport-Schinzel sequences.",
2451: 2170: 2127: 2491: 2119: 29:
allowed. Davenport–Schinzel sequences were first defined in 1965 by
2517: 2482: 2286: 674:{\displaystyle \lambda _{5}(n)=\Theta (n\alpha (n)2^{\alpha (n)})} 94:
No two consecutive values in the sequence are equal to each other.
209:
is a fixed constant, and nearly tight bounds are known for all
2373:
Davenport–Schinzel Sequences and Their Geometric Applications
1115: 1041: 859:{\displaystyle t=\left\lfloor {\frac {s-2}{2}}\right\rfloor } 2238:"A map-theoretic approach to Davenport-Schinzel sequences." 2070:(1985), "Some dynamic computational geometry problems", 590:{\displaystyle \lambda _{4}(n)=\Theta (n2^{\alpha (n)})} 86:, is said to be a Davenport–Schinzel sequence of order 1291:{\displaystyle \lambda _{s}(n)=\Omega (n^{2}s/(t-1)!)} 1592: 1554: 1428: 1368: 1304: 1220: 1161: 1070: 996: 946: 902: 823: 700: 605: 533: 443: 390: 346: 302: 2416:(1970), "A result on Davenport-Schinzel sequences", 1745:
values in common, so the lower envelope of a set of
1133:{\displaystyle \lambda _{s}(4)=6s-2+(s{\bmod {2}}).} 1056:{\displaystyle \lambda _{s}(3)=3s-2+(s{\bmod {2}})} 2114:(3), The Johns Hopkins University Press: 684–694, 1685:is the function given by their pointwise minimum: 1639: 1578: 1537: 1414: 1351: 1290: 1206: 1132: 1055: 981: 931: 858: 809: 673: 589: 501: 427: 374: 330: 1949: 1913: 502:{\displaystyle \lambda _{3}(n)=2n\alpha (n)+O(n)} 2420:, Amsterdam: North-Holland, pp. 1023–1027, 1640:{\displaystyle \lambda _{s}(n)=\Omega (n2^{s})} 1981: 1969: 1741:. Any two distinct solutions can have at most 90:if it satisfies the following two properties: 2009: 1997: 1985: 1945: 1909: 1897: 1893: 1861: 1849: 1834: 1822: 1809: 8: 2196:Contemporary Trends in Discrete Mathematics 2072:Computers and Mathematics with Applications 1717:, and any two of them are equal on at most 205:goes to infinity, with the assumption that 1865: 149:If a Davenport–Schinzel sequence of order 125: + 2 values alternating between 2516: 2481: 2450: 2349: 2285: 2253: 2209:Journal of Combinatorial Theory, Series A 2160: 2049: 2038:Journal of Combinatorial Theory, Series A 1628: 1597: 1591: 1553: 1516: 1505: 1486: 1467: 1433: 1427: 1415:{\displaystyle \log \log n<s=n^{o(1)}} 1397: 1367: 1352:{\displaystyle \lambda _{s}(n)=O(n^{2}s)} 1337: 1309: 1303: 1262: 1253: 1225: 1219: 1176: 1172: 1160: 1118: 1114: 1075: 1069: 1044: 1040: 1001: 995: 978: 951: 945: 928: 907: 901: 834: 822: 790: 762: 734: 733: 705: 699: 653: 610: 604: 569: 538: 532: 448: 442: 395: 389: 351: 345: 307: 301: 1655: 1953: 1917: 1877: 1869: 1802: 42: 2507:Wellman, Julian; Pettie, Seth (2016), 2236:Mullin, R. C.; Stanton, R. G. (1972), 1957: 1933: 1921: 1881: 1873: 1845: 1843: 2439:Discrete & Computational Geometry 982:{\displaystyle \lambda _{s}(2)=s+1\,} 238:)-sequence. The best bounds known on 141:1, 2, 1, 3, 1, 3, 2, 4, 5, 4, 5, 2, 3 7: 428:{\displaystyle \lambda _{2}(n)=2n-1} 165:) Davenport–Schinzel sequence, or a 932:{\displaystyle \lambda _{s}(1)=1\,} 226:) denote the length of the longest 1615: 1451: 1243: 1207:{\displaystyle s>n^{1/t}(t-1)!