Knowledge (XXG)

Dedekind-infinite set

Source 📝

617:
With the general acceptance of the axiom of choice among the mathematical community, these issues relating to infinite and Dedekind-infinite sets have become less central to most mathematicians. However, the study of Dedekind-infinite sets played an important role in the attempt to clarify the
593:
For a long time, many mathematicians did not even entertain the thought that there might be a distinction between the notions of infinite set and Dedekind-infinite set. In fact, the distinction was not really realised until after
630:
stating that every set can be well-ordered, clearly the general AC implies that every infinite set is Dedekind-infinite. However, the equivalence of the two definitions is much weaker than the full strength of AC.
769:
whose members are themselves infinite (and possibly uncountable) sets. By using the axiom of countable choice we may choose one member from each of these sets, and this member is itself a finite subset of
92:
if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the
649:), then it follows that every infinite set is Dedekind-infinite. However, the equivalence of these two definitions is in fact strictly weaker than even the CC. Explicitly, there exists a model of 182: 160: 119: 574:, who first explicitly introduced the definition. It is notable that this definition was the first definition of "infinite" that did not rely on the definition of the 1146: 1133:, Springer-Verlag, 2006, Lecture Notes in Mathematics 1876, ISSN print edition 0075–8434, ISSN electronic edition: 1617-9692, in particular Section 4.1. 586:
in 1819. Moreover, Bolzano's definition was more accurately a relation that held between two infinite sets, rather than a definition of an infinite set
988:
is any ring that satisfies the latter condition. Beware that a ring may be Dedekind-finite even if its underlying set is Dedekind-infinite, e.g. the
665:
That every Dedekind-infinite set is infinite can be easily proven in ZF: every finite set has by definition a bijection with some finite ordinal
1021: 642:
subset. Hence, in this model, there exists an infinite, Dedekind-finite set. By the above, such a set cannot be well-ordered in this model.
578:(unless one follows Poincaré and regards the notion of number as prior to even the notion of set). Although such a definition was known to 1046: 188: 1124: 1106: 1088: 1074: 305: 203: 582:, he was prevented from publishing his work in any but the most obscure journals by the terms of his political exile from the 1116: 583: 493:
proves the following implications: Dedekind-infinite ⇒ dually Dedekind-infinite ⇒ weakly Dedekind-infinite ⇒ infinite.
316:"). The full strength of AC is not needed to prove the equivalence; in fact, the equivalence of the two definitions is 1151: 677: 321: 950: 234:
in the usual sense. However, there exists a model of Zermelo–Fraenkel set theory without the axiom of choice (
603: 363: 554:
When sets have additional structures, both kinds of infiniteness can sometimes be proved equivalent over
627: 984: 961: 301: 250: 219: 207: 126: 31: 746: 618:
boundary between the finite and the infinite, and also an important role in the history of the AC.
384: 626:
Since every infinite well-ordered set is Dedekind-infinite, and since the AC is equivalent to the
165: 143: 102: 380: 73: 1120: 1102: 1084: 1070: 1042: 1017: 598:
formulated the AC explicitly. The existence of infinite, Dedekind-finite sets was studied by
925: 653:
in which every infinite set is Dedekind-infinite, yet the CC fails (assuming consistency of
599: 571: 211: 192: 50: 242:
are not strong enough to prove that every set that is Dedekind-finite is finite. There are
222:. Using the axioms of Zermelo–Fraenkel set theory with the originally highly controversial 917: 579: 309: 223: 774:. More precisely, according to the axiom of countable choice, a (countable) set exists, 575: 409: 274: 215: 199: 122: 93: 687:
First, define a function over the natural numbers (that is, over the finite ordinals)
1140: 639: 595: 349: 293: 238:) in which there exists an infinite, Dedekind-finite set, showing that the axioms of 134: 289:– an infinite set is one that is literally "not finite", in the sense of bijection. 929: 562:
proves that a well-ordered set is Dedekind-infinite if and only if it is infinite.
262: 196: 65: 680:(denotation: axiom CC) one can prove the converse, namely that every infinite set 17: 1094: 946: 191:
showed the need for a more careful treatment of set theory, most mathematicians
38: 270: 243: 231: 300:
it is Dedekind-infinite. However, this equivalence cannot be proved with the
246:
besides the one given by Dedekind that do not depend on the axiom of choice.
