Knowledge (XXG)

Dedekind cut

Source 📝

27: 184:
It is straightforward to show that a Dedekind cut among the real numbers is uniquely defined by the corresponding cut among the rational numbers. Similarly, every cut of reals is identical to the cut produced by a specific real number (which can be identified as the smallest element of the
2637:
An incommensurable number can be defined only by indicating how the magnitude it expresses can be formed by means of unity. In what follows, we suppose that this definition consists of indicating which are the commensurable numbers smaller or larger than it
2930:
Jun-Iti Nagata, Modern General Topology, Second revised edition, Theorem VIII.2, p. 461. Actually, the theorem holds in the setting of generalized ordered spaces, but in this more general setting pseudo-gaps should be taken into
125:
contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of rationals.
1107: 1183:, and further, by defining properly arithmetic operators over these sets (addition, subtraction, multiplication, and division), these sets (together with these arithmetic operations) form the familiar real numbers. 2909: 1030: 1637: 1889: 1330: 1843: 1514: 382: 615:
does determine the other. It can be a simplification, in terms of notation if nothing more, to concentrate on one "half" — say, the lower one — and call any downward-closed set
325: 1701: 1566: 2701:
number, which we regard as completely defined by this cut ... . From now on, therefore, to every definite cut there corresponds a definite rational or irrational number ....
2805: 919: 232: 1984: 1669: 1181: 1137: 777: 745: 1786: 1462: 1383: 2366: 1250: 2783: 2444: 2418: 2392: 2210: 2184: 1753: 1727: 1429: 561: 535: 509: 460: 434: 408: 2730: 2334: 2158: 2046: 951: 2750: 2831: 2277: 2257: 2230: 2126: 2106: 2086: 2066: 2014: 1949: 1929: 1909: 1534: 1403: 1350: 1270: 1224: 1204: 1157: 581: 480: 345: 295: 272: 252: 3038: 1036: 882:, which might not have had the least-upper-bound property, within a (usually larger) linearly ordered set that does have this useful property. 2838: 2667: 959: 2589: 2501: 2978: 2950: 755:
would contain every positive rational number whose square is greater than or equal to 2. Even though there is no rational value for
2212:, with the lower cut and the upper cut being given by projections. This corresponds exactly to the set of intervals approximating 891: 59: 1571: 3031: 3006: 1848: 1275: 105:
has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique
3001: 178: 2630: 870:
The set of all Dedekind cuts is itself a linearly ordered set (of sets). Moreover, the set of Dedekind cuts has the
1791: 878:
upper bound. Thus, constructing the set of Dedekind cuts serves the purpose of embedding the original ordered set
871: 3104: 3024: 588: 1252:(please refer to the link above for the precise definition of how the multiplication of cuts is defined), is 2482: 1467: 2687: 651: 855:). In this way, set inclusion can be used to represent the ordering of numbers, and all other relations ( 353: 3109: 3099: 3078: 2511: 2280: 302: 198: 26: 2608:; it is ordered by inclusion. The Dedekind-MacNeille completion is the smallest complete lattice with 688:
complete. The cut itself can represent a number not in the original collection of numbers (most often
2487: 1674: 1539: 2236: 130: 2996: 2788: 2469:. A linearly ordered set endowed with the order topology is compact if and only if it has no gap. 902: 215: 2481:. The relevant notion in this case is a Cuesta-Dutari cut, named after the Spanish mathematician 1965: 1642: 1162: 1118: 758: 726: 67: 1758: 1434: 1355: 1159:, which is the set of all rational numbers whose squares are less than 2, to "represent" number 2477:
A construction resembling Dedekind cuts is used for (one among many possible) constructions of
2339: 1229: 2974: 2946: 2663: 2585: 1113: 788: 106: 71: 31: 2755: 2655: 2523: 2423: 2397: 2371: 2189: 2163: 1962: 1732: 1706: 1408: 720: 540: 514: 488: 439: 413: 387: 201: 133:
by defining a Dedekind cut as a partition of a totally ordered set into two non-empty parts
94: 51: 2715: 2307: 2131: 2019: 924: 3068: 3047: 2735: 2235:
This allows the basic arithmetic operations on the real numbers to be defined in terms of
1536:
is indeed a cut. Now armed with the multiplication between cuts, it is easy to check that
897: 689: 63: 55: 2810: 2697:
Whenever, then, we have to do with a cut produced by no rational number, we create a new
2833:
is already forbidden by the first condition. This results in the equivalent expression
2478: 2262: 2242: 2215: 2111: 2091: 2071: 2051: 1999: 1934: 1914: 1894: 1519: 1388: 1335: 1255: 1209: 1189: 1142: 751:, along with every non-negative rational number whose square is less than 2; similarly 566: 465: 330: 280: 257: 237: 3093: 20: 3073: 194: 190: 43: 35: 684:
The important purpose of the Dedekind cut is to work with number sets that are
2659: 19:
For the American record producer known professionally as Dedekind Cut, see
2239:. This property and its relation with real numbers given only in terms of 2982: 1102:{\displaystyle B=\{b\in \mathbb {Q} :b^{2}\geq 2{\text{ and }}b\geq 0\}.} 3058: 2904:{\displaystyle B=\{b\in \mathbb {Q} :b^{2}>2{\text{ and }}b>0\}.} 1025:{\displaystyle A=\{a\in \mathbb {Q} :a^{2}<2{\text{ or }}a<0\},} 2973:, "Continuity and Irrational Numbers," Dover Publications: New York, 2553: 1272:(note that rigorously speaking this number 2 is represented by a cut 892:
Construction of the real numbers § Construction by Dedekind cuts
2556:. A related completion that preserves all existing sups and infs of 1139:
in Dedekind's construction. The essential idea is that we use a set
3016: 874:, i.e., every nonempty subset of it that has any upper bound has a 1332:). To show the first part, we show that for any positive rational 129:
Dedekind cuts can be generalized from the rational numbers to any
25: 1206:
really is a cut (according to the definition) and the square of
587:
By omitting the first two requirements, we formally obtain the
3020: 101:
may or may not have a smallest element among the rationals. If
2560:
is obtained by the following construction: For each subset
1632:{\displaystyle x\times y\leq 2,\forall x,y\in A,x,y\geq 0} 867:, and so on) can be similarly created from set relations. 2541:
generalizes the least-upper-bound property of the reals.