} 628: 556: 293:, the following bounds are known: 157:distinct values, it is called an ( 14: 1950:Agarwal, Sharir & Shor (1989) 1914:Agarwal, Sharir & Shor (1989) 1579:{\displaystyle s\leq \log \log n} 513:line segments in the plane whose 375:{\displaystyle \lambda _{1}(n)=n} 331:{\displaystyle \lambda _{0}(n)=1} 684:For both even and odd values of 2280:, vol. 57, pp. 1–10, 2108:American Journal of Mathematics 2376:, Cambridge University Press, 2242:Pacific Journal of Mathematics 1777:values to their corresponding 1652:Application to lower envelopes 1634: 1618: 1609: 1603: 1445: 1439: 1407: 1401: 1346: 1330: 1321: 1315: 1285: 1279: 1267: 1246: 1237: 1231: 1198: 1186: 1124: 1108: 1087: 1081: 1050: 1034: 1013: 1007: 963: 957: 919: 913: 802: 787: 780: 774: 759: 752: 717: 711: 668: 663: 657: 646: 640: 631: 622: 616: 584: 579: 573: 559: 550: 544: 496: 490: 481: 475: 460: 454: 407: 401: 363: 357: 319: 313: 1: 2370:; Agarwal, Pankaj K. (1995), 197:)-sequence has been analyzed 39:linear differential equations 2551:Davenport-Schinzel Sequences 2221:10.1016/0097-3165(88)90055-6 2084:10.1016/0898-1221(85)90105-1 2051:10.1016/0097-3165(89)90032-0 1982:Roselle & Stanton (1971) 1970:Roselle & Stanton (1971) 1735:linear differential equation 2541:Davenport-Schinzel Sequence 2010:Wellman & Pettie (2016) 1998:Wellman & Pettie (2016) 1986:Wellman & Pettie (2016) 1946:Sharir & Agarwal (1995) 1910:Sharir & Agarwal (1995) 1898:Wiernik & Sharir (1988) 1894:Sharir & Agarwal (1995) 1862:Sharir & Agarwal (1995) 1850:Sharir & Agarwal (1995) 1835:Sharir & Agarwal (1995) 1823:Sharir & Agarwal (1995) 1810:Sharir & Agarwal (1995) 1749:distinct solutions forms a 137:For instance, the sequence 22:Davenport–Schinzel sequence 2609: 1825:, p. 1, for this notation. 249:inverse Ackermann function 1896:, Chapter 4, pp. 86–114; 2560:, a section in the book 1948:, Chapter 3, pp. 43–85; 1912:, Chapter 3, pp. 43–85; 1866:Hart & Sharir (1986) 1864:, Chapter 2, pp. 12–42; 291:big O and big Θ notation 2564:, by Steven M. LaValle. 2351:10.4064/aa-17-4-355-362 2304:10.1145/1706591.1706597 2255:10.2140/pjm.1972.40.167 1773:mapping an interval of 1668:of a set of functions ƒ 49:and in the analysis of 2583:Combinatorics on words 1769:be interpreted as the 1661: 1641: 1580: 1539: 1416: 1353: 1292: 1208: 1134: 1057: 983: 933: 860: 811: 675: 591: 503: 429: 376: 332: 1659: 1642: 1581: 1540: 1417: 1354: 1293: 1209: 1135: 1058: 984: 934: 893:is a small constant: 885:) is also known when 861: 812: 676: 592: 504: 430: 377: 333: 2578:Sequences and series 1590: 1552: 1426: 1366: 1302: 1218: 1159: 1068: 