Knowledge

Wavelength-division multiplexing

Source πŸ“

690:. At the remote site, the terminal de-multiplexer consisting of an optical de-multiplexer and one or more wavelength-converting transponders separates the multi-wavelength optical signal back into individual data signals and outputs them on separate fibers for client-layer systems (such as SONET/SDH). Originally, this de-multiplexing was performed entirely passively, except for some telemetry, as most SONET systems can receive 1,550 nm signals. However, in order to allow for transmission to remote client-layer systems (and to allow for digital domain signal integrity determination) such de-multiplexed signals are usually sent to O/E/O output transponders prior to being relayed to their client-layer systems. Often, the functionality of output transponder has been integrated into that of input transponder, so that most commercial systems have transponders that support bi-directional interfaces on both their 1,550 nm (i.e., internal) side, and external (i.e., client-facing) side. Transponders in some systems supporting 40 GHz nominal operation may also perform 664:. The terminal multiplexer contains a wavelength-converting transponder for each data signal, an optical multiplexer and where necessary an optical amplifier (EDFA). Each wavelength-converting transponder receives an optical data signal from the client layer, such as SONET/SDH or another type of data signal, converts this signal into the electrical domain, and re-transmits the signal at a specific wavelength using a 1,550 nm band laser. These data signals are then combined into a multi-wavelength optical signal using an optical multiplexer, for transmission over a single fiber (e.g., SMF-28 fiber). The terminal multiplexer may or may not also include a local transmit EDFA for power amplification of the multi-wavelength optical signal. In the mid-1990s DWDM systems contained 4 or 8 wavelength-converting transponders; by 2000 or so, commercial systems capable of carrying 128 signals were available. 640:, which they have made practically obsolete. EDFAs can amplify any optical signal in their operating range, regardless of the modulated bit rate. In terms of multi-wavelength signals, so long as the EDFA has enough pump energy available to it, it can amplify as many optical signals as can be multiplexed into its amplification band (though signal densities are limited by choice of modulation format). EDFAs therefore allow a single-channel optical link to be upgraded in bit rate by replacing only equipment at the ends of the link, while retaining the existing EDFA or series of EDFAs through a long haul route. Furthermore, single-wavelength links using EDFAs can similarly be upgraded to WDM links at reasonable cost. The EDFA's cost is thus leveraged across as many channels as can be multiplexed into the 1550 nm band. 3443:) communication, two wavelengths will be required if on the same fiber; if separate fibers are used in a so-called fiber pair, then the same wavelength is normally used and it is not WDM. As a result, at each end both a transmitter and a receiver will be required. A combination of a transmitter and a receiver is called a transceiver; it converts an electrical signal to and from an optical signal. WDM transceivers made for single-strand operation require the opposing transmitters to use different wavelengths. WDM transceivers additionally require an optical splitter/combiner to couple the transmitter and receiver paths onto the one fiber strand. 711:. This is data channel that uses an additional wavelength usually outside the EDFA amplification band (at 1,510 nm, 1,620 nm, 1,310 nm or another proprietary wavelength). The OSC carries information about the multi-wavelength optical signal as well as remote conditions at the optical terminal or EDFA site. It is also normally used for remote software upgrades and user (i.e., network operator) Network Management information. It is the multi-wavelength analog to SONET's DCC (or supervisory channel). ITU standards suggest that the OSC should utilize an OC-3 signal structure, though some vendors have opted to use 43: 683:. This is a remote amplification site that amplifies the multi-wavelength signal that may have traversed up to 140 km or more before reaching the remote site. Optical diagnostics and telemetry are often extracted or inserted at such a site, to allow for localization of any fiber breaks or signal impairments. In more sophisticated systems (which are no longer point-to-point), several signals out of the multi-wavelength optical signal may be removed and dropped locally. 858:(from multiplexed transponder) has different names depending on vendor. It essentially performs some relatively simple time-division multiplexing of lower-rate signals into a higher-rate carrier within the system (a common example is the ability to accept 4 OC-48s and then output a single OC-192 in the 1,550 nm band). More recent muxponder designs have absorbed more and more TDM functionality, in some cases obviating the need for traditional 394: 3350: 524:(1310/1550 nm respectively) including the critical frequencies where OH scattering may occur. OH-free silica fibers are recommended if the wavelengths between the second and third transmission windows are to be used. Avoiding this region, the channels 47, 49, 51, 53, 55, 57, 59, 61 remain and these are the most commonly used. With OS2 fibers the water peak problem is overcome, and all possible 18 channels can be used. 113: 402: 846:
3R regeneration on OC-3/12/48 signals, and possibly gigabit Ethernet, and reporting on signal health by monitoring SONET/SDH section layer overhead bytes. Many transponders will be able to perform full multi-rate 3R in both directions. Some vendors offer 10 Gbit/s transponders, which will perform Section layer overhead monitoring to all rates up to and including OC-192.
652: 516:(DWDM) uses the C-Band (1530 nm-1565 nm) transmission window but with denser channel spacing. Channel plans vary, but a typical DWDM system would use 40 channels at 100 GHz spacing or 80 channels with 50 GHz spacing. Some technologies are capable of 12.5 GHz spacing (sometimes called ultra-dense WDM). New amplification options ( 752: 545: 3461:
first transceiver converting the 1550 nm optical signal to/from an electrical signal, and the second transceiver converting the electrical signal to/from an optical signal at the required wavelength. Transponders that don't use an intermediate electrical signal (all-optical transponders) are in development.
725:
placed inside the optical fiber amplifier bandwidth, but can be extended to wider bandwidths. The first commercial deployment of DWDM was made by Ciena Corporation on the Sprint network in June 1996. Today's DWDM systems use 50 GHz or even 25 GHz channel spacing for up to 160 channel operation.
568:
specification fibers, due to the increased attenuation in the 1270–1470 nm bands. Newer fibers which conform to the G.652.C and G.652.D standards, such as Corning SMF-28e and Samsung Widepass, nearly eliminate the water-related attenuation peak at 1383 nm and allow for full operation of all
3460:
In practice, the signal inputs and outputs will not be electrical but optical instead (typically at 1550 nm). This means that in effect wavelength converters are needed instead, which is exactly what a transponder is. A transponder can be made up of two transceivers placed after each other: the
563:
In 2002, the ITU standardized a channel spacing grid for CWDM (ITU-T G.694.2) using the wavelengths from 1270 nm through 1610 nm with a channel spacing of 20 nm. ITU G.694.2 was revised in 2003 to shift the channel centers by 1 nm so, strictly speaking, the center wavelengths are
845:
Re-time, re-transmit, re-shape. 3R Transponders were fully digital and normally able to view SONET/SDH section layer overhead bytes such as A1 and A2 to determine signal quality health. Many systems will offer 2.5 Gbit/s transponders, which will normally mean the transponder is able to perform
728:
DWDM systems have to maintain more stable wavelength or frequency than those needed for CWDM because of the closer spacing of the wavelengths. Precision temperature control of the laser transmitter is required in DWDM systems to prevent drift off a very narrow frequency window of the order of a few
724:
in 2002 has made it easier to integrate WDM with older but more standard SONET/SDH systems. WDM wavelengths are positioned in a grid having exactly 100 GHz (about 0.8 nm) spacing in optical frequency, with a reference frequency fixed at 193.10 THz (1,552.52 nm). The main grid is
572:
The main characteristic of the recent ITU CWDM standard is that the signals are not spaced appropriately for amplification by EDFAs. This limits the total CWDM optical span to somewhere near 60 km for a 2.5 Gbit/s signal, which is suitable for use in metropolitan applications. The relaxed
824:
of the received optical signal, with little signal cleanup occurring. This limited the reach of early DWDM systems because the signal had to be handed off to a client-layer receiver (likely from a different vendor) before the signal deteriorated too far. Signal monitoring was basically confined to
801:
Wavelength-converting transponders originally translated the transmit wavelength of a client-layer signal into one of the DWDM system's internal wavelengths in the 1,550 nm band. External wavelengths in the 1,550 nm most likely need to be translated, as they almost certainly do not have
737:
Recent innovations in DWDM transport systems include pluggable and software-tunable transceiver modules capable of operating on 40 or 80 channels. This dramatically reduces the need for discrete spare pluggable modules, when a handful of pluggable devices can handle the full range of wavelengths.