512: 509: 547:
are injective sequences, one could exhibit a countably infinite subset of
543:
had a countably infinite subset, then using the fact that the elements of
1069:. Volume 65. American Mathematical Society. 2nd ed. AMS Bookstore, 2004. 317: 989: 446:
if it satisfies any, and then all, of the following equivalent (over
340:
if it satisfies any, and then all, of the following equivalent (over
54: 30:"Dedekind finite" redirects here. For the term from ring theory, see 661:
Proof of equivalence to infinity, assuming axiom of countable choice
1014:
Zermelo's Axiom of Choice: Its Origins, Development & Influence
230:) one can show that a set is Dedekind-finite if and only if it is 355:
there exists an injective map from a countably infinite set to
956:
has the analogous property in the category of (left or right)
297: 1091:, in particular pp. 22-30 and tables 1 and 2 on p. 322-323 129:, there exists a bijection that maps every natural number 202:
it is Dedekind-infinite. In the early twentieth century,
523:
is infinite, the function "drop the last element" from
862:, can be easily defined. We may now define a bijection 1041:. Lecture Notes in Mathematics 1876. Springer-Verlag. 265:" should be compared with the usual definition: a set 168: 146: 105: 722:(i.e. that have a bijection with the finite ordinal 481:, there is no bijection from {0, 1, 2, ..., n−1} to 257:
Comparison with the usual definition of infinite set
738:would be finite (as can be proven by induction on 244:definitions of finiteness and infiniteness of sets 176: 154: 113: 570:The term is named after the German mathematician 292:During the latter half of the 19th century, most 273:when it cannot be put in bijection with a finite 140:. Since the set of squares is a proper subset of 844:, and a bijection from the natural numbers to 638:in which there exists an infinite set with no 527:to itself is surjective but not injective, so 531:is dually Dedekind-infinite. However, since 500:having an infinite Dedekind-finite set. Let 72:. Explicitly, this means that there exists a 8: 606:in 1912; these sets were at first called 170: 169: 167: 148: 147: 145: 107: 106: 104: 1083:, Springer-Verlag, 1982 (out-of-print), 1007: 1005: 1001: 908:is Dedekind-infinite, and we are done. 634:In particular, there exists a model of 206:, today the most commonly used form of 1113:A first course in noncommutative rings 817:) and is therefore a finite subset of 296:simply assumed that a set is infinite 249:A vaguely related notion is that of a 49:(named after the German mathematician 27:Set with an equinumerous proper subset 1147:Basic concepts in infinite set theory 438:that is surjective but not injective; 7: 673:that this is not Dedekind-infinite. 669:, and one can prove by induction on 645:If we assume the axiom CC (i. e., AC 1067:Mathematical surveys and monographs 840:is an infinite countable subset of 702:, so that for every natural number 684:is Dedekind-infinite, as follows: 454:there exists a surjective map from 714:) is the set of finite subsets of 324:(CC). (See the references below.) 189:foundational crisis of mathematics 25: 797:so that for every natural number 881:that takes every member not in 832:as the union of the members of 734:) is never empty, or otherwise 622:Relation to the axiom of choice 535:is Dedekind-finite, then so is 390:there is an injective function 893:) for every natural number to 458:onto a countably infinite set; 1: 1117:Graduate Texts in Mathematics 924:is Dedekind-finite if in the 1101:, Dover Publications, 2008, 328:Dedekind-infinite sets in ZF 177:{\displaystyle \mathbb {N} } 155:{\displaystyle \mathbb {N} } 114:{\displaystyle \mathbb {N} } 1012:Moore, Gregory H. (2013) . 306:Zermelo–Fraenkel set theory 277:, namely a set of the form 204:Zermelo–Fraenkel set theory 1168: 1119:. 2nd ed. Springer, 2001. 