2296:
In the general case of an arbitrary linearly ordered set
2128:, it can be equivalently represented as the set of pairs 1911:
constructed above, this means that we have a sequence in
2279:
is particularly important in weaker foundations such as
121:
contains every rational number less than the cut, and
2841: 2813: 2791: 2758: 2738: 2718: 2426: 2400: 2374: 2342: 2310: 2265: 2245: 2218: 2192: 2166: 2134: 2114: 2094: 2074: 2054: 2022: 2002: 1968: 1937: 1917: 1897: 1851: 1794: 1761: 1735: 1709: 1677: 1645: 1574: 1542: 1522: 1470: 1437: 1411: 1391: 1358: 1338: 1278: 1258: 1232: 1212: 1192: 1165: 1145: 1121: 1039: 962: 927: 905: 761: 729: 569: 543: 517: 491: 468: 442: 416: 390: 356: 333: 305: 283: 260: 240: 218: 696:, even though the numbers contained in the two sets 2752:without any difference as there is no solution for 2943:Foundations of Analysis over Surreal Number Fields 2903: 2825: 2799: 2777: 2744: 2724: 2438: 2412: 2386: 2360: 2328: 2271: 2251: 2224: 2204: 2178: 2152: 2120: 2100: 2080: 2060: 2040: 2008: 1996:Given a Dedekind cut representing the real number 1978: 1943: 1923: 1903: 1884:{\displaystyle 2-y^{2}\leq {\frac {\epsilon }{2}}} 1883: 1837: 1780: 1747: 1721: 1695: 1663: 1631: 1560: 1528: 1508: 1456: 1423: 1397: 1377: 1344: 1325:{\displaystyle \{x\ |\ x\in \mathbb {Q} ,x<2\}} 1324: 1264: 1244: 1218: 1198: 1175: 1151: 1131: 1101: 1024: 945: 913: 771: 739: 575: 555: 529: 503: 474: 454: 428: 402: 376: 339: 319: 289: 266: 246: 226: 109:which, loosely speaking, fills the "gap" between 779:, if the rational numbers are partitioned into 212:A Dedekind cut is a partition of the rationals 197:is defined as a Dedekind cut of rationals is a 3032: 2446:. Some authors add the requirement that both 1931:whose square can become arbitrarily close to 1838:{\displaystyle x>0,2-x^{2}=\epsilon >0} 787:this way, the partition itself represents an 747:by putting every negative rational number in 8: 2895: 2848: 1319: 1279: 1093: 1046: 1016: 969: 626:is complete, then, for every Dedekind cut ( 619:without greatest element a "Dedekind cut". 3039: 3025: 3017: 2945:. Mathematics Studies 141. North-Holland. 607:) notation for Dedekind cuts, but each of 145:is closed downwards (meaning that for all 16:Method of construction of the real numbers 2881: 2869: 2858: 2857: 2840: 2812: 2793: 2792: 2790: 2763: 2757: 2737: 2717: 2425: 2399: 2373: 2341: 2309: 2264: 2244: 2217: 2191: 2165: 2133: 2113: 2093: 2073: 2053: 2021: 2001: 1969: 1967: 1936: 1916: 1896: 1871: 1862: 1850: 1817: 1793: 1766: 1760: 1734: 1708: 1676: 1644: 1573: 1541: 1521: 1477: 1469: 1442: 1436: 1410: 1390: 1363: 1357: 1337: 1303: 1302: 1288: 1277: 1257: 1231: 1211: 1191: 1166: 1164: 1144: 1122: 1120: 1079: 1067: 1056: 1055: 1038: 1002: 990: 979: 978: 961: 926: 907: 906: 904: 762: 760: 730: 728: 568: 542: 516: 490: 467: 441: 415: 389: 370: 369: 355: 332: 313: 312: 304: 282: 259: 239: 220: 219: 217: 2621: 1703:, and it suffices to show that for any 177:contains no greatest element. See also 30:Dedekind used his cut to construct the 1186:To establish this, one must show that 1509:{\displaystyle y={\frac {2x+2}{x+2}}} 583:does not contain a greatest element.) 