3323:
As mentioned above, intermediate optical amplification sites in DWDM systems may allow for the dropping and adding of certain wavelength channels. In most systems deployed as of August 2006 this is done infrequently, because adding or dropping wavelengths requires manually inserting or replacing
523:
Coarse wavelength-division multiplexing (CWDM), in contrast to DWDM, uses increased channel spacing to allow less sophisticated and thus cheaper transceiver designs. To provide 16 channels on a single fiber, CWDM uses the entire frequency band spanning the second and third transmission windows
3380:
When the network topology is a mesh, where nodes are interconnected by fibers to form an arbitrary graph, an additional fiber interconnection device is needed to route the signals from an input port to the desired output port. These devices are called optical crossconnectors (OXCs). Various
381:. This is purely conventional because wavelength and frequency communicate the same information. Specifically, frequency (in Hertz, which is cycles per second) multiplied by wavelength (the physical length of one cycle) equals velocity of the carrier wave. In a vacuum, this is the 3447:
Coarse WDM (CWDM) Transceiver Wavelengths: 1271 nm, 1291 nm, 1311 nm, 1331 nm, 1351 nm, 1371 nm, 1391 nm, 1411 nm, 1431 nm, 1451 nm, 1471 nm, 1491 nm, 1511 nm, 1531 nm, 1551 nm, 1571 nm, 1591 nm,
468:, they can accommodate several generations of technology development in their optical infrastructure without having to overhaul the backbone network. The capacity of a given link can be expanded simply by upgrading the multiplexers and demultiplexers at each end. 733:
and is therefore associated with higher modulation rates, thus creating a smaller market for DWDM devices with very high performance. These factors of smaller volume and higher performance result in DWDM systems typically being more expensive than CWDM.
4037:
Cheung, Nim K.; Nosu Kiyoshi; Winzer, Gerhard "Guest Editorial / Dense Wavelength Division Multiplexing Techniques for High Capacity and Multiple Access Communication Systems", IEEE Journal on Selected Areas in Communications, Vol. 8 No. 6, August
608:
Passive CWDM is an implementation of CWDM that uses no electrical power. It separates the wavelengths using passive optical components such as bandpass filters and prisms. Many manufacturers are promoting passive CWDM to deploy fiber to the home.
527:
WDM, CWDM and DWDM are based on the same concept of using multiple wavelengths of light on a single fiber but differ in the spacing of the wavelengths, number of channels, and the ability to amplify the multiplexed signals in the optical space.
560:(EDFAs). Prior to the relatively recent ITU standardization of the term, one common definition for CWDM was two or more signals multiplexed onto a single fiber, with one signal in the 1550 nm band and the other in the 1310 nm band. 3324:
wavelength-selective cards. This is costly, and in some systems requires that all active traffic be removed from the DWDM system, because inserting or removing the wavelength-specific cards interrupts the multi-wavelength optical signal.
671:
is placed approximately every 80–100 km to compensate for the loss of optical power as the signal travels along the fiber. The 'multi-wavelength optical signal' is amplified by an EDFA, which usually consists of several amplifier
448:
The concept was first published in 1970 by Delange, and by 1980 WDM systems were being realized in the laboratory. The first WDM systems combined only two signals. Modern systems can handle 160 signals and can thus expand a basic
471:
This is often done by the use of optical-to-electrical-to-optical (O/E/O) translation at the very edge of the transport network, thus permitting interoperation with existing equipment with optical interfaces.
604:
standard is an example of a CWDM system in which four wavelengths near 1310 nm, each carrying a 3.125 gigabit-per-second (Gbit/s) data stream, are used to carry 10 Gbit/s of aggregate data.
715:
or another signal format. Unlike the 1550 nm multi-wavelength signal containing client data, the OSC is always terminated at intermediate amplifier sites, where it receives local information before
385:(usually denoted by the lowercase letter, c). In glass fiber, velocity is substantially slower - usually about 0.7 times c. The data rate in practical systems is a fraction of the carrier frequency. 4034:
Ishio, H. Minowa, J. Nosu, K., "Review and status of wavelength-division-multiplexing technology and its application", Journal of Lightwave Technology, Volume: 2, Issue: 4, Aug 1984, p. 448–463
3327:
With a ROADM, network operators can remotely reconfigure the multiplexer by sending soft commands. The architecture of the ROADM is such that dropping or adding wavelengths does not interrupt the
536:, Raman amplification adds a mechanism for amplification in the L-band. For CWDM, wideband optical amplification is not available, limiting the optical spans to several tens of kilometers. 556:(CWDM) was fairly generic and described a number of different channel configurations. In general, the choice of channel spacings and frequency in these configurations precluded the use of 486:
Early WDM systems were expensive and complicated to run. However, recent standardization and a better understanding of the dynamics of WDM systems have made WDM less expensive to deploy.
593:
signals. In these systems, the wavelengths used are often widely separated. For example, the downstream signal might be at 1310 nm while the upstream signal is at 1550 nm.
3395:
EWDM combines 1 Gbit/s Coarse Wave Division Multiplexing (CWDM) connections using SFPs and GBICs with 10 Gbit/s Dense Wave Division Multiplexing (DWDM) connections using
809:. Signal regeneration in transponders quickly evolved through 1R to 2R to 3R and into overhead-monitoring multi-bitrate 3R regenerators. These differences are outlined below: 4028:
Tomlinson, W. J.; Lin, C., "Optical wavelength-division multiplexer for the 1–1.4-micron spectral region", Electronics Letters, vol. 14, May 25, 1978, p. 345–347.
508:(DWDM). Normal WDM (sometimes called BWDM) uses the two normal wavelengths 1310 and 1550 nm on one fiber. Coarse WDM provides up to 16 channels across multiple 729:
GHz. In addition, since DWDM provides greater maximum capacity it tends to be used at a higher level in the communications hierarchy than CWDM, for example on the
314: 3878: 4029: 3318: 261: 3407:
DWDM modules. The Enhanced WDM system can use either passive or boosted DWDM connections to allow a longer range for the connection. In addition to this,
4041:
Arora, A.; Subramaniam, S. "Wavelength Conversion Placement in WDM Mesh Optical Networks". Photonic Network Communications, Volume 4, Number 2, May 2002.
3331:
channels. Numerous technological approaches are utilized for various commercial ROADMs, the tradeoff being between cost, optical power, and flexibility.
3731:
Li, Hongqin; Zhong, Zhicheng (2019). "Analysis and Simulation of Morphology Algorithm for Fiber Optic Hydrophone Array in Marine Seismic Exploration".
3392:'s Enhanced WDM system is a network architecture that combines two different types of multiplexing technologies to transmit data over optical fibers. 3935: 3571: 837:
method for signal clean-up. Some rudimentary signal-quality monitoring was done by such transmitters that basically looked at analogue parameters.
3773:
O. E. Delange, "Wideband optical communication systems, Part 11-Frequency division multiplexing". hoc. IEEE, vol. 58, p. 1683, October 1970.
3423:(VCSEL) transceivers with four wavelengths in the 846 to 953 nm range over single OM5 fiber, or two-fiber connectivity for OM3/OM4 fiber. 3420: 3541: 210: 4054: 3936:"New Technology Allows 1,600% Capacity Boost on Sprint's Fiber-Optic Network; Ciena Corp. System Installed; Greatly Increases Bandwidth" 425:
to split them apart. With the right type of fiber, it is possible to have a device that does both simultaneously and can function as an
3914: 3514: 620:(DWDM) refers originally to optical signals multiplexed within the 1550 nm band so as to leverage the capabilities (and cost) of 307: 200: 434: 4022: 788: 770: 762: 246: 86: 64: 3895: 573:
optical frequency stabilization requirements allow the associated costs of CWDM to approach those of non-WDM optical components.
4064: 3502: 637: 374: 251: 186: 145: 195: 3520: 3490: 300: 266: 241: 520:) enable the extension of the usable wavelengths to the L-band (1565–1625 nm), more or less doubling these numbers. 3953: 3559: 621: 557: 461: 426: 363: 3875: 3857: 3783: 3801: 3685:
Yuan, Ye; Wang, Chao (2019). "Multipath Transmission of Marine Electromagnetic Data Based on Distributed Sensors".
3592: 181: 155: 4017:
Siva Ram Murthy C.; Guruswamy M., "WDM Optical Networks, Concepts, Design, and Algorithms", Prentice Hall India,
3532: 3484: 695: 509: 493:
devices. Therefore, the demultiplexer must provide the wavelength selectivity of the receiver in the WDM system.