994: 944: 900: 821: 698: 603: 531: 441: 388: 344: 300: 121:, ... consisting of 51:geometric algorithms 2593:Eponyms in geometry 2527:2016arXiv161009774W 2296:2008arXiv0807.0484N 2068:Atallah, Mikhail J. 1771:graph of a function 2556:2020-01-13 at the 2452:10.1007/BF02187894 2171:10.1007/BF02579170 1662: 1637: 1576: 1535: 1412: 1349: 1288: 1204: 1130: 1053: 979: 929: 856: 807: 671: 587: 517:have complexity Ω( 499: 425: 372: 328: 185:The complexity of 61:A finite sequence 2588:Discrete geometry 2104:Schinzel, Andrzej 2078:(12): 1171–1181, 1693:) = min 1499: 1147:is a function of 850: 747: 47:discrete geometry 2600: 2529: 2520: 2502: 2485: 2463: 2454: 2428: 2412:Stanton, R. G.; 2407: 2393:Ars Combinatoria 2386: 2362: 2353: 2338:Acta Arithmetica 2328: 2327: 2326: 2320: 2314:, archived from 2289: 2279: 2266: 2257: 2231: 2199: 2189: 2164: 2138: 2094: 2062: 2053: 2013: 2007: 2001: 1995: 1989: 1979: 1973: 1967: 1961: 1943: 1937: 1931: 1925: 1907: 1901: 1891: 1885: 1859: 1853: 1847: 1838: 1832: 1826: 1819: 1813: 1807: 1646: 1644: 1643: 1638: 1633: 1632: 1602: 1601: 1585: 1583: 1582: 1577: 1544: 1542: 1541: 1536: 1534: 1530: 1529: 1528: 1521: 1520: 1504: 1500: 1498: 1491: 1490: 1468: 1438: 1437: 1421: 1419: 1418: 1413: 1411: 1410: 1358: 1356: 1355: 1350: 1342: 1341: 1314: 1313: 1297: 1295: 1294: 1289: 1266: 1258: 1257: 1230: 1229: 1213: 1211: 1210: 1205: 1185: 1184: 1180: 1139: 1137: 1136: 1131: 1123: 1122: 1080: 1079: 1062: 1060: 1059: 1054: 1049: 1048: 1006: 1005: 988: 986: 985: 980: 956: 955: 938: 936: 935: 930: 912: 911: 889:is variable but 865: 863: 862: 857: 855: 851: 846: 835: 816: 814: 813: 808: 806: 805: 801: 800: 767: 766: 748: 746: 735: 710: 709: 680: 678: 677: 672: 667: 666: 615: 614: 596: 594: 593: 588: 583: 582: 543: 542: 508: 506: 505: 500: 453: 452: 434: 432: 431: 426: 400: 399: 381: 379: 378: 373: 356: 355: 337: 335: 334: 329: 312: 311: 201:in the limit as 35:Andrzej Schinzel 31:Harold Davenport 2608: 2607: 2603: 2602: 2601: 2599: 2598: 2597: 2568: 2567: 2562:Motion Planning 2558:Wayback Machine 2537: 2506: 2492:10.1145/2794075 2467: 2432: 2411: 2390: 2384: 2366: 2332: 2324: 2322: 2318: 2277: 2270: 2235: 2203: 2193: 2142: 2120:10.2307/2373068 2098: 2066: 2024: 2021: 2016: 2008: 2004: 1996: 1992: 1980: 1976: 1968: 1964: 1944: 1940: 1932: 1928: 1908: 1904: 1892: 1888: 1860: 1856: 1848: 1841: 1833: 1829: 1820: 1816: 1808: 1804: 1800: 1792:Squarefree word 1788: 1704: 1698: 1673: 1654: 1624: 1593: 1588: 1587: 1550: 1549: 1512: 1482: 1472: 1463: 1462: 1458: 1454: 1429: 1424: 1423: 1393: 1364: 1363: 1333: 1305: 1300: 1299: 1249: 1221: 1216: 1215: 1168: 1157: 1156: 1071: 1066: 1065: 997: 992: 991: 947: 942: 941: 903: 898: 897: 880: 836: 830: 819: 818: 786: 758: 739: 729: 701: 696: 695: 649: 606: 601: 600: 565: 534: 529: 528: 515:lower envelopes 444: 439: 438: 391: 386: 385: 347: 342: 341: 