7: 2681: 2679: 2921:R. Engelking, General Topology, I.3 2465:has a minimum, the cut is called a 704:do not actually include the number 599:It is more symmetrical to use the ( 377:{\displaystyle x,y\in \mathbb {Q} } 50:, named after German mathematician 2652:Eine kurze Geschichte der Analysis 2580:denote the set of lower bounds of 2572:denote the set of upper bounds of 1593: 692:). The cut can represent a number 320:{\displaystyle A\neq \mathbb {Q} } 14: 2689:Continuity and Irrational Numbers 666:, +∞). In this case, we say that 70:of the rational numbers into two 2016:by splitting the rationals into 886:Construction of the real numbers 60:construction of the real numbers 2971:Essays on the Theory of Numbers 2292:Arbitrary linearly ordered sets 1992:Relation to interval arithmetic 1696:{\displaystyle A\times A\geq 2} 1561:{\displaystyle A\times A\leq 2} 2323: 2311: 2147: 2135: 2035: 2023: 1568:(essentially, this is because 1289: 940: 928: 896:A typical Dedekind cut of the 85:is less than every element of 54:(but previously considered by 1: 2590:Dedekind–MacNeille completion 2502:Dedekind–MacNeille completion 1788:. For this we notice that if 2800:{\displaystyle \mathbb {Q} } 1951:, which finishes the proof. 914:{\displaystyle \mathbb {Q} } 819:) (of the same superset) if 646:, hence we must have that 642:must have a minimal element 227:{\displaystyle \mathbb {Q} } 81:, such that each element of 3002:Encyclopedia of Mathematics 2529:with an order-embedding of 1979:{\displaystyle {\sqrt {2}}} 1664:{\displaystyle A\times A=2} 1176:{\displaystyle {\sqrt {2}}} 1132:{\displaystyle {\sqrt {2}}} 772:{\displaystyle {\sqrt {2}}} 740:{\displaystyle {\sqrt {2}}} 723:, they can still be cut at 708:that their cut represents. 179:completeness (order theory) 3126: 2941:Alling, Norman L. (1987). 2686:Dedekind, Richard (1872). 2584:. (These operators form a 2499: 1781:{\displaystyle x^{2}>r} 1639:). Therefore to show that 1457:{\displaystyle y^{2}<2} 1378:{\displaystyle x^{2}<2} 921:is given by the partition 889: 872:least-upper-bound property 204:without any further gaps. 189:set). In other words, the 18: 3054: 2660:10.1007/978-3-662-57816-2 2629:Bertrand, Joseph (1849). 2361:{\displaystyle A\cup B=X} 1245:{\displaystyle A\times A} 799:Regard one Dedekind cut ( 589:extended real number line 2596:consists of all subsets 1112:This cut represents the 2778:{\displaystyle x^{2}=2} 1954:Note that the equality 482:is "closed downwards".) 173:is closed upwards, and 2905: 2827: 2801: 2779: 2746: 2726: 2650:Spalt, Detlef (2019). 2496:Partially ordered sets 2483:Norberto Cuesta Dutari 2440: 2439:{\displaystyle a<b} 2414: 2413:{\displaystyle b\in B} 2388: 2387:{\displaystyle a\in A} 2362: 2330: 2273: 2253: 2226: 2206: 2205:{\displaystyle b\in B} 2180: 2179:{\displaystyle a\in A} 2154: 2122: 2102: 2082: 2062: 2042: 2010: 1980: 1945: 1925: 1905: 1885: 1839: 1782: 1749: 1748:{\displaystyle x\in A} 1723: 1722:{\displaystyle r<2} 1697: 1665: 1633: 1562: 1530: 1510: 1458: 1425: 1424:{\displaystyle x<y} 1399: 1385:, there is a rational 1379: 1346: 1326: 1266: 1246: 1220: 1200: 1177: 1153: 1133: 1103: 1026: 947: 915: 831:is a proper subset of 823:is a proper subset of 811:another Dedekind cut ( 773: 741: 577: 557: 556:{\displaystyle y>x} 531: 530:{\displaystyle y\in A} 511:, then there exists a 505: 504:{\displaystyle x\in A} 476: 456: 455:{\displaystyle x\in A} 430: 429:{\displaystyle y\in A} 404: 403:{\displaystyle x<y} 378: 341: 321: 291: 268: 248: 228: 66:. A Dedekind cut is a 39: 3079:Superparticular ratio 2985:at Project Gutenberg. 