476: 328: 373:
The term WDM is commonly applied to an optical carrier, which is typically described by its wavelength, whereas
691: 480: 221: 57: 51: 437:
in the form of thin-film-coated optical glass). As there are three different WDM types, whereof one is called
3381:
categories of OXCs include electronic ("opaque"), optical ("transparent"), and wavelength-selective devices.
3408: 817: 464:
because they allow them to expand the capacity of the network without laying more fiber. By using WDM and
68: 805:
In the mid-1990s, however, wavelength-converting transponders rapidly took on the additional function of
4059: 3436: 3340: 288: 283: 17: 3631: 3526: 3478: 3440: 882:
For DWDM the range between C21-C60 is the most common range, for Mux/Demux in 8, 16, 40 or 96 sizes.
833:
Re-time and re-transmit. Transponders of this type were not very common and utilized a quasi-digital
205: 135: 130: 3400: 806: 802:
the required frequency stability tolerances nor the optical power necessary for the system's EDFA.
517: 3998: 3839: 3756: 3748: 3710: 3702: 3649: 3547: 3411:
modules deliver 100 Gbit/s Ethernet suitable for high-speed Internet backbone connections.
564:
1271 to 1611 nm. Many CWDM wavelengths below 1470 nm are considered unusable on older
4018: 3667: 730: 629: 625: 533: 465: 166: 3831: 3802:"ITU-T G.652, Transmission media and optical systems characteristics – Optical fibre cables" 3740: 3694: 3657: 3639: 3565: 582: 422: 236: 150: 140: 3882: 834: 344: 479:
cables which have a core diameter of 9 ΞΌm. Certain forms of WDM can also be used in
3635: 483:
cables (also known as premises cables) which have core diameters of 50 or 62.5 ΞΌm.
393: 3662: 3619: 721: 601: 457:. A system of 320 channels is also present (12.5 GHz channel spacing, see below.) 382: 3349: 624:(EDFAs), which are effective for wavelengths between approximately 1525–1565 nm ( 4048: 3760: 3714: 3586: 712: 418: 348: 3822:
Hornes, Rudy. L (2008). "The Suppression of Four-Wave Mixing by Random Dispersion".
112: 3580: 3466: 104: 597: 414: 410: 340: 3624:
Proceedings of the National Academy of Sciences of the United States of America
3978: 3553: 3496: 3493: β€“ Channel access method used by various radio communication technologies 352: 120: 3957: 3644: 859: 855: 633: 401: 378: 3671: 3451:
Dense WDM (DWDM) Transceivers: Channel 17 to Channel 61 according to ITU-T.
651: 3861: 3787: 3858:"ITU-T G.694.1, Spectral grids for WDM applications: DWDM frequency grid" 3620:"Optofluidic wavelength division multiplexing for single-virus detection" 490: 3843: 3805: 3752: 3706: 3653: 3744: 3698: 3508: 3469:
for different functional views on the meaning of optical transponders.
31: 3835: 544: 3396: 648:
At this stage, a basic DWDM system contains several main components:
454: 450: 430: 3954:"Infinera Corporation | Products | Infinera Line System 1" 3389: 702: 699: 650: 565: 543: 496:
WDM systems are divided into three different wavelength patterns:
359: 356: 256: 548:
Series of SFP+ transceivers for 10 Gbit/s WDM communications
529: 3404: 3344: 745: 429:. The optical filtering devices used have conventionally been 377:
typically applies to a radio carrier, more often described by
36: 3439:), and most practical communication systems require two-way ( 30:"DWDM" redirects here. For the Philippine radio station, see 489:
Optical receivers, in contrast to laser sources, tend to be
366:
communications over a single strand of fiber (also called
3505: β€“ Signal processing technique in telecommunications 3435:
Since communication over a single wavelength is one-way (
445:
is normally used when discussing the technology as such.
3784:"ITU-T G.694.2, WDM applications: CWDM wavelength grid" 3576:
Pages displaying short descriptions of redirect targets
3537:
Pages displaying short descriptions of redirect targets
3361: 585:
networks, where different wavelengths are used for the
3583: β€“ Used to measure spectral components of light 3517: β€“ Proposed successor to SONET optical networks 532:
provide an efficient wideband amplification for the
3313:
Reconfigurable optical add-drop multiplexer (ROADM)
816:Retransmission. Basically, early transponders were 3595: β€“ Multiplexing technique for digital signals 3896:"Fiber-Optic Technology Draws Record Stock Value" 825:optical domain parameters such as received power. 453:system over a single fiber pair to over 16  569:18 ITU CWDM channels in metropolitan networks. 632:). EDFAs were originally developed to replace 3529: β€“ Optical network using a mesh topology 308: 8: 3999:"FS DWDM/CWDM Wavelength ITU Channels Guide" 3915:"Boom, Bubble, Bust: The Fiber Optic Mania" 3319:Reconfigurable optical add-drop multiplexer 417:to join the several signals together and a 3548:Differential quadrature phase shift keying 3535: β€“ Standard for optical data packages 1703: 884: 820:in that their output was nearly an analog 315: 301: 100: 3661: 3643: 3481: β€“ Manipulates DWDM channel contents 789:Learn how and when to remove this message 370:) as well as multiplication of capacity. 87:Learn how and when to remove this message 3574: β€“ Modular communications interface 400: 392: 50:This article includes a list of general 3605: 3572:Small form-factor pluggable transceiver 655:WDM multiplexer for DWDM communications 554:coarse wavelength-division multiplexing 275: 219: 164: 119: 103: 3874:DWDM ITU Table, 100 Ghz spacing" 3544: β€“ Optical multiplexing technique 3421:vertical-cavity surface-emitting laser 720:The introduction of the ITU-T G.694.1 618:Dense wavelength-division multiplexing 18:Dense wavelength-division multiplexing 3979:"Flexoptix GmbH CWDM / DWDM CHANNELS" 3542:Orbital angular momentum multiplexing 3487: β€“ Optical multiplexer component 3467:transponders (optical communications) 433:(stable solid-state single-frequency 27:Fiber-optic communications technology 7: 3817: 3815: 3726: 3724: 3618:Cai, Hong; Parks, Joseph. W (2015). 