303: 298: 297: 246: 221: 183: 85: 78: 71: 59: 12: 11: 5: 2606: 2604: 2596: 2595: 2590: 2585: 2580: 2570: 2569: 2566: 2565: 2548: 2536: 2535:External links 2533: 2532: 2531: 2504: 2465: 2433:Wiernik, Ady; 2430: 2414:Roselle, D. P. 2409: 2388: 2382: 2364: 2344:(4): 355–362, 2334:Roselle, D. P. 2330: 2268: 2233: 2215:(2): 262–267, 2205:Komjáth, Péter 2201: 2191: 2162:10.1.1.295.885 2155:(2): 151–177, 2140: 2096: 2064: 2044:(2): 228–274, 2026:Agarwal, P. K. 2020: 2017: 2015: 2014: 2002: 1990: 1974: 1962: 1954:Nivasch (2009) 1938: 1926: 1918:Nivasch (2009) 1902: 1886: 1878:Nivasch (2009) 1870:Komjáth (1988) 1854: 1839: 1827: 1814: 1812:, pp. x and 2. 1801: 1799: 1796: 1795: 1794: 1787: 1784: 1711: 1710: 1700: 1694: 1669: 1666:lower envelope 1653: 1650: 1649: 1648: 1636: 1631: 1627: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1600: 1596: 1575: 1572: 1569: 1566: 1563: 1560: 1557: 1546: 1533: 1527: 1524: 1519: 1515: 1511: 1508: 1503: 1497: 1494: 1489: 1485: 1481: 1478: 1475: 1471: 1466: 1461: 1457: 1453: 1450: 1447: 1444: 1441: 1436: 1432: 1409: 1406: 1403: 1400: 1396: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1371: 1360: 1348: 1345: 1340: 1336: 1332: 1329: 1326: 1323: 1320: 1317: 1312: 1308: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1265: 1261: 1256: 1252: 1248: 1245: 1242: 1239: 1236: 1233: 1228: 1224: 1203: 1200: 1197: 1194: 1191: 1188: 1183: 1179: 1175: 1171: 1167: 1164: 1141: 1140: 1129: 1126: 1121: 1117: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1078: 1074: 1063: 1052: 1047: 1043: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1004: 1000: 989: 977: 974: 971: 968: 965: 962: 959: 954: 950: 939: 927: 924: 921: 918: 915: 910: 906: 876: 870: 869: 868: 867: 854: 849: 845: 842: 839: 833: 829: 826: 804: 799: 796: 793: 789: 785: 782: 779: 776: 773: 770: 765: 761: 757: 754: 751: 745: 742: 738: 732: 728: 725: 722: 719: 716: 713: 708: 704: 690: 689: 682: 670: 665: 662: 659: 656: 652: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 618: 613: 609: 598: 586: 581: 578: 575: 572: 568: 564: 561: 558: 555: 552: 549: 546: 541: 537: 526: 498: 495: 492: 489: 486: 483: 480: 477: 474: 471: 468: 465: 462: 459: 456: 451: 447: 436: 424: 421: 418: 415: 412: 409: 406: 403: 398: 394: 383: 371: 368: 365: 362: 359: 354: 350: 339: 327: 324: 321: 318: 315: 310: 306: 280: 279: 242: 217: 199:asymptotically 182: 179: 143: 142: 135: 134: 95: 83: 76: 69: 58: 55: 43:Atallah (1985) 13: 10: 9: 6: 4: 3: 2: 2605: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2575: 2573: 2563: 2559: 2555: 2552: 2549: 2546: 2542: 2539: 2538: 2534: 2528: 2524: 2519: 2514: 2510: 2505: 2501: 2497: 2493: 2489: 2484: 2479: 2475: 2471: 2466: 2462: 2458: 2453: 2448: 2444: 2440: 2436: 2435:Sharir, Micha 2431: 2427: 2423: 2419: 2415: 2410: 2406: 2402: 2398: 2394: 2389: 2385: 2383:0-521-47025-0 2379: 2375: 2374: 2369: 2368:Sharir, Micha 2365: 2361: 2357: 2352: 2347: 2343: 2339: 2335: 2331: 2321:on 2012-10-18 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2288: 2283: 2276: 2275: 2269: 2265: 2261: 2256: 2251: 2247: 2243: 2239: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2163: 2158: 2154: 2150: 2149:Combinatorica 2146: 2145:Sharir, Micha 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2100:Davenport, H. 