2906: 2828: 2802: 2780: 2747: 2727: 2725:{\displaystyle \geq } 2632:TraitĂ© d'ArithmĂ©tique 2512:partially ordered set 2441: 2415: 2389: 2363: 2331: 2329:{\displaystyle (A,B)} 2281:constructive analysis 2274: 2254: 2227: 2207: 2181: 2155: 2153:{\displaystyle (a,b)} 2123: 2103: 2083: 2063: 2043: 2041:{\displaystyle (A,B)} 2011: 1981: 1946: 1926: 1906: 1886: 1840: 1783: 1750: 1724: 1698: 1666: 1634: 1563: 1531: 1511: 1459: 1426: 1400: 1380: 1347: 1327: 1267: 1247: 1221: 1201: 1178: 1154: 1134: 1104: 1027: 948: 946:{\displaystyle (A,B)} 916: 861:less than or equal to 774: 742: 578: 558: 532: 506: 477: 457: 431: 405: 379: 342: 322: 292: 269: 249: 229: 29: 2839: 2811: 2789: 2756: 2745:{\displaystyle >} 2736: 2716: 2712:In the second line, 2552:subsets, ordered by 2424: 2398: 2372: 2340: 2308: 2263: 2243: 2216: 2190: 2164: 2132: 2112: 2092: 2072: 2052: 2020: 2000: 1966: 1935: 1915: 1895: 1849: 1792: 1759: 1733: 1707: 1675: 1643: 1572: 1540: 1520: 1468: 1435: 1409: 1389: 1356: 1336: 1276: 1256: 1230: 1210: 1190: 1163: 1143: 1119: 1037: 960: 925: 903: 759: 727: 567: 541: 515: 489: 466: 440: 414: 388: 354: 331: 303: 281: 258: 238: 216: 2969:Dedekind, Richard, 2826:{\displaystyle b=0} 2732:may be replaced by 2506:More generally, if 2461:has a maximum, nor 2237:interval arithmetic 2048:where rationals in 827:. Equivalently, if 622:If the ordered set 131:totally ordered set 58:), are Đ° method of 2901: 2823: 2797: 2775: 2742: 2722: 2548:is the set of its 2544:One completion of 2436: 2410: 2384: 2358: 2326: 2269: 2249: 2222: 2202: 2176: 2150: 2118: 2098: 2078: 2058: 2038: 2006: 1976: 1961:cannot hold since 1941: 1921: 1901: 1881: 1835: 1778: 1745: 1719: 1693: 1661: 1629: 1558: 1526: 1506: 1454: 1421: 1395: 1375: 1342: 1322: 1262: 1242: 1216: 1196: 1173: 1149: 1129: 1099: 1022: 943: 911: 769: 737: 573: 553: 527: 501: 472: 452: 426: 400: 374: 337: 317: 287: 264: 244: 224: 117:. In other words, 40: 3087: 3086: 2884: 2669:978-3-662-57815-5 2586:Galois connection 2550:downwardly closed 2272:{\displaystyle B} 2252:{\displaystyle A} 2225:{\displaystyle r} 2121:{\displaystyle r} 2108:are greater than 2101:{\displaystyle B} 2088:and rationals in 2081:{\displaystyle r} 2061:{\displaystyle A} 2009:{\displaystyle r} 1974: 1944:{\displaystyle 2} 1924:{\displaystyle A} 1904:{\displaystyle y} 1879: 1529:{\displaystyle A} 1504: 1398:{\displaystyle y} 1345:{\displaystyle x} 1295: 1287: 1265:{\displaystyle 2} 1219:{\displaystyle A} 1199:{\displaystyle A} 1171: 1152:{\displaystyle A} 1127: 1114:irrational number 1082: 1005: 789:irrational number 767: 735: 671:is represented by 576:{\displaystyle A} 475:{\displaystyle A} 340:{\displaystyle B} 290:{\displaystyle A} 267:{\displaystyle B} 247:{\displaystyle A} 234:into two subsets 107:irrational number 3117: 3105:Rational numbers 3048:Rational numbers 3041: 3034: 3027: 3018: 3010: 2957: 2956: 2938: 2932: 2928: 2922: 2919: 2913: 2910: 2908: 2907: 2902: 2885: 2882: 2874: 2873: 2861: 2832: 2830: 2829: 2824: 2806: 2804: 2803: 2798: 2796: 2784: 2782: 2781: 2776: 2768: 2767: 2751: 2749: 2748: 2743: 2731: 2729: 2728: 2723: 2710: 2704: 2703: 2694: 2683: 2674: 2673: 2647: 2641: 2640: 2626: 2612:embedded in it. 2539:complete lattice 2537:. The notion of 2524:complete lattice 2491: 2445: 2443: 2442: 2437: 2419: 2417: 2416: 2411: 2393: 2391: 2390: 