3613: 3611: 3609: 3824:SIAM Journal on Applied Mathematics 3556: β€“ Converts light into current 3515:Multiwavelength optical networking 761:tone or style may not reflect the 742:Wavelength-converting transponders 56:it lacks sufficient corresponding 25: 709:Optical Supervisory Channel (OSC) 636:optical-electrical-optical (OEO) 3562: β€“ Form of modal dispersion 3427:Transceivers versus transponders 3348: 771:guide to writing better articles 750: 698:technology, as described in the 333:wavelength-division multiplexing 111: 41: 3894:Markoff, John (March 3, 1997). 3523: β€“ Non-profit organization 3511: β€“ IP-only optical network 3503:Frequency-division multiplexing 375:frequency-division multiplexing 1: 3550: β€“ Type of data encoding 3521:Optical Internetworking Forum 3491:Code-division multiple access 3335:Optical cross connects (OXCs) 677:intermediate optical terminal 622:erbium-doped fiber amplifiers 558:erbium doped fiber amplifiers 460:WDM systems are popular with 368:wavelength-division duplexing 3913:Hecht, Jeff (October 2016). 3560:Polarization mode dispersion 3499: β€“ Unused optical fibre 681:optical add-drop multiplexer 475:Most WDM systems operate on 462:telecommunications companies 427:optical add-drop multiplexer 3733:Journal of Coastal Research 3687:Journal of Coastal Research 435:Fabry–PΓ©rot interferometers 4081: 4055:Fiber-optic communications 3924:. The Optical Society: 47. 3593:Time-division multiplexing 3568: β€“ Optical technology 3338: 3316: 669:intermediate line repeater 405:WDM System in rack 19/21'' 329:fiber-optic communications 29: 3922:Optics and Photonics News 3533:Optical Transport Network 3485:Arrayed waveguide grating 628:), or 1570–1610 nm ( 477:single-mode optical fiber 362:. This technique enables 692:forward error correction 481:multi-mode optical fiber 339:) is a technology which 222:Statistical multiplexing 3645:10.1073/pnas.1511921112 3409:C form-factor pluggable 818:garbage in, garbage out 397:WDM operating principle 71:more precise citations. 4065:Channel access methods 3876:telecomengineering.com 688:terminal demultiplexer 656: 581:CWDM is being used in 549: 406: 398: 347:signals onto a single 284:Channel access methods 3589: β€“ Enhanced DWDM 3437:simplex communication 3341:Optical cross-connect 867:List of DWDM Channels 654: 552:Originally, the term 547: 404: 396: 289:Medium access control 3527:Optical mesh network 3479:Add-drop multiplexer 3441:duplex communication 886:100GHz ITU Channels 862:transport equipment. 662:terminal multiplexer 510:transmission windows 409:A WDM system uses a 225:(variable bandwidth) 170:(constant bandwidth) 3636:2015PNAS..11212933O 3630:(42): 12933–12937. 3419:Shortwave WDM uses 1706: 1705:50GHz ITU Channels 887: 807:signal regeneration 518:Raman amplification 351:by using different 4030:adsabs.harvard.edu 3900:The New York Times 3881:2008-07-04 at the 3745:10.2112/SI94-029.1 3699:10.2112/SI97-013.1 3360:. You can help by 1704: 885: 835:Schmitt-triggering 657: 550: 512:of silica fibers. 466:optical amplifiers 407: 399: 355:(i.e., colors) of 3836:10.1137/070680539 3378: 3377: 3310: 3309: 1699: 1698: 799: 798: 791: 765:used on Knowledge 763:encyclopedic tone 731:Internet backbone 577:CWDM Applications 325: 324: 121:Analog modulation 97: 96: 89: 16:(Redirected from 4072: 4010: 4009: 4007: 4006: 3995: 3989: 3988: 3986: 3985: 3975: 3969: 3968: 3966: 3965: 3956:. Archived from 3950: 3944: 3943: 3942:. June 12, 1996. 3932: 3926: 3925: 3919: 3910: 3904: 3903: 3891: 3885: 3872: 3866: 3865: 3860:. Archived from 3854: 3848: 3847: 3819: 3810: 3809: 3804:. Archived from 3798: 3792: 3791: 3786:. Archived from 3780: 3774: 3771: 3765: 3764: 3728: 3719: 3718: 3682: 3676: 3675: 3665: 3647: 3615: 3577: 3566:SELFOC Microlens 3538: 3373: 3370: 3352: 3345: 1707: 888: 879: 878: 874: 794: 787: 783: 780: 774: 773:for suggestions. 769:See Knowledge's 754: 753: 746: 716:re-transmission. 583:cable television 317: 310: 303: 237:Packet switching 226: 171: 115: 101: 92: 85: 81: 78: 72: 67:this article by 58:inline citations 45: 44: 37: 21: 4080: 4079: 4075: 4074: 4073: 4071: 4070: 4069: 4045: 4044: 4014: 4013: 4004: 4002: 3997: 3996: 3992: 3983: 3981: 3977: 3976: 3972: 3963: 3961: 3952: 3951: 3947: 3934: 3933: 3929: 3917: 3912: 3911: 3907: 3893: 3892: 3888: 3883:Wayback Machine 3873: 3869: 3856: 3855: 3851: 3821: 3820: 3813: 3800: 3799: 3795: 3782: 3781: 3777: 3772: 3768: 3730: 3729: 3722: 3684: 3683: 3679: 3617: 3616: 3607: 3602: 3575: 3536: 3475: 3454: 3429: 3417: 3387: 3374: 3368: 3365: 3358:needs expansion 3343: 3337: 3321: 3315: 1721: 1716: 1714: 1701: 902: 897: 895: 880: 876: 872: 870: 869: 795: 784: 778: 775: 768: 759:This section's 755: 751: 744: 696:digital wrapper 646: 615: 600:10 Gbit/s 579: 542: 441:, the notation 391: 345:optical carrier 321: 271: 228: 224: 223: 215: 173: 169: 168: 160: 93: 82: 76: 73: 63:Please help to 62: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 4078: 4076: 4068: 4067: 4062: 4057: 4047: 4046: 4043: 4042: 4039: 4035: 4032: 4026: 4012: 4011: 4001:. 12 July 2018 3990: 3970: 3945: 3927: 3905: 3886: 3867: 3864:on 2012-11-10. 3849: 3830:(3): 690–703. 3811: 3808:on 2012-11-10. 3793: 3790:on 2012-11-10. 