749:of f is the countable set 218:free of paradoxes such as 29: 1081:Zermelo's Axiom of Choice 678:axiom of countable choice 322:axiom of countable choice 1037:Herrlich, Horst (2006). 951:von Neumann regular ring 444:weakly Dedekind-infinite 418:dually Dedekind-infinite 285:for some natural number 80:onto some proper subset 504:be such a set, and let 477:for any natural number 408:denotes the set of all 312:(AC) (usually denoted " 184:is Dedekind-infinite. 1016:. Dover Publications. 604:Alfred North Whitehead 496:There exist models of 178: 156: 115: 1065:Faith, Carl Clifton. 885:to itself, and takes 628:well-ordering theorem 508:be the set of finite 465:is Dedekind-infinite; 210:, was proposed as an 179: 157: 116: 985:Dedekind-finite ring 982:. More generally, a 918:category-theoretical 584:University of Prague 424:there is a function 261:This definition of " 251:Dedekind-finite ring 208:axiomatic set theory 166: 144: 103: 99:A simple example is 32:Dedekind-finite ring 1099:The Axiom of Choice 1079:Moore, Gregory H., 964:if and only if in 640:countably infinite 612:Dedekind cardinals 350:countably infinite 174: 152: 111: 74:bijective function 1129:Herrlich, Horst, 1023:978-0-486-48841-7 809:) is a member of 608:mediate cardinals 338:Dedekind-infinite 220:Russell's paradox 127:Galileo's paradox 53:) if some proper 47:Dedekind-infinite 18:Dedekind-infinite 16:(Redirected from 1159: 1152:Cardinal numbers 1115:. Volume 131 of 1111:Lam, Tsit-Yuen. 1053: 1052: 1034: 1028: 1027: 1009: 981: 974: 944: 926:category of sets 903: 880: 861: 796: 768: 701: 600:Bertrand Russell 572:Richard Dedekind 558:. For instance, 461:the powerset of 437: 403: 378: 320:weaker than the 284: 212:axiomatic system 183: 181: 180: 175: 173: 161: 159: 158: 153: 151: 120: 118: 117: 112: 110: 51:Richard Dedekind 21: 1167: 1166: 1162: 1161: 1160: 1158: 1157: 1156: 1137: 1136: 1131:Axiom of Choice 1095:Jech, Thomas J. 1062: 1057: 1056: 1049: 1039:Axiom of Choice 1036: 1035: 1031: 1024: 1011: 1010: 1003: 998: 976: 969: 932: 914: 912:Generalizations 894: 863: 849: 828:Now, we define 775: 750: 688: 663: 648: 624: 580:Bernard Bolzano 576:natural numbers 568: 425: 410:natural numbers 391: 366: 330: 310:axiom of choice 279:{0, 1, 2, ..., 278: 259: 224:axiom of choice 214:to formulate a 164: 163: 142: 141: 123:natural numbers 101: 100: 94:natural numbers 90:Dedekind-finite 35: 28: 23: 22: 15: 12: 11: 5: 1165: 1163: 1155: 1154: 1149: 1139: 1138: 1135: 1134: 1127: 1109: 1092: 1077: 1061: 1058: 1055: 1054: 1048:978-3540309895 1047: 1029: 1022: 1000: 999: 997: 994: 913: 910: 696:→ Power(Power( 662: 659: 646: 623: 620: 567: 564: 487: 486: 467: 466: 459: 450:) conditions: 440: 439: 414: 413: 388: 360: 353: 344:) conditions: 329: 326: 298:if and only if 294:mathematicians 258: 255: 216:theory of sets 200:if and only if 195:that a set is 172: 150: 109: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1164: 1153: 1150: 1148: 1145: 1144: 1142: 1132: 1128: 1126: 1125:0-387-95183-0 1122: 1118: 1114: 1110: 1108: 1107:0-486-46624-8 1104: 1100: 1096: 1093: 1090: 1089:0-387-90670-3 1086: 1082: 1078: 1076: 1075:0-8218-3672-2 1072: 1068: 1064: 1063: 1059: 1050: 1044: 1040: 1033: 1030: 1025: 1019: 1015: 1008: 1006: 1002: 995: 993: 991: 987: 986: 979: 972: 967: 963: 959: 955: 952: 948: 943: 939: 935: 931: 927: 923: 920:terms, a set 919: 916:Expressed in 911: 909: 907: 901: 897: 892: 888: 884: 878: 874: 870: 866: 860: 856: 852: 847: 843: 839: 835: 831: 826: 824: 820: 816: 812: 808: 804: 800: 794: 790: 786: 782: 778: 773: 766: 762: 758: 754: 748: 743: 741: 737: 733: 729: 725: 721: 717: 713: 709: 705: 699: 695: 691: 685: 683: 679: 676:By using the 674: 672: 668: 660: 658: 656: 652: 643: 641: 637: 632: 629: 621: 619: 615: 613: 609: 605: 601: 597: 596:Ernst Zermelo 591: 589: 585: 581: 577: 573: 565: 563: 561: 557: 552: 550: 546: 542: 538: 534: 530: 526: 522: 518: 514: 511: 507: 503: 499: 494: 492: 