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2052: 2047: 2043: 2039: 2035: 2031: 2030:Sharir, Micha 2027: 2023: 2022: 2018: 2011: 2006: 2003: 1999: 1994: 1991: 1987: 1983: 1978: 1975: 1971: 1966: 1963: 1959: 1958:Pettie (2015) 1955: 1951: 1947: 1942: 1939: 1935: 1934:Pettie (2015) 1930: 1927: 1923: 1922:Pettie (2015) 1919: 1915: 1911: 1906: 1903: 1899: 1895: 1890: 1887: 1883: 1882:Pettie (2015) 1879: 1875: 1874:Klazar (1999) 1871: 1867: 1863: 1858: 1855: 1851: 1846: 1844: 1840: 1836: 1831: 1828: 1824: 1818: 1815: 1811: 1806: 1803: 1797: 1793: 1790: 1789: 1785: 1783: 1780: 1776: 1772: 1767: 1762: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1731: 1729: 1724: 1720: 1716: 1708: 1703: 1697: 1692: 1688: 1687: 1686: 1684: 1681: 1680:real variable 1677: 1672: 1667: 1658: 1651: 1629: 1625: 1621: 1612: 1606: 1598: 1594: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1547: 1531: 1525: 1522: 1517: 1513: 1509: 1506: 1501: 1495: 1492: 1487: 1483: 1479: 1476: 1473: 1469: 1464: 1459: 1455: 1448: 1442: 1434: 1430: 1404: 1398: 1394: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1361: 1343: 1338: 1334: 1327: 1324: 1318: 1310: 1306: 1282: 1276: 1273: 1270: 1263: 1259: 1254: 1250: 1240: 1234: 1226: 1222: 1201: 1195: 1192: 1189: 1181: 1177: 1173: 1169: 1165: 1162: 1154: 1153: 1152: 1150: 1146: 1127: 1119: 1111: 1105: 1102: 1099: 1096: 1093: 1090: 1084: 1076: 1072: 1064: 1045: 1037: 1031: 1028: 1025: 1022: 1019: 1016: 1010: 1002: 998: 990: 975: 972: 969: 966: 960: 952: 948: 940: 925: 922: 916: 908: 904: 896: 895: 894: 892: 888: 884: 879: 875: 872:The value of 852: 847: 843: 840: 837: 831: 827: 824: 797: 794: 791: 783: 777: 771: 768: 763: 755: 749: 743: 740: 736: 730: 726: 723: 720: 714: 706: 702: 694: 693: 692: 691: 687: 683: 660: 654: 650: 643: 637: 634: 625: 619: 611: 607: 599: 576: 570: 566: 562: 553: 547: 539: 535: 527: 524: 520: 516: 512: 493: 487: 484: 478: 472: 469: 466: 463: 457: 449: 445: 437: 422: 419: 416: 413: 410: 404: 396: 392: 384: 369: 366: 360: 352: 348: 340: 325: 322: 316: 308: 304: 296: 295: 294: 292: 287: 285: 277: 273: 269: 265: 261: 257: 253: 252: 251: 250: 245: 241: 237: 233: 229: 225: 220: 216: 212: 208: 204: 200: 196: 192: 188: 181:Length bounds 180: 178: 176: 172: 168: 164: 160: 156: 152: 147: 140: 139: 138: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 93: 92: 91: 89: 82: 75: 68: 64: 56: 54: 52: 48: 44: 40: 36: 32: 27: 23: 19: 18:combinatorics 2561: 2508: 2473: 2469: 2445:(1): 15–47, 2442: 2438: 2417: 2399:(1): 43–51, 2396: 2392: 2372: 2341: 2337: 2323:, retrieved 2316:the original 2273: 2245: 2241: 2212: 2208: 2195: 2152: 2148: 2111: 2107: 2075: 2071: 2041: 2037: 2005: 1993: 1977: 1965: 1941: 1929: 1905: 1889: 1857: 1830: 1817: 1805: 1778: 1774: 1763: 1761:)-sequence. 