3775: 3766: 3720: 3677: 3604: 3603: 3601: 3598: 3597: 3596: 3590: 3584: 3578: 3569: 3563: 3557: 3551: 3545: 3539: 3530: 3524: 3518: 3512: 3506: 3500: 3494: 3488: 3482: 3474: 3471: 3463: 3462: 3458: 3455: 3453: 3452: 3449: 3444: 3433: 3428: 3425: 3416: 3413: 3386: 3383: 3376: 3375: 3355: 3353: 3339:Main article: 3336: 3333: 3317:Main article: 3314: 3311: 3308: 3307: 3304: 3301: 3297: 3296: 3293: 3290: 3286: 3285: 3282: 3279: 3275: 3274: 3271: 3268: 3264: 3263: 3260: 3257: 3253: 3252: 3249: 3246: 3242: 3241: 3238: 3235: 3231: 3230: 3227: 3224: 3220: 3219: 3216: 3213: 3209: 3208: 3205: 3202: 3198: 3197: 3194: 3191: 3187: 3186: 3183: 3180: 3176: 3175: 3172: 3169: 3165: 3164: 3161: 3158: 3154: 3153: 3150: 3147: 3143: 3142: 3139: 3136: 3132: 3131: 3128: 3125: 3121: 3120: 3117: 3114: 3110: 3109: 3106: 3103: 3099: 3098: 3095: 3092: 3088: 3087: 3084: 3081: 3077: 3076: 3073: 3070: 3066: 3065: 3062: 3059: 3055: 3054: 3051: 3048: 3044: 3043: 3040: 3037: 3033: 3032: 3029: 3026: 3022: 3021: 3018: 3015: 3011: 3010: 3007: 3004: 3000: 2999: 2996: 2993: 2989: 2988: 2985: 2982: 2978: 2977: 2974: 2971: 2967: 2966: 2963: 2960: 2956: 2955: 2952: 2949: 2945: 2944: 2941: 2938: 2934: 2933: 2930: 2927: 2923: 2922: 2919: 2916: 2912: 2911: 2908: 2905: 2901: 2900: 2897: 2894: 2890: 2889: 2886: 2883: 2879: 2878: 2875: 2872: 2868: 2867: 2864: 2861: 2857: 2856: 2853: 2850: 2846: 2845: 2842: 2839: 2835: 2834: 2831: 2828: 2824: 2823: 2820: 2817: 2813: 2812: 2809: 2806: 2802: 2801: 2798: 2795: 2791: 2790: 2787: 2784: 2780: 2779: 2776: 2773: 2769: 2768: 2765: 2762: 2758: 2757: 2754: 2751: 2747: 2746: 2743: 2740: 2736: 2735: 2732: 2729: 2725: 2724: 2721: 2718: 2714: 2713: 2710: 2707: 2703: 2702: 2699: 2696: 2692: 2691: 2688: 2685: 2681: 2680: 2677: 2674: 2670: 2669: 2666: 2663: 2659: 2658: 2655: 2652: 2648: 2647: 2644: 2641: 2637: 2636: 2633: 2630: 2626: 2625: 2622: 2619: 2615: 2614: 2611: 2608: 2604: 2603: 2600: 2597: 2593: 2592: 2589: 2586: 2582: 2581: 2578: 2575: 2571: 2570: 2567: 2564: 2560: 2559: 2556: 2553: 2549: 2548: 2545: 2542: 2538: 2537: 2534: 2531: 2527: 2526: 2523: 2520: 2516: 2515: 2512: 2509: 2505: 2504: 2501: 2498: 2494: 2493: 2490: 2487: 2483: 2482: 2479: 2476: 2472: 2471: 2468: 2465: 2461: 2460: 2457: 2454: 2450: 2449: 2446: 2443: 2439: 2438: 2435: 2432: 2428: 2427: 2424: 2421: 2417: 2416: 2413: 2410: 2406: 2405: 2402: 2399: 2395: 2394: 2391: 2388: 2384: 2383: 2380: 2377: 2373: 2372: 2369: 2366: 2362: 2361: 2358: 2355: 2351: 2350: 2347: 2344: 2340: 2339: 2336: 2333: 2329: 2328: 2325: 2322: 2318: 2317: 2314: 2311: 2307: 2306: 2303: 2300: 2296: 2295: 2292: 2289: 2285: 2284: 2281: 2278: 2274: 2273: 2270: 2267: 2263: 2262: 2259: 2256: 2252: 2251: 2248: 2245: 2241: 2240: 2237: 2234: 2230: 2229: 2226: 2223: 2219: 2218: 2215: 2212: 2208: 2207: 2204: 2201: 2197: 2196: 2193: 2190: 2186: 2185: 2182: 2179: 2175: 2174: 2171: 2168: 2164: 2163: 2160: 2157: 2153: 2152: 2149: 2146: 2142: 2141: 2138: 2135: 2131: 2130: 2127: 2124: 2120: 2119: 2116: 2113: 2109: 2108: 2105: 2102: 2098: 2097: 2094: 2091: 2087: 2086: 2083: 2080: 2076: 2075: 2072: 2069: 2065: 2064: 2061: 2058: 2054: 2053: 2050: 2047: 2043: 2042: 2039: 2036: 2032: 2031: 2028: 2025: 2021: 2020: 2017: 2014: 2010: 2009: 2006: 2003: 1999: 1998: 1995: 1992: 1988: 1987: 1984: 1981: 1977: 1976: 1973: 1970: 1966: 1965: 1962: 1959: 1955: 1954: 1951: 1948: 1944: 1943: 1940: 1937: 1933: 1932: 1929: 1926: 1922: 1921: 1918: 1915: 1911: 1910: 1907: 1904: 1900: 1899: 1896: 1893: 1889: 1888: 1885: 1882: 1878: 1877: 1874: 1871: 1867: 1866: 1863: 1860: 1856: 1855: 1852: 1849: 1845: 1844: 1841: 1838: 1834: 1833: 1830: 1827: 1823: 1822: 1819: 1816: 1812: 1811: 1808: 1805: 1801: 1800: 1797: 1794: 1790: 1789: 1786: 1783: 1779: 1778: 1775: 1772: 1768: 1767: 1764: 1761: 1757: 1756: 1753: 1750: 1746: 1745: 1742: 1739: 1735: 1734: 1731: 1728: 1724: 1723: 1718: 1711: 1697: 1696: 1693: 1690: 1686: 1685: 1682: 1679: 1675: 1674: 1671: 1668: 1664: 1663: 1660: 1657: 1653: 1652: 1649: 1646: 1642: 1641: 1638: 1635: 1631: 1630: 1627: 1624: 1620: 1619: 1616: 1613: 1609: 1608: 1605: 1602: 1598: 1597: 1594: 1591: 1587: 1586: 1583: 1580: 1576: 1575: 1572: 1569: 1565: 1564: 1561: 1558: 1554: 1553: 1550: 1547: 1543: 1542: 1539: 1536: 1532: 1531: 1528: 1525: 1521: 1520: 1517: 1514: 1510: 1509: 1506: 1503: 1499: 1498: 1495: 1492: 1488: 1487: 1484: 1481: 1477: 1476: 1473: 1470: 1466: 1465: 1462: 1459: 1455: 1454: 1451: 1448: 1444: 1443: 1440: 1437: 1433: 1432: 1429: 1426: 1422: 1421: 1418: 1415: 1411: 1410: 1407: 1404: 1400: 1399: 1396: 1393: 1389: 1388: 1385: 1382: 1378: 1377: 1374: 1371: 1367: 1366: 1363: 1360: 1356: 1355: 1352: 1349: 1345: 1344: 1341: 1338: 1334: 1333: 1330: 1327: 1323: 1322: 1319: 1316: 1312: 1311: 1308: 1305: 1301: 1300: 1297: 1294: 1290: 1289: 1286: 1283: 1279: 1278: 1275: 1272: 1268: 1267: 1264: 1261: 1257: 1256: 1253: 1250: 1246: 1245: 1242: 1239: 1235: 1234: 1231: 1228: 1224: 1223: 1220: 1217: 1213: 1212: 1209: 1206: 1202: 1201: 1198: 1195: 1191: 1190: 1187: 1184: 1180: 1179: 1176: 1173: 1169: 1168: 1165: 1162: 1158: 1157: 1154: 1151: 1147: 1146: 1143: 1140: 1136: 1135: 1132: 1129: 1125: 1124: 1121: 1118: 1114: 1113: 1110: 1107: 1103: 1102: 1099: 1096: 1092: 1091: 1088: 1085: 1081: 1080: 1077: 1074: 1070: 1069: 1066: 1063: 1059: 1058: 1055: 1052: 1048: 1047: 1044: 1041: 1037: 1036: 1033: 1030: 1026: 1025: 1022: 1019: 1015: 1014: 1011: 1008: 1004: 1003: 1000: 997: 993: 992: 989: 986: 982: 981: 978: 975: 971: 970: 967: 964: 960: 959: 956: 953: 949: 948: 945: 942: 938: 937: 934: 931: 927: 926: 923: 920: 916: 915: 912: 909: 905: 904: 899: 892: 868: 865: 864: 863: 852: 848: 847: 843: 839: 838: 831: 827: 826: 814: 797: 796: 758: 756: 749: 743: 740: 722:frequency grid 718: 717: 706: 684: 673: 665: 645: 642: 614: 611: 602:physical layer 578: 575: 541: 538: 390: 387: 383:speed of light 323: 322: 320: 319: 312: 305: 297: 294: 293: 292: 291: 286: 278: 277: 276:Related topics 273: 272: 270: 269: 264: 259: 254: 249: 244: 239: 233: 230: 229: 220: 217: 216: 214: 213: 208: 203: 198: 193: 184: 178: 175: 174: 165: 162: 161: 159: 158: 153: 148: 143: 138: 133: 127: 124: 123: 117: 116: 108: 107: 95: 94: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4077: 4066: 4063: 4061: 4058: 4056: 4053: 4052: 4050: 4040: 4036: 4033: 4031: 4027: 4024: 4023:81-203-2129-4 4020: 4016: 4015: 4000: 3994: 3991: 3980: 3974: 3971: 3960:on 2012-03-27 3959: 3955: 3949: 3946: 3941: 3937: 3931: 3928: 3923: 3916: 3909: 3906: 3901: 3897: 3890: 3887: 3884: 3880: 3877: 3871: 3868: 3863: 3859: 3853: 3850: 3845: 3841: 3837: 3833: 3829: 3825: 3818: 3816: 3812: 3807: 