484: 480: 476: 475: 474: 472: 464: 460: 457: 453: 452: 451: 449: 445: 436: 432: 428: 423: 422: 421: 419: 411: 407: 402: 398: 394: 389: 386: 382: 377: 373: 369: 365: 361: 358: 354: 351: 347: 346: 345: 343: 339: 335: 327: 325: 323: 319: 315: 311: 307: 303: 299: 295: 290: 288: 282: 276: 272: 268: 264: 256: 254: 252: 247: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 198: 194: 190: 185: 139: 136: 132: 128: 124: 121:, the set of 97: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 56: 52: 48: 44: 40: 33: 19: 1130: 1112: 1098: 1080: 1066: 1038: 1032: 1013: 983: 977: 970: 965: 957: 953: 941: 937: 933: 930:monomorphism 921: 915: 905: 899: 895: 890: 886: 882: 876: 872: 868: 864: 858: 854: 850: 845: 841: 837: 833: 829: 827: 822: 818: 814: 810: 806: 802: 798: 792: 788: 784: 780: 776: 771: 764: 760: 756: 752: 744: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 697: 693: 689: 686: 681: 675: 670: 666: 664: 654: 650: 644: 635: 633: 625: 616: 611: 607: 592: 587: 569: 559: 555: 553: 548: 544: 540: 536: 532: 528: 524: 520: 516: 505: 501: 497: 495: 490: 488: 482: 478: 470: 468: 462: 455: 447: 443: 441: 434: 430: 426: 417: 415: 405: 400: 396: 392: 375: 371: 367: 356: 341: 337: 333: 331: 313: 308:without the 291: 286: 280: 266: 263:infinite set 260: 248: 239: 235: 227: 186: 137: 130: 98: 89: 85: 81: 77: 69: 66:equinumerous 61: 57: 46: 42: 36: 947:isomorphism 362:there is a 88:. A set is 39:mathematics 1141:Categories 1060:References 469:and it is 385:surjective 226:included ( 187:Until the 904:. Hence, 513:sequences 510:injective 381:injective 348:it has a 283:−1} 990:integers 975:implies 936: : 928:, every 867: : 853: : 821:of size 718:of size 692: : 519:. Since 471:infinite 429: : 404:, where 395: : 383:but not 379:that is 370: : 364:function 318:strictly 271:infinite 197:infinite 41:, a set 962:modules 566:History 352:subset; 275:ordinal 193:assumed 133:to its 125:. From 1123:  1105:  1087:  1073:  1045:  1020:  945:is an 588:per se 489:Then, 442:it is 416:it is 332:A set 302:axioms 232:finite 135:square 55:subset 996:Notes 747:image 515:from 76:from 1121:ISBN 1103:ISBN 1085:ISBN 1071:ISBN 1043:ISBN 1018:ISBN 949:. A 902:+ 1) 787:) | 759:) | 745:The 602:and 539:(if 473:if: 420:if: 980:= 1 973:= 1 879:(0) 779:= { 742:). 726:). 657:). 610:or 551:). 336:is 304:of 269:is 253:. 228:ZFC 84:of 68:to 64:is 60:of 45:is 37:In 1143:: 1097:, 1004:^ 992:. 978:yx 971:xy 968:, 940:→ 875:\ 871:→ 857:→ 848:, 836:. 825:. 801:, 795:}, 791:∈ 767:}, 763:∈ 706:, 700:)) 655:ZF 651:ZF 636:ZF 614:. 590:. 560:ZF 556:ZF 498:ZF 491:ZF 448:ZF 433:→ 399:→ 374:→ 342:ZF 314:ZF 240:ZF 236:ZF 162:, 96:. 1051:. 1026:. 966:R 960:- 958:R 954:R 942:A 938:A 934:f 922:A 906:X 900:n 898:( 896:h 891:n 889:( 887:h 883:U 877:h 873:X 869:X 865:B 859:U 855:N 851:h 846:U 842:X 838:U 834:G 830:U 823:n 819:X 815:n 813:( 811:f 807:n 805:( 803:g 799:n 793:N 789:n 785:n 783:( 781:g 777:G 772:X 765:N 761:n 757:n 755:( 753:f 751:{ 740:n 736:X 732:n 730:( 728:f 724:n 720:n 716:X 712:n 710:( 708:f 704:n 698:X 694:N 690:f 682:X 671:n 667:n 647:ω 549:A 545:B 541:B 537:B 533:A 529:B 525:B 521:A 517:A 506:B 502:A 485:. 483:A 479:n 463:A 456:A 435:A 431:A 427:f 412:; 406:N 401:A 397:N 393:f 387:; 376:A 372:A 368:f 359:; 357:A 334:A 287:n 281:n 267:A 171:N 149:N 138:n 131:n 108:N 86:A 82:B 78:A 70:A 62:A 58:B 43:A 34:. 20:)

Index

Dedekind-infinite
Dedekind-finite ring
mathematics
Richard Dedekind
subset
equinumerous
bijective function
natural numbers
natural numbers
Galileo's paradox
square
foundational crisis of mathematics
assumed
infinite
if and only if
Zermelo–Fraenkel set theory
axiomatic set theory
axiomatic system
theory of sets
Russell's paradox
axiom of choice
finite
definitions of finiteness and infiniteness of sets
Dedekind-finite ring
infinite set
infinite
ordinal
mathematicians
if and only if
axioms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.