1758: 1754: 1750: 1746: 1742: 1738: 1732: 1727: 1718: 1712: 1706: 1701: 1695: 1690: 1682: 1675: 1670: 1663: 1148: 1144: 1142: 890: 886: 882: 877: 873: 871: 685: 522: 518: 510: 288: 283: 281: 275: 271: 267: 263: 259: 255: 247:involve the 243: 239: 235: 231: 227: 223: 218: 214: 210: 206: 202: 194: 190: 186: 184: 177:)-sequence. 174: 170: 166: 162: 158: 154: 150: 148: 144: 136: 130: 126: 122: 118: 114: 110: 106: 102: 98: 87: 80: 73: 66: 62: 60: 41:. Following 21: 15: 2476:(5): 1–40, 2248:: 167–172, 37:to analyze 2572:Categories 2518:1610.09774 2325:2009-01-08 2143:Hart, S.; 2019:References 1715:continuous 258:) = min { 57:Definition 2545:MathWorld 2483:1204.1086 2287:0807.0484 2157:CiteSeerX 1766:piecewise 1737:of order 1723:intervals 1616:Ω 1595:λ 1571:⁡ 1565:⁡ 1559:≤ 1523:⁡ 1510:⁡ 1493:⁡ 1480:⁡ 1452:Ω 1431:λ 1379:⁡ 1373:⁡ 1307:λ 1274:− 1244:Ω 1223:λ 1193:− 1100:− 1073:λ 1026:− 999:λ 949:λ 905:λ 841:− 795:− 778:α 750:α 727:⋅ 703:λ 655:α 638:α 629:Θ 608:λ 571:α 557:Θ 536:λ 473:α 446:λ 420:− 393:λ 349:λ 305:λ 153:includes 2554:Archived 2187:18864716 2034:Shor, P. 1837:, p. 14. 1786:See also 853:⌋ 832:⌊ 817:, where 521: α( 26:sequence 2543:, from 2523:Bibcode 2500:6880266 2461:0918177 2426:0304189 2405:0409347 2360:0284414 2312:3175575 2292:Bibcode 2264:0302601 2229:0964387 2179:0875839 2136:0190010 2128:2373068 2092:0822083 2060:1022320 1852:, p. 6. 1678:) of a 117:, ..., 113:, ..., 2498:  2470:J. ACM 2459:  2424:  2403:  2380:  2358:  2310:  2262:  2227:  2185:  2177:  2159:  2134:  2126:  2090:  2058:  289:Using 282:where 213:. Let 109:, ... 2513:arXiv 2496:S2CID 2478:arXiv 2319:(PDF) 2308:S2CID 2282:arXiv 2278:(PDF) 2183:S2CID 2124:JSTOR 1798:Notes 1548:When 1362:When 1155:When 1143:When 24:is a 2378:ISBN 1821:See 1664:The 1385:< 1298:and 1166:> 688:≥ 6, 274:) ≥ 129:and 101:and 33:and 20:, a 2488:doi 2447:doi 2346:doi 2300:doi 2250:doi 2217:doi 2167:doi 2116:doi 2080:doi 2046:doi 1568:log 1562:log 1514:log 1507:log 1484:log 1477:log 1422:, 1376:log 1370:log 1116:mod 1042:mod 525:)). 97:If 16:In 2574:: 2521:, 2511:, 2494:, 2486:, 2474:62 2472:, 2457:MR 2455:, 2441:, 2422:MR 2401:MR 2395:, 2356:MR 2354:, 2342:17 2340:, 2306:, 2298:, 2290:, 2260:MR 2258:, 2246:40 2244:, 2240:, 2225:MR 2223:, 2213:49 2211:, 2181:, 2175:MR 2173:, 2165:, 2151:, 2132:MR 2130:, 2122:, 2112:87 2110:, 2102:; 2088:MR 2086:, 2076:11 2074:, 2056:MR 2054:, 2042:52 2040:, 2032:; 2028:; 1984:; 1956:; 1952:; 1920:; 1916:; 1880:; 1876:; 1872:; 1868:; 1842:^ 1751:DS 1709:). 