3803: 3797: 3794: 3789: 3785: 3779: 3776: 3770: 3767: 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3734: 3727: 3725: 3721: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3681: 3678: 3673: 3669: 3664: 3659: 3655: 3651: 3646: 3641: 3637: 3633: 3629: 3625: 3621: 3614: 3612: 3610: 3606: 3599: 3594: 3591: 3588: 3587:Super-channel 3585: 3582: 3579: 3573: 3570: 3567: 3564: 3561: 3558: 3555: 3552: 3549: 3546: 3543: 3540: 3534: 3531: 3528: 3525: 3522: 3519: 3516: 3513: 3510: 3507: 3504: 3501: 3498: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3476: 3472: 3470: 3468: 3459: 3456: 3450: 3448:1611 nm. 3446: 3445: 3442: 3438: 3434: 3431: 3430: 3426: 3424: 3422: 3415:Shortwave WDM 3414: 3412: 3410: 3406: 3402: 3398: 3393: 3391: 3384: 3382: 3372: 3363: 3359: 3356:This section 3354: 3351: 3347: 3346: 3342: 3334: 3332: 3330: 3325: 3320: 3312: 3305: 3302: 3299: 3298: 3294: 3291: 3288: 3287: 3283: 3280: 3277: 3276: 3272: 3269: 3266: 3265: 3261: 3258: 3255: 3254: 3250: 3247: 3244: 3243: 3239: 3236: 3233: 3232: 3228: 3225: 3222: 3221: 3217: 3214: 3211: 3210: 3206: 3203: 3200: 3199: 3195: 3192: 3189: 3188: 3184: 3181: 3178: 3177: 3173: 3170: 3167: 3166: 3162: 3159: 3156: 3155: 3151: 3148: 3145: 3144: 3140: 3137: 3134: 3133: 3129: 3126: 3123: 3122: 3118: 3115: 3112: 3111: 3107: 3104: 3101: 3100: 3096: 3093: 3090: 3089: 3085: 3082: 3079: 3078: 3074: 3071: 3068: 3067: 3063: 3060: 3057: 3056: 3052: 3049: 3046: 3045: 3041: 3038: 3035: 3034: 3030: 3027: 3024: 3023: 3019: 3016: 3013: 3012: 3008: 3005: 3002: 3001: 2997: 2994: 2991: 2990: 2986: 2983: 2980: 2979: 2975: 2972: 2969: 2968: 2964: 2961: 2958: 2957: 2953: 2950: 2947: 2946: 2942: 2939: 2936: 2935: 2931: 2928: 2925: 2924: 2920: 2917: 2914: 2913: 2909: 2906: 2903: 2902: 2898: 2895: 2892: 2891: 2887: 2884: 2881: 2880: 2876: 2873: 2870: 2869: 2865: 2862: 2859: 2858: 2854: 2851: 2848: 2847: 2843: 2840: 2837: 2836: 2832: 2829: 2826: 2825: 2821: 2818: 2815: 2814: 2810: 2807: 2804: 2803: 2799: 2796: 2793: 2792: 2788: 2785: 2782: 2781: 2777: 2774: 2771: 2770: 2766: 2763: 2760: 2759: 2755: 2752: 2749: 2748: 2744: 2741: 2738: 2737: 2733: 2730: 2727: 2726: 2722: 2719: 2716: 2715: 2711: 2708: 2705: 2704: 2700: 2697: 2694: 2693: 2689: 2686: 2683: 2682: 2678: 2675: 2672: 2671: 2667: 2664: 2661: 2660: 2656: 2653: 2650: 2649: 2645: 2642: 2639: 2638: 2634: 2631: 2628: 2627: 2623: 2620: 2617: 2616: 2612: 2609: 2606: 2605: 2601: 2598: 2595: 2594: 2590: 2587: 2584: 2583: 2579: 2576: 2573: 2572: 2568: 2565: 2562: 2561: 2557: 2554: 2551: 2550: 2546: 2543: 2540: 2539: 2535: 2532: 2529: 2528: 2524: 2521: 2518: 2517: 2513: 2510: 2507: 2506: 2502: 2499: 2496: 2495: 2491: 2488: 2485: 2484: 2480: 2477: 2474: 2473: 2469: 2466: 2463: 2462: 2458: 2455: 2452: 2451: 2447: 2444: 2441: 2440: 2436: 2433: 2430: 2429: 2425: 2422: 2419: 2418: 2414: 2411: 2408: 2407: 2403: 2400: 2397: 2396: 2392: 2389: 2386: 2385: 2381: 2378: 2375: 2374: 2370: 2367: 2364: 2363: 2359: 2356: 2353: 2352: 2348: 2345: 2342: 2341: 2337: 2334: 2331: 2330: 2326: 2323: 2320: 2319: 2315: 2312: 2309: 2308: 2304: 2301: 2298: 2297: 2293: 2290: 2287: 2286: 2282: 2279: 2276: 2275: 2271: 2268: 2265: 2264: 2260: 2257: 2254: 2253: 2249: 2246: 2243: 2242: 2238: 2235: 2232: 2231: 2227: 2224: 2221: 2220: 2216: 2213: 2210: 2209: 2205: 2202: 2199: 2198: 2194: 2191: 2188: 2187: 2183: 2180: 2177: 2176: 2172: 2169: 2166: 2165: 2161: 2158: 2155: 2154: 2150: 2147: 2144: 2143: 2139: 2136: 2133: 2132: 2128: 2125: 2122: 2121: 2117: 2114: 2111: 2110: 2106: 2103: 2100: 2099: 2095: 2092: 2089: 2088: 2084: 2081: 2078: 2077: 2073: 2070: 2067: 2066: 2062: 2059: 2056: 2055: 2051: 2048: 2045: 2044: 2040: 2037: 2034: 2033: 2029: 2026: 2023: 2022: 2018: 2015: 2012: 2011: 2007: 2004: 2001: 2000: 1996: 1993: 1990: 1989: 1985: 1982: 1979: 1978: 1974: 1971: 1968: 1967: 1963: 1960: 1957: 1956: 1952: 1949: 1946: 1945: 1941: 1938: 1935: 1934: 1930: 1927: 1924: 1923: 1919: 1916: 1913: 1912: 1908: 1905: 1902: 1901: 1897: 1894: 1891: 1890: 1886: 1883: 1880: 1879: 1875: 1872: 1869: 1868: 1864: 1861: 1858: 1857: 1853: 1850: 1847: 1846: 1842: 1839: 1836: 1835: 1831: 1828: 1825: 1824: 1820: 1817: 1814: 1813: 1809: 1806: 1803: 1802: 1798: 1795: 1792: 1791: 1787: 1784: 1781: 1780: 1776: 1773: 1770: 1769: 1765: 1762: 1759: 1758: 1754: 1751: 1748: 1747: 1743: 1740: 1737: 1736: 1732: 1729: 1726: 1725: 1719: 1712: 1709: 1708: 1702: 1694: 1691: 1688: 1687: 1683: 1680: 1677: 1676: 1672: 1669: 1666: 1665: 1661: 1658: 1655: 1654: 1650: 1647: 1644: 1643: 1639: 1636: 1633: 1632: 1628: 1625: 1622: 1621: 1617: 1614: 1611: 1610: 1606: 1603: 1600: 1599: 1595: 1592: 1589: 1588: 1584: 1581: 1578: 1577: 1573: 1570: 1567: 1566: 1562: 1559: 1556: 1555: 1551: 1548: 1545: 1544: 1540: 1537: 1534: 1533: 1529: 1526: 1523: 1522: 1518: 1515: 1512: 1511: 1507: 1504: 1501: 1500: 1496: 1493: 1490: 1489: 1485: 1482: 1479: 1478: 1474: 1471: 1468: 1467: 1463: 1460: 1457: 1456: 1452: 1449: 1446: 1445: 1441: 1438: 1435: 1434: 1430: 1427: 1424: 1423: 1419: 1416: 1413: 1412: 1408: 1405: 1402: 1401: 1397: 1394: 1391: 1390: 1386: 1383: 1380: 1379: 1375: 1372: 1369: 1368: 1364: 1361: 1358: 1357: 1353: 1350: 1347: 1346: 1342: 1339: 1336: 1335: 1331: 1328: 1325: 1324: 1320: 1317: 1314: 1313: 1309: 1306: 1303: 1302: 1298: 1295: 1292: 1291: 1287: 1284: 1281: 1280: 1276: 1273: 1270: 1269: 1265: 1262: 1259: 1258: 1254: 1251: 1248: 1247: 1243: 1240: 1237: 1236: 1232: 1229: 1226: 1225: 1221: 1218: 1215: 1214: 1210: 1207: 1204: 1203: 1199: 1196: 1193: 1192: 1188: 1185: 1182: 1181: 1177: 1174: 1171: 1170: 1166: 1163: 1160: 1159: 1155: 1152: 1149: 1148: 1144: 1141: 1138: 1137: 1133: 1130: 1127: 1126: 1122: 1119: 1116: 1115: 1111: 1108: 1105: 1104: 1100: 1097: 1094: 1093: 1089: 1086: 1083: 1082: 1078: 1075: 1072: 1071: 1067: 1064: 1061: 1060: 1056: 1053: 1050: 1049: 1045: 1042: 1039: 1038: 1034: 1031: 1028: 1027: 1023: 1020: 1017: 1016: 1012: 1009: 1006: 1005: 1001: 998: 995: 994: 