2385: 2367: 2365: 2364: 2359: 2335: 2333: 2332: 2327: 2278: 2276: 2275: 2270: 2258: 2256: 2255: 2250: 2231: 2229: 2228: 2223: 2211: 2209: 2208: 2203: 2185: 2183: 2182: 2177: 2159: 2157: 2156: 2151: 2127: 2125: 2124: 2119: 2107: 2105: 2104: 2099: 2087: 2085: 2084: 2079: 2067: 2065: 2064: 2059: 2047: 2045: 2044: 2039: 2015: 2013: 2012: 2007: 1985: 1983: 1982: 1977: 1975: 1970: 1960: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1910: 1908: 1907: 1902: 1890: 1888: 1887: 1882: 1880: 1872: 1867: 1866: 1844: 1842: 1841: 1836: 1822: 1821: 1787: 1785: 1784: 1779: 1771: 1770: 1754: 1752: 1751: 1746: 1728: 1726: 1725: 1720: 1702: 1700: 1699: 1694: 1670: 1668: 1667: 1662: 1638: 1636: 1635: 1630: 1567: 1565: 1564: 1559: 1535: 1533: 1532: 1527: 1515: 1513: 1512: 1507: 1505: 1503: 1492: 1478: 1463: 1461: 1460: 1455: 1447: 1446: 1430: 1428: 1427: 1422: 1404: 1402: 1401: 1396: 1384: 1382: 1381: 1376: 1368: 1367: 1351: 1349: 1348: 1343: 1331: 1329: 1328: 1323: 1306: 1293: 1292: 1285: 1271: 1269: 1268: 1263: 1251: 1249: 1248: 1243: 1225: 1223: 1222: 1217: 1205: 1203: 1202: 1197: 1182: 1180: 1179: 1174: 1172: 1167: 1158: 1156: 1155: 1150: 1138: 1136: 1135: 1130: 1128: 1123: 1108: 1106: 1105: 1100: 1083: 1080: 1072: 1071: 1059: 1031: 1029: 1028: 1023: 1006: 1003: 995: 994: 982: 952: 950: 949: 944: 920: 918: 917: 912: 910: 898:rational numbers 795:Ordering of cuts 778: 776: 775: 770: 768: 763: 746: 744: 743: 738: 736: 731: 721:rational numbers 690:rational numbers 582: 580: 579: 574: 562: 560: 559: 554: 536: 534: 533: 528: 510: 508: 507: 502: 481: 479: 478: 473: 461: 459: 458: 453: 435: 433: 432: 427: 409: 407: 406: 401: 383: 381: 380: 375: 373: 346: 344: 343: 338: 326: 324: 323: 318: 316: 296: 294: 293: 288: 273: 271: 270: 265: 253: 251: 250: 245: 233: 231: 230: 225: 223: 95:greatest element 64:rational numbers 52:Richard Dedekind 3125: 3124: 3120: 3119: 3118: 3116: 3115: 3114: 3090: 3089: 3088: 3083: 3069:Dyadic rational 3050: 3045: 3014: 2995: 2992: 2966: 2961: 2960: 2953: 2940: 2939: 2935: 2929: 2925: 2920: 2916: 2883: and  2865: 2837: 2836: 2809: 2808: 2787: 2786: 2759: 2754: 2753: 2734: 2733: 2714: 2713: 2711: 2707: 2692: 2685: 2684: 2677: 2670: 2649: 2648: 2644: 2628: 2627: 2623: 2618: 2504: 2498: 2485: 2479:surreal numbers 2475: 2473:Surreal numbers 2422: 2421: 2396: 2395: 2370: 2369: 2338: 2337: 2306: 2305: 2294: 2289: 2287:Generalizations 2261: 2260: 2241: 2240: 2214: 2213: 2188: 2187: 2162: 2161: 2130: 2129: 2110: 2109: 2090: 2089: 2070: 2069: 2050: 2049: 2018: 2017: 1998: 1997: 1994: 1986:is not rational 1964: 1963: 1955: 1933: 1932: 1913: 1912: 1893: 1892: 1858: 1847: 1846: 1813: 1790: 1789: 1762: 1757: 1756: 1731: 1730: 1729:, there exists 1705: 1704: 1673: 1672: 1671:, we show that 1641: 1640: 1570: 1569: 1538: 1537: 1518: 1517: 1493: 1479: 1466: 1465: 1438: 1433: 1432: 1407: 1406: 1387: 1386: 1359: 1354: 1353: 1334: 1333: 1274: 1273: 1254: 1253: 1228: 1227: 1208: 1207: 1188: 1187: 1161: 1160: 1141: 1140: 1117: 1116: 1081: and  1063: 1035: 1034: 986: 958: 957: 923: 922: 901: 900: 894: 888: 797: 757: 756: 725: 724: 711:For example if 597: 595:Representations 565: 564: 539: 538: 513: 512: 487: 486: 464: 463: 438: 437: 412: 411: 386: 385: 352: 351: 329: 328: 327:(equivalently, 301: 300: 279: 278: 256: 255: 236: 235: 214: 213: 210: 56:Joseph Bertrand 24: 17: 12: 11: 5: 3123: 3121: 3113: 3112: 