1689:ƒ( 1586:, 1214:, 278:}, 262:| 254:α( 228:DS 187:DS 167:DS 79:, 72:, 65:= 53:. 2547:. 2530:. 2525:: 2515:: 2503:. 2490:: 2480:: 2464:. 2449:: 2443:3 2429:. 2408:. 2397:1 2387:. 2363:. 2348:: 2329:. 2302:: 2294:: 2284:: 2267:. 2252:: 2232:. 2219:: 2200:. 2190:. 2169:: 2153:6 2139:. 2118:: 2095:. 2082:: 2063:. 2048:: 2012:. 2000:. 1988:. 1972:. 1960:. 1936:. 1924:. 1900:. 1884:. 1779:y 1775:x 1759:s 1757:, 1755:n 1753:( 1747:n 1743:s 1739:s 1728:s 1719:s 1707:x 1705:( 1702:i 1699:ƒ 1696:i 1691:x 1683:x 1676:x 1674:( 1671:i 1647:. 1635:) 1630:s 1626:2 1622:n 1619:( 1613:= 1610:) 1607:n 1604:( 1599:s 1574:n 1556:s 1545:. 1532:) 1526:n 1518:s 1502:) 1496:n 1488:s 1474:2 1470:s 1465:( 1460:n 1456:( 1449:= 1446:) 1443:n 1440:( 1435:s 1408:) 1405:1 1402:( 1399:o 1395:n 1391:= 1388:s 1382:n 1359:. 1347:) 1344:s 1339:2 1335:n 1331:( 1328:O 1325:= 1322:) 1319:n 1316:( 1311:s 1286:) 1283:! 1280:) 1277:1 1271:t 1268:( 1264:/ 1260:s 1255:2 1251:n 1247:( 1241:= 1238:) 1235:n 1232:( 1227:s 1202:! 1199:) 1196:1 1190:t 1187:( 1182:t 1178:/ 1174:1 1170:n 1163:s 1149:n 1145:s 1128:. 1125:) 1120:2 1112:s 1109:( 1106:+ 1103:2 1097:s 1094:6 1091:= 1088:) 1085:4 1082:( 1077:s 1051:) 1046:2 1038:s 1035:( 1032:+ 1029:2 1023:s 1020:3 1017:= 1014:) 1011:3 1008:( 1003:s 976:1 973:+ 970:s 967:= 964:) 961:2 958:( 953:s 926:1 923:= 920:) 917:1 914:( 909:s 891:n 887:s 883:n 881:( 878:s 874:λ 866:. 848:2 844:2 838:s 828:= 825:t 803:) 798:1 792:t 788:) 784:n 781:( 775:( 772:O 769:+ 764:t 760:) 756:n 753:( 744:! 741:t 737:1 731:2 724:n 721:= 718:) 715:n 712:( 707:s 686:s 681:. 669:) 664:) 661:n 658:( 651:2 647:) 644:n 641:( 635:n 632:( 626:= 623:) 620:n 617:( 612:5 597:. 585:) 580:) 577:n 574:( 567:2 563:n 560:( 554:= 551:) 548:n 545:( 540:4 523:n 519:n 511:n 497:) 494:n 491:( 488:O 485:+ 482:) 479:n 476:( 470:n 467:2 464:= 461:) 458:n 455:( 450:3 435:. 423:1 417:n 414:2 411:= 408:) 405:n 402:( 397:2 382:. 370:n 367:= 364:) 361:n 358:( 353:1 338:. 326:1 323:= 320:) 317:n 314:( 309:0 284:A 276:n 272:m 270:, 268:m 266:( 264:A 260:m 256:n 244:s 240:λ 236:s 234:, 232:n 230:( 224:n 222:( 219:s 215:λ 211:s 207:s 203:n 195:s 193:, 191:n 189:( 175:s 173:, 171:n 169:( 163:s 161:, 159:n 155:n 151:s 133:. 131:y 127:x 123:s 119:y 115:x 111:y 107:x 103:y 99:x 88:s 84:3 81:u 77:2 74:u 70:1 67:u 63:U

Index

combinatorics
sequence
Harold Davenport
Andrzej Schinzel
linear differential equations
Atallah (1985)
discrete geometry
geometric algorithms
asymptotically
inverse Ackermann function
big O and big Θ notation
lower envelopes

lower envelope
real variable
continuous
intervals
linear differential equation
piecewise
graph of a function
Squarefree word
Sharir & Agarwal (1995)
Sharir & Agarwal (1995)
Sharir & Agarwal (1995)


Sharir & Agarwal (1995)
Sharir & Agarwal (1995)
Hart & Sharir (1986)
Komjáth (1988)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.