990: 987: 984: 983: 979: 976: 973: 972: 968: 965: 962: 961: 957: 954: 951: 950: 946: 943: 940: 939: 935: 932: 929: 928: 924: 921: 918: 917: 913: 910: 907: 906: 900: 893: 890: 889: 883: 875: 866: 861: 857: 853: 850: 849: 844: 841: 840: 836: 832: 829: 828: 823: 819: 815: 812: 811: 810: 808: 803: 793: 790: 782: 779:December 2018 772: 766: 764: 757: 748: 747: 741: 739: 735: 732: 726: 723: 714: 713:Fast Ethernet 710: 707: 704: 701: 697: 693: 689: 685: 682: 678: 674: 670: 666: 663: 659: 658: 653: 649: 643: 641: 639: 635: 631: 627: 623: 619: 612: 610: 606: 603: 599: 594: 592: 588: 584: 576: 574: 570: 567: 561: 559: 555: 546: 539: 537: 535: 531: 525: 521: 519: 515: 511: 507: 503: 499: 494: 492: 487: 484: 482: 478: 473: 469: 467: 463: 458: 456: 452: 446: 444: 440: 436: 432: 428: 424: 420: 419:demultiplexer 416: 412: 403: 395: 388: 386: 384: 380: 376: 371: 369: 365: 364:bidirectional 361: 358: 354: 350: 349:optical fiber 346: 342: 338: 334: 330: 318: 313: 311: 306: 304: 299: 298: 296: 295: 290: 287: 285: 282: 281: 280: 279: 274: 268: 265: 263: 260: 258: 255: 253: 250: 248: 245: 243: 240: 238: 235: 234: 232: 231: 227: 218: 212: 209: 207: 204: 202: 199: 197: 194: 192: 188: 185: 183: 180: 179: 177: 176: 172: 163: 157: 154: 152: 149: 147: 144: 142: 139: 137: 134: 132: 129: 128: 126: 125: 122: 118: 114: 110: 109: 106: 102: 99: 91: 88: 80: 77:December 2018 70: 66: 60: 59: 53: 48: 39: 38: 33: 19: 4060:Multiplexing 4003:. Retrieved 3993: 3982:. Retrieved 3973: 3962:. Retrieved 3958:the original 3948: 3939: 3930: 3921: 3908: 3899: 3889: 3870: 3862:the original 3852: 3827: 3823: 3806:the original 3796: 3788:the original 3778: 3769: 3736: 3732: 3690: 3686: 3680: 3627: 3623: 3581:Spectrometer 3464: 3432:Transceivers 3418: 3394: 3388: 3385:Enhanced WDM 3379: 3366: 3362:adding to it 3357: 3329:pass-through 3328: 3326: 3322: 1700: 881: 821: 804: 800: 785: 776: 760: 736: 727: 719: 708: 687: 680: 676: 668: 661: 647: 644:DWDM systems 638:regenerators 617: 616: 607: 595: 590: 586: 580: 571: 562: 553: 551: 526: 522: 513: 505: 501: 497: 495: 488: 485: 474: 470: 459: 447: 442: 438: 408: 372: 367: 343:a number of 336: 332: 326: 242:Dynamic TDMA 201:Polarization 190: 189: / 167:Circuit mode 105:Multiplexing 98: 83: 74: 55: 3739:: 145–148. 3457:Transponder 1720:Wavelength 901:Wavelength 598:10GBASE-LX4 504:(CWDM) and 415:transmitter 411:multiplexer 353:wavelengths 341:multiplexes 69:introducing 4049:Categories 4005:2022-07-22 3984:2022-07-22 3964:2012-03-19 3693:: 99–102. 3600:References 3554:Photodiode 3497:Dark fiber 1715:Frequency 1710:Channel # 896:Frequency 891:Channel # 694:(FEC) via 587:downstream 540:Coarse WDM 52:references 3761:202549795 3715:208620293 3465:See also 3369:June 2008 860:SONET/SDH 856:muxponder 851:Muxponder 705:standard. 634:SONET/SDH 613:Dense WDM 514:Dense WDM 449:100  379:frequency 3879:Archived 3844:40233639 3753:26853921 3707:26853785 3672:26438840 3654:26465542 3473:See also 3306:1519.86 3295:1520.25 3284:1520.63 3273:1521.02 3251:1521.79 3240:1522.18 3229:1522.56 3218:1522.95 3207:1523.34 3196:1523.72 3185:1524.11 3163:1524.89 3152:1525.27 3141:1525.66 3130:1526.05 3119:1526.44 3108:1526.83 3097:1527.22 3075:1527.99 3064:1528.38 3053:1528.77 3042:1529.16 3031:1529.55 3020:1529.94 3009:1530.33 2998:1530.72 2987:1531.12 2976:1531.51 2954:1532.29 2943:1532.68 2932:1533.07 2921:1533.47 2910:1533.86 2899:1534.25 2888:1534.64 2877:1535.04 2866:1535.43 2855:1535.82 2844:1536.22 2833:1536.61 2800:1537.79 2789:1538.19 2778:1538.58 2767:1538.98 2756:1539.37 2745:1539.77 2734:1540.16 2723:1540.56 2712:1540.95 2701:1541.35 2690:1541.75 2679:1542.14 2668:1542.54 2657:1542.94 2646:1543.33 2635:1543.73 2624:1544.13 2613:1544.53 2602:1544.92 2591:1545.32 2580:1545.72 2569:1546,12 2558:1546,52 2547:1546.92 2536:1547.32 2525:1547.72 2514:1548.11 2503:1548.52 2492:1548.91 2481:1549.32 2470:1549.72 2459:1550.12 2448:1550.52 2437:1550.92 2426:1551.32 2415:1551.72 2404:1552.12 2393:1552.52 2382:1552.93 2371:1553.33 2360:1553.73 2349:1554.13 2338:1554.54 2327:1554.94 2316:1555.34 2305:1555.75 2294:1556.15 2283:1556.56 2272:1556.96 2261:1557.36 2250:1557.77 2239:1558.17 2228:1558.58 2217:1558.98 2206:1559.39 2195:1559.79 2173:1560.61 2162:1561.01 2151:1561.42 2140:1561.83 2129:1562.23 2118:1562.64 2107:1563.05 2096:1563.45 2085:1563.86 2074:1564.27 2063:1564.68 2052:1565.09 2019:1566.31 2008:1566.72 1997:1567.13 1986:1567.54 1975:1567.95 1964:1568.36 1953:1568.77 1942:1569.18 1931:1569.59 1920:1570.01 1909:1570.42 1898:1570.83 1887:1571.24 1876:1571.65 1865:1572.06 1854:1572.48 1843:1572.89 1821:1573.71 1810:1574.13 1799:1574.54 1788:1574.95 1777:1575.37 1766:1575.78 1744:1576.61 1733:1577.03 1695:1520.25 1684:1521.02 1673:1521.79 1662:1522.56 1651:1523.34 1640:1524.11 1629:1524.89 1618:1525.66 1607:1526.44 1596:1527.22 1585:1527.99 1574:1528.77 1563:1529.55 1552:1530.33 1541:1531.12 1519:1532.68 1508:1533.47 1497:1534.25 1486:1535.04 1475:1535.82 1464:1536.61 1442:1538.19 1431:1538.98 1420:1539.77 1409:1540.56 1398:1541.35 1387:1542.14 1376:1542.94 1365:1543.73 1354:1544.53 1343:1545.32 1332:1546.12 1321:1546.92 1310:1547.72 1299:1548.51 1288:1549.32 1277:1550.12 1266:1550.92 1255:1551.72 1244:1552.52 1233:1553.33 1222:1554.13 1211:1554.94 1200:1555.75 1189:1556.55 1178:1557.36 1167:1558.17 1156:1558.98 1145:1559.79 1134:1560.61 1123:1561.41 1112:1562.23 1101:1563.05 1090:1563.86 1079:1564.68 1057:1566.31 1046:1567.13 1035:1567.95 1024:1568.77 1013:1569.59 1002:1570.42 991:1571.24 980:1572.06 969:1572.89 958:1573.71 947:1574.54 936:1575.37 914:1577.03 591:upstream 491:wideband 423:receiver 3663:4620877 3632:Bibcode 3509:IPoDWDM 3303:197.25 3281:197.15 3262:1521.4 3259:197.05 3237:196.95 3215:196.85 3193:196.75 3174:1524.5 3171:196.65 3149:196.55 3127:196.45 3105:196.35 3086:1527.6 3083:196.25 3061:196.15 3039:196.05 3017:195.95 2995:195.85 2973:195.75 2965:1531.9 2951:195.65 2929:195.55 2907:195.45 2885:195.35 2863:195.25 2841:195.15 2819:195.05 2811:1537.4 2797:194.95 2775:194.85 2753:194.75 2731:194.65 2709:194.55 2687:194.45 2665:194.35 2643:194.25 2621:194.15 2599:194.05 2577:193.95 2555:193.85 2533:193.75 2511:193.65 2489:193.55 2467:193.45 2445:193.35 2423:193.25 2401:193.15 2379:193.05 2357:192.95 2335:192.85 2313:192.75 2291:192.65 2269:192.55 2247:192.45 2225:192.35 2203:192.25 2184:1560.2 2181:192.15 2159:192.05 2137:191.95 2115:191.85 2093:191.75 2071:191.65 2049:191.55 2041:1565.5 2030:1565.9 2027:191.45 2005:191.35 1983:191.25 1961:191.15 1939:191.05 1917:190.95 1895:190.85 1873:190.75 1851:190.65 1832:1573.3 1829:190.55 1807:190.45 1785:190.35 1763:190.25 1755:1576.2 1741:190.15 1713:Center 1530:1531.9 1453:1537.4 1068:1565.5 925:1576.2 894:Center 686:A DWDM 672:stages. 