3107: 3102: 3092: 3091: 3085: 3084: 3082: 3081: 3076: 3071: 3066: 3061: 3055: 3052: 3051: 3046: 3044: 3043: 3036: 3029: 3021: 3012: 3011: 2997:"Dedekind cut" 2991: 2990:External links 2988: 2987: 2986: 2965: 2962: 2959: 2958: 2951: 2933: 2923: 2914: 2912: 2911: 2900: 2897: 2894: 2891: 2888: 2880: 2877: 2872: 2868: 2864: 2860: 2856: 2853: 2850: 2847: 2844: 2822: 2819: 2816: 2795: 2774: 2771: 2766: 2762: 2741: 2721: 2705: 2695:. Section IV. 2675: 2668: 2642: 2620: 2619: 2617: 2614: 2500:Main article: 2497: 2494: 2474: 2471: 2454:are nonempty. 2435: 2432: 2429: 2409: 2406: 2403: 2383: 2380: 2377: 2357: 2354: 2351: 2348: 2345: 2325: 2322: 2319: 2316: 2313: 2293: 2290: 2288: 2285: 2268: 2248: 2221: 2201: 2198: 2195: 2175: 2172: 2169: 2149: 2146: 2143: 2140: 2137: 2117: 2097: 2077: 2068:are less than 2057: 2037: 2034: 2031: 2028: 2025: 2005: 1993: 1990: 1973: 1959: = 2 1940: 1920: 1900: 1878: 1875: 1870: 1865: 1861: 1857: 1854: 1834: 1831: 1828: 1825: 1820: 1816: 1812: 1809: 1806: 1803: 1800: 1797: 1777: 1774: 1769: 1765: 1744: 1741: 1738: 1718: 1715: 1712: 1692: 1689: 1686: 1683: 1680: 1660: 1657: 1654: 1651: 1648: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1557: 1554: 1551: 1548: 1545: 1525: 1502: 1499: 1496: 1491: 1488: 1485: 1482: 1476: 1473: 1453: 1450: 1445: 1441: 1420: 1417: 1414: 1394: 1374: 1371: 1366: 1362: 1341: 1321: 1318: 1315: 1312: 1309: 1305: 1301: 1298: 1291: 1284: 1281: 1261: 1241: 1238: 1235: 1215: 1195: 1170: 1148: 1126: 1110: 1109: 1098: 1095: 1092: 1089: 1086: 1078: 1075: 1070: 1066: 1062: 1058: 1054: 1051: 1048: 1045: 1042: 1032: 1021: 1018: 1015: 1012: 1009: 1004: or  1001: 998: 993: 989: 985: 981: 977: 974: 971: 968: 965: 942: 939: 936: 933: 930: 909: 887: 884: 796: 793: 766: 734: 662:the interval [ 596: 593: 585: 584: 572: 552: 549: 546: 526: 523: 520: 500: 497: 494: 483: 471: 451: 448: 445: 425: 422: 419: 399: 396: 393: 372: 368: 365: 362: 359: 348: 336: 315: 311: 308: 298: 286: 263: 243: 222: 209: 206: 15: 13: 10: 9: 6: 4: 3: 2: 3122: 3111: 3108: 3106: 3103: 3101: 3098: 3097: 3095: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3056: 3053: 3049: 3042: 3037: 3035: 3030: 3028: 3023: 3022: 3019: 3015: 3008: 3004: 3003: 2998: 2994: 2993: 2989: 2984: 2980: 2979:0-486-21010-3 2976: 2972: 2968: 2967: 2963: 2954: 2952:0-444-70226-1 2948: 2944: 2937: 2934: 2927: 2924: 2918: 2915: 2898: 2892: 2889: 2886: 2878: 2875: 2870: 2866: 2862: 2854: 2851: 2845: 2842: 2835: 2834: 2820: 2817: 2814: 2772: 2769: 2764: 2760: 2739: 2719: 2709: 2706: 2702: 2700: 2691: 2690: 2682: 2680: 2676: 2671: 2665: 2661: 2657: 2653: 2646: 2643: 2639: 2634: 2633: 2625: 2622: 2615: 2613: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2542: 2540: 2536: 2532: 2528: 2525: 2521: 2517: 2513: 2509: 2503: 2495: 2493: 2489: 2484: 2480: 2472: 2470: 2468: 2464: 2460: 2455: 2453: 2449: 2433: 2430: 2427: 2407: 2404: 2401: 2381: 2378: 2375: 2355: 2352: 2349: 2346: 2343: 2320: 2317: 2314: 2303: 2299: 2291: 2286: 2284: 2282: 2266: 2246: 2238: 2233: 2219: 2199: 2196: 2193: 2173: 2170: 2167: 2144: 2141: 2138: 2115: 2095: 2075: 2055: 2032: 2029: 2026: 2003: 1991: 1989: 1987: 1971: 1958: 1952: 1938: 1918: 1898: 1876: 1873: 1868: 1863: 1859: 1855: 1852: 1832: 1829: 1826: 1823: 1818: 1814: 1810: 1807: 1804: 1801: 1798: 1795: 1775: 1772: 1767: 1763: 1742: 1739: 1736: 1716: 1713: 1710: 1690: 1687: 1684: 