660:A DWDM 500:(WDM), 431:etalons 421:at the 413:at the 389:Systems 206:Spatial 65:improve 32:DWDM-FM 4021:  3940:Sprint 3842:  3759:  3751:  3713:  3705:  3670:  3660:  3652:  3397:XENPAK 3292:197.2 3270:197.1 3226:196.9 3204:196.8 3182:196.7 3160:196.6 3138:196.5 3116:196.4 3094:196.3 3072:196.2 3050:196.1 3006:195.9 2984:195.8 2962:195.7 2940:195.6 2918:195.5 2896:195.4 2874:195.3 2852:195.2 2830:195.1 2786:194.9 2764:194.8 2742:194.7 2720:194.6 2698:194.5 2676:194.4 2654:194.3 2632:194.2 2610:194.1 2566:193.9 2544:193.8 2522:193.7 2500:193.6 2478:193.5 2456:193.4 2434:193.3 2412:193.2 2390:193.1 2346:192.9 2324:192.8 2302:192.7 2280:192.6 2258:192.5 2236:192.4 2214:192.3 2192:192.2 2170:192.1 2126:191.9 2104:191.8 2082:191.7 2060:191.6 2038:191.5 2016:191.4 1994:191.3 1972:191.2 1950:191.1 1906:190.9 1884:190.8 1862:190.7 1840:190.6 1818:190.5 1796:190.4 1774:190.3 1752:190.2 1730:190.1 1717:(THz) 1692:197.2 1681:197.1 1670:197.0 1659:196.9 1648:196.8 1637:196.7 1626:196.6 1615:196.5 1604:196.4 1593:196.3 1582:196.2 1571:196.1 1560:196.0 1549:195.9 1538:195.8 1527:195.7 1516:195.6 1505:195.5 1494:195.4 1483:195.3 1472:195.2 1461:195.1 1450:195.0 1439:194.9 1428:194.8 1417:194.7 1406:194.6 1395:194.5 1384:194.4 1373:194.3 1362:194.2 1351:194.1 1340:194.0 1329:193.9 1318:193.8 1307:193.7 1296:193.6 1285:193.5 1274:193.4 1263:193.3 1252:193.2 1241:193.1 1230:193.0 1219:192.9 1208:192.8 1197:192.7 1186:192.6 1175:192.5 1164:192.4 1153:192.3 1142:192.2 1131:192.1 1120:192.0 1109:191.9 1098:191.8 1087:191.7 1076:191.6 1065:191.5 1054:191.4 1043:191.3 1032:191.2 1021:191.1 1010:191.0 999:190.9 988:190.8 977:190.7 966:190.6 955:190.5 944:190.4 933:190.3 922:190.2 911:190.1 898:(THz) 871:": --> 630:L band 626:C band 534:C-band 502:coarse 498:normal 455:Tbit/s 451:Gbit/s 262:SC-FDM 54:, but 4038:1990. 3918:(PDF) 3840:JSTOR 3757:S2CID 3749:JSTOR 3711:S2CID 3703:JSTOR 3650:JSTOR 3390:Cisco 3300:72.5 3278:71.5 3256:70.5 3234:69.5 3212:68.5 3190:67.5 3168:66.5 3146:65.5 3124:64.5 3102:63.5 3080:62.5 3058:61.5 3036:60.5 3014:59.5 2992:58.5 2970:57.5 2948:56.5 2926:55.5 2904:54.5 2882:53.5 2860:52.5 2838:51.5 2822:1537 2816:50.5 2794:49.5 2772:48.5 2750:47.5 2728:46.5 2706:45.5 2684:44.5 2662:43.5 2640:42.5 2618:41.5 2596:40.5 2574:39.5 2552:38.5 2530:37.5 2508:36.5 2486:35.5 2464:34.5 2442:33.5 2420:32.5 2398:31.5 2376:30.5 2354:29.5 2332:28.5 2310:27.5 2288:26.5 2266:25.5 2244:24.5 2222:23.5 2200:22.5 2178:21.5 2156:20.5 2134:19.5 2112:18.5 2090:17.5 2068:16.5 2046:15.5 2024:14.5 2002:13.5 1980:12.5 1958:11.5 1936:10.5 1722:(nm) 903:(nm) 703:G.709 700:ITU-T 679:, or 566:G.652 506:dense 360:light 357:laser 267:MC-SS 257:OFDMA 4019:ISBN 3668:PMID 3248:197 3028:196 2808:195 2588:194 2368:193 2148:192 1928:191 1914:9.5 1892:8.5 1870:7.5 1848:6.5 1826:5.5 1804:4.5 1782:3.5 1760:2.5 1738:1.5 873:edit 854:The 822:copy 596:The 589:and 530:EDFA 443:xWDM 252:DSSS 247:FHSS 196:SDMA 3832:doi 3741:doi 3695:doi 3658:PMC 3640:doi 3628:112 3405:XFP 3403:or 3364:. 3289:72 3267:71 3245:70 3223:69 3201:68 3179:67 3157:66 3135:65 3113:64 3091:63 3069:62 3047:61 3025:60 3003:59 2981:58 2959:57 2937:56 2915:55 2893:54 2871:53 2849:52 2827:51 2805:50 2783:49 2761:48 2739:47 2717:46 2695:45 2673:44 2651:43 2629:42 2607:41 2585:40 2563:39 2541:38 2519:37 2497:36 2475:35 2453:34 2431:33 2409:32 2387:31 2365:30 2343:29 2321:28 2299:27 2277:26 2255:25 2233:24 2211:23 2189:22 2167:21 2145:20 2123:19 2101:18 2079:17 2057:16 2035:15 2013:14 1991:13 1969:12 1947:11 1925:10 1689:72 1678:71 1667:70 1656:69 1645:68 1634:67 1623:66 1612:65 1601:64 1590:63 1579:62 1568:61 1557:60 1546:59 1535:58 1524:57 1513:56 1502:55 1491:54 1480:53 1469:52 1458:51 1447:50 1436:49 1425:48 1414:47 1403:46 1392:45 1381:44 1370:43 1359:42 1348:41 1337:40 1326:39 1315:38 1304:37 1293:36 1282:35 1271:34 1260:33 1249:32 1238:31 1227:30 1216:29 1205:28 1194:27 1183:26 1172:25 1161:24 1150:23 1139:22 1128:21 1117:20 1106:19 1095:18 1084:17 1073:16 1062:15 1051:14 1040:13 1029:12 1018:11 1007:10 675:An 667:An 439:WDM 337:WDM 327:In 211:OAM 191:WDM 187:FDM 182:TDM 156:SSB 146:QAM 4051:: 3938:. 3920:. 3898:. 3838:. 3828:69 3826:. 3814:^ 3755:. 3747:. 3737:94 3735:. 3723:^ 3709:. 3701:. 3691:97 3689:. 3666:. 3656:. 3648:. 3638:. 3626:. 3622:. 3608:^ 3401:X2 3399:, 1903:9 1881:8 1859:7 1837:6 1815:5 1793:4 1771:3 1749:2 1727:1 996:9 985:8 974:7 963:6 952:5 941:4 930:3 919:2 908:1 842:3R 830:2R 813:1R 331:, 151:SM 141:PM 136:FM 131:AM 4025:. 4008:. 3987:. 3967:. 3902:. 3846:. 3834:: 3763:. 3743:: 3717:. 3697:: 3674:. 3642:: 3634:: 3371:) 3367:( 877:] 792:) 786:( 781:) 777:( 767:. 335:( 316:e 309:t 302:v 90:) 84:( 79:) 75:( 61:. 34:. 20:)

Index

Dense wavelength-division multiplexing
DWDM-FM
references
inline citations
improve
introducing
Learn how and when to remove this message
Multiplexing

Analog modulation
AM
FM
PM
QAM
SM
SSB
Circuit mode
(constant bandwidth)

TDM
FDM
WDM
SDMA
Polarization
Spatial
OAM
Statistical multiplexing
(variable bandwidth)

Packet switching
Dynamic TDMA
FHSS
DSSS
OFDMA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