1681: 1678: 1658: 1655: 1652: 1649: 1646: 1626: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1596: 1590: 1587: 1584: 1581: 1578: 1575: 1555: 1552: 1549: 1546: 1543: 1523: 1500: 1497: 1494: 1489: 1486: 1483: 1480: 1474: 1471: 1464:. The choice 1451: 1448: 1443: 1439: 1418: 1415: 1412: 1392: 1372: 1369: 1364: 1360: 1339: 1316: 1313: 1310: 1307: 1299: 1296: 1282: 1259: 1239: 1236: 1233: 1213: 1193: 1184: 1168: 1146: 1124: 1115: 1096: 1090: 1087: 1084: 1076: 1073: 1068: 1064: 1060: 1052: 1049: 1043: 1040: 1033: 1019: 1013: 1010: 1007: 999: 996: 991: 987: 983: 975: 972: 966: 963: 956: 955: 954: 937: 934: 931: 899: 893: 885: 883: 881: 877: 873: 868: 866: 862: 858: 854: 850: 846: 842: 838: 834: 830: 826: 822: 818: 814: 810: 806: 802: 794: 792: 790: 786: 782: 764: 754: 750: 732: 722: 719:only contain 718: 714: 709: 707: 703: 699: 695: 691: 687: 682: 680: 676: 672: 669: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 620: 618: 614: 610: 606: 602: 594: 592: 590: 570: 550: 547: 544: 524: 521: 518: 498: 495: 492: 484: 469: 449: 446: 443: 423: 420: 417: 397: 394: 391: 366: 363: 360: 357: 349: 347:is nonempty). 334: 309: 306: 299: 284: 277: 276: 275: 261: 241: 207: 205: 203: 200: 196: 192: 188: 182: 180: 176: 172: 169:as well) and 168: 164: 161:implies that 160: 156: 152: 148: 144: 140: 136: 132: 127: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 73: 69: 65: 61: 57: 53: 49: 48:Dedekind cuts 45: 37: 33: 28: 22: 21:Fred Warmsley 3110:Real numbers 3100:Order theory 3074:Half-integer 3064:Dedekind cut 3063: 3013: 3000: 2970: 2942: 2936: 2926: 2917: 2708: 2698: 2696: 2688: 2654:. Springer. 2651: 2645: 2636: 2635:. page 203. 2631: 2624: 2609: 2605: 2601: 2597: 2593: 2588:.) Then the 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2549: 2545: 2543: 2538: 2534: 2530: 2526: 2519: 2515: 2507: 2505: 2476: 2466: 2462: 2458: 2456: 2451: 2447: 2301: 2297: 2295: 2234: 1995: 1956: 1953: 1516:works, thus 1185: 1111: 895: 879: 875: 869: 864: 860: 857:greater than 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 798: 784: 780: 752: 748: 716: 712: 710: 705: 701: 697: 693: 685: 683: 678: 674: 670: 667: 663: 659: 655: 647: 643: 639: 635: 631: 627: 623: 621: 616: 612: 608: 604: 600: 598: 586: 297:is nonempty. 211: 193:where every 186: 183: 174: 170: 166: 162: 158: 154: 150: 146: 142: 141:, such that 138: 134: 128: 122: 118: 114: 110: 102: 98: 93:contains no 90: 86: 82: 78: 74: 47: 41: 36:real numbers 2600:for which ( 2486: [ 2457:If neither 843:) is again 835:, the cut ( 654:(−∞, 195:real number 191:number line 44:mathematics 3094:Categories 2964:References 2699:irrational 2576:, and let 2516:completion 2336:such that 2304:is a pair 1226:, that is 890:See also: 638:, the set 537:such that 274:such that 208:Definition 97:. The set 32:irrational 3007:EMS Press 2983:available 2855:∈ 2720:≥ 2554:inclusion 2405:∈ 2379:∈ 2347:∪ 2197:∈ 2171:∈ 1874:ϵ 1869:≤ 1856:− 1827:ϵ 1811:− 1740:∈ 1688:≥ 1682:× 1650:× 1624:≥ 1606:∈ 1594:∀ 1585:≤ 1579:× 1553:≤ 1547:× 1300:∈ 1237:× 1088:≥ 1074:≥ 1053:∈ 976:∈ 845:less than 809:less than 673:the cut ( 522:∈ 496:∈ 447:∈ 421:∈ 367:∈ 310:≠ 202:continuum 113:and  68:partition 62:from the 2931:account. 2522:means a 1891:for the 865:equal to 652:interval 199:complete 3059:Integer 3009:, 2001 2981:. Also 1845:, then 658:), and 650:is the 436:, then 2977:  2949:  2666:  2568:, let 2420:imply 1294:  1286:  410:, and 165:is in 89:, and 2693:(PDF) 2616:Notes 2533:into 2510:is a 2490:] 2186:and 2160:with 1405:with 1352:with 953:with 876:least 807:) as 634:) of 2975:ISBN 2947:ISBN 2890:> 2876:> 2807:and 2740:> 2664:ISBN 2638:.... 2604:) = 2514:, a 2450:and 2431:< 2368:and 2300:, a 2259:and 1830:> 1799:> 1773:> 1714:< 1449:< 1431:and 1416:< 1370:< 1314:< 1011:< 997:< 783:and 715:and 700:and 611:and 548:> 395:< 254:and 137:and 77:and 72:sets 2785:in 2656:doi 2592:of 2564:of 2518:of 2467:gap 2302:cut 686:not 681:). 563:. ( 485:If 462:. ( 350:If 149:in 42:In 3096:: 3005:, 2999:, 2678:^ 2662:. 2492:. 2488:es 2394:, 2283:. 2232:. 1988:. 1755:, 863:, 859:, 851:, 839:, 815:, 803:, 791:. 677:, 630:, 603:, 591:. 384:, 181:. 157:≀ 153:, 46:, 34:, 3040:e 3033:t 3026:v 2955:. 2899:. 2896:} 2893:0 2887:b 2879:2 2871:2 2867:b 2863:: 2859:Q 2852:b 2849:{ 2846:= 2843:B 2821:0 2818:= 2815:b 2794:Q 2773:2 2770:= 2765:2 2761:x 2672:. 2658:: 2610:S 2606:A 2602:A 2598:A 2594:S 2582:A 2578:A 2574:A 2570:A 2566:S 2562:A 2558:S 2546:S 2535:L 2531:S 2527:L 2520:S 2508:S 2463:B 2459:A 2452:B 2448:A 2434:b 2428:a 2408:B 2402:b 2382:A 2376:a 2356:X 2353:= 2350:B 2344:A 2324:) 2321:B 2318:, 2315:A 2312:( 2298:X 2267:B 2247:A 2220:r 2200:B 2194:b 2174:A 2168:a 2148:) 2145:b 2142:, 2139:a 2136:( 2116:r 2096:B 2076:r 2056:A 2036:) 2033:B 2030:, 2027:A 2024:( 2004:r 1972:2 1957:b 1939:2 1919:A 1899:y 1877:2 1864:2 1860:y 1853:2 1833:0 1824:= 1819:2 1815:x 1808:2 1805:, 1802:0 1796:x 1776:r 1768:2 1764:x 1743:A 1737:x 1717:2 1711:r 1691:2 1685:A 1679:A 1659:2 1656:= 1653:A 1647:A 1627:0 1621:y 1618:, 1615:x 1612:, 1609:A 1603:y 1600:, 1597:x 1591:, 1588:2 1582:y 1576:x 1556:2 1550:A 1544:A 1524:A 1501:2 1498:+ 1495:x 1490:2 1487:+ 1484:x 1481:2 1475:= 1472:y 1452:2 1444:2 1440:y 1419:y 1413:x 1393:y 1373:2 1365:2 1361:x 1340:x 1320:} 1317:2 1311:x 1308:, 1304:Q 1297:x 1290:| 1283:x 1280:{ 1260:2 1240:A 1234:A 1214:A 1194:A 1169:2 1147:A 1125:2 1097:. 1094:} 1091:0 1085:b 1077:2 1069:2 1065:b 1061:: 1057:Q 1050:b 1047:{ 1044:= 1041:B 1020:, 1017:} 1014:0 1008:a 1000:2 992:2 988:a 984:: 980:Q 973:a 970:{ 967:= 964:A 941:) 938:B 935:, 932:A 929:( 908:Q 880:S 853:D 849:C 847:( 841:B 837:A 833:B 829:D 825:C 821:A 817:D 813:C 805:B 801:A 785:B 781:A 765:2 753:B 749:A 733:2 717:B 713:A 706:b 702:B 698:A 694:b 679:B 675:A 668:b 664:b 660:B 656:b 648:A 644:b 640:B 636:S 632:B 628:A 624:S 617:A 613:B 609:A 605:B 601:A 571:A 551:x 545:y 525:A 519:y 499:A 493:x 470:A 450:A 444:x 424:A 418:y 398:y 392:x 371:Q 364:y 361:, 358:x 335:B 314:Q 307:A 285:A 262:B 242:A 221:Q 187:B 175:A 171:B 167:A 163:x 159:a 155:x 151:A 147:a 143:A 139:B 135:A 123:B 119:A 115:B 111:A 103:B 99:B 91:A 87:B 83:A 79:B 75:A 38:. 23:.

Index

Fred Warmsley

irrational
real numbers
mathematics
Richard Dedekind
Joseph Bertrand
construction of the real numbers
rational numbers
partition
sets
greatest element
irrational number
totally ordered set
completeness (order theory)
number line
real number
complete
continuum
extended real number line
interval
rational numbers
rational numbers
irrational number
least-upper-bound property
Construction of the real numbers § Construction by Dedekind cuts
rational numbers
irrational number
2 {\displaystyle {\sqrt {